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Green dyadic for the Proca fields
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The dyadic Green functions for the Proca fields in free space are derived to include singular terms. Both the
electric and magnetic types will be obtained with the results reduced back to those for the Maxwell fields in the
limit of zero photon mass. Moreover, the singular terms are identical in both massless and massive electrody-
namics. As an illustration, the results are applied to obtain the exact dynamical fields for an oscillating dipole
which reduce back to the well-known expressions for static fields derived previously in the literature for

massive electrodynamics.
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I. INTRODUCTION

Although the two fundamental forces—electromagnetic
and gravitational—which govern most of the physical phe-
nomena at a macroscopic scale are believed to be “truly long
range” in nature, a nonvanishing value for either the photon
mass or the graviton mass will have many significant impli-
cations from the dispersion of light in vacuum to certain
fundamental issues in cosmology [1]. In particular, the pos-
sibility of having a finite photon mass has been studied in-
tensively for almost a century, with both serious theoretical
and experimental investigations devoted to it [2].

Theoretically, the simplest Lorentz invariant generaliza-
tion of Maxwell’s theory to include a finite photon mass was
first worked out by Proca [3]; and the quantization of the
Proca field is also possible despite the loss of gauge invari-
ance in “massive electrodynamics” [2]. At the classical level,
the Proca equations lead to modifications to only the two
Maxwell equations with source, and the consequences of
these have been studied by many researchers in the literature
to include problems such as effects on special relativity, mul-
tipole radiations from localized sources, etc. Experimentally,
the two main approaches to set an upper limit for the photon
mass have been based on examination of the accuracy of
Coulomb’s law (static approach) and the dispersion of light
in vacuum (dynamic approach). While the static approach
can usually set more stringent limits on the upper bound of
the photon mass, the dynamic approach can enable one to go
beyond terrestrial experiments so that possible dispersion can
be studied with light propagating over a large scale of dis-
tances. To date, one of the best upper limits established is
believed to be in the order of 107 g for the mass of the
photon [2].

Our interest here in the present work is to derive the most
general expressions for the Green dyadic functions of the
classical Proca field equations to include the singular terms
in the dyadic. As is well known in conventional Maxwellian
electrodynamics, the knowledge of such dyadic functions
will allow one to calculate the general time-dependent fields
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for any arbitrary localized current sources [4]. New results
for the dyadic Green functions are always significant when-
ever a new vector field theory is introduced [5]. As for the
Proca field, previous work in the literature had derived the
scalar Green function for the Proca wave equation. The re-
sults obtained had then been applied to the analysis of the
radiations from binary pulsar, leading to new limits on the
electric charge of various astrophysical bodies as well as on
the strength of possible new forces of weak interaction [6].
However, neither the dyadic nor the singular term for the
Proca field has been established in the previous studies. As
for the latter, it has been recognized from time to time the
importance of treating the singular behaviors of various
fields and sources to the extent that a complete text has been
written for the treatment of this problem [7]. For example,
for the Maxwell field, both electrostatic [8] and electrody-
namic dipole fields have been obtained with the correct sin-
gular terms included [9,10]. More generally, the Green dy-
adic (electric type) with the correct singularity has also been
previously derived in the literature [9,11]. Here we shall de-
rive in the following both the electric and magnetic dyadic
functions for the Proca fields to include all the appropriate
singular terms. We shall then apply these general results to
derive the dynamical electric and magnetic fields from dipole
sources according to the Proca theory, and recover some
well-known results established in the literature under certain
limiting conditions.

II. GENERAL DYADIC FORMULATION

Let us begin by recapitulating the following well-known
Maxwell-Proca equations in vacuum (in Gaussian units):

V-E=d4mp- ¢, (1)
V-B=0, (2)

1B
VXE+-——=0, (3)
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where M:% is the inverse Compton wavelength of the pho-
ton with m the photon mass and the fields are given via the
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usual expressions in terms of the potentials as revealed from
Egs. (2) and (3) as follows:

B=V XA, (5)

1A
E=-V¢-——. 6
¢ c ot ©)

As is well known [2], Egs. (1) and (4) imply that the Lorentz
gauge condition must be implemented so that the conserva-
tion of charge remains valid. In addition, it has been thor-
oughly studied in the literature [6] for the electromagnetic
waves and radiations via the derivation of the following
wave equations for the potentials:

1 &
(Vz_ﬁﬁ-ﬂz)qﬁ?‘*m @
1 &# 4
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For harmonic sources and fields (i.e., ~e™'®), these reduce to
the Helmholtz equations with the well-known retarded
Green’s function given by

eiBir-r'|
GO(r,r,) = T (9)
r—r’|
where we have introduced an “effective wave number”
w)? 2 2_ 2
B=y\7 =N - (10)
and G satisfies
(V2 + B)Gy(r.r') == 8(r-r'). (11)

Based on the introduction of this effective wave number to-
gether with the appropriate modifications of the various
quantities such as the energy-momentum and Poynting vec-
tor for the Proca field, many results calculated in Maxwell
(massless) electrodynamics for the radiation problem can be
translated over to the case of “massive” electrodynamics [6].
However, in spite of having many of these previous results
established in the literature, it seems that the problem of the
Green dyadic and its singular behavior for the Proca field
have not been studied in most of the previous works. While
the same problem has been studied extensively in the case of
conventional (massless) electrodynamics [4,9], it has been
known from these studies that the result for the singularity of
the fields is significant which not only provides consistency
with the field equations, but also leads to interesting applica-
tions [8,10]. Furthermore, the knowledge of the Green dy-
adics enables one to calculate the electromagnetic fields di-
rectly from a given source without having to resort to the
potentials. Hence we feel justified to present an explicit deri-
vation for them and illustrate their applications to obtain new
results for dipole fields which recover some well-known re-
sults for the Proca fields available in the literature.

To derive the Green dyadics, we have first to obtain the
vector wave equations for the electric and magnetic fields
just as in the case with the ordinary Maxwellian electrody-
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namics [4]. These can be obtained in a straightforward way
from Egs. (1)—(4) in the following form:

4tk

V X V X E - K°E + iku’A = J (12)

and
4ar
VXVXB-pBB=—VX]. (13)
C

Hence we see that while the equation for the magnetic field
(with the use of the “effective wave number”) has the same
form as that in Maxwell’s electrodynamics, the one for the
electric field is different and has the vector potential ap-
peared explicitly. However, we shall see below that this will
not affect at all the usual way for the determination of the
dyadics in terms of the scalar Green’s function in Eq. (9). To
show explicitly this is the case, let us introduce the electric
(G,) and magnetic (G,,) dyadic Green function for the Proca
field by making the following ansatz:

VXVXG,-kG,+ W IGy=18r -r") (14)
and
VXVXG, - BG,=V X[I8r-r")], (15)

where I is the unit (identity) dyadic and G, is as given in Eq.
(9). Note that while Eq. (15) is completely analogous to that
for the Maxwell field, the result in Eq. (14) is unique for the
Proca field which mixes the electric dyadic Green function
with the scalar Green function (introduced for solving the
vector potential) through the mass term (~ u?). Although the
form of Eq. (14) is strongly suggested from that of Eq. (12)
together with the results in Egs. (8)—(11)— by noting that
each G, and G are simply related to the corresponding elec-
tric field and vector potential for a point source—it is indeed
possible to show explicitly the consistency of this new
scheme of introducing the electric Green dyadic, with the
conventional determination of the dyadics in terms of the
scalar Green function as in Maxwell electrodynamics [4].

To begin, we first note that since Egs. (2), (3), (5), and (6)
are identical to those in Maxwell electrodynamics, we have
therefore the well-known relations between the dyadics and
the scalar Green function G, as follows [4]:

1
G.=\I+5VV Gy, (16)

G, =V X (IG). (17)

Next we show that the result in Eq. (16) is indeed a solution
to Eq. (14) with the help of the wave equation in Eq. (11).
Thus we have from Eq. (16)

VXVXG,-k*G,=V XV XIG,-kG,
=V(V-IG,) - VIGy-k’IG,-VVG,
=-I(V*+K*)G, (18)

since the second term in Eq. (16) is curless, and the first and
last terms cancel in the second row in Eq. (18). On the other
hand, we have from Eq. (11)
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(V2 + k) Go(r.x') = (V2 + B+ p*)Go(r.r")
=—8r—-r")+ u’Gyr,x’). (19)

Substitution of Eq. (19) into Eq. (18) leads immediately to
the result in Eq. (14). Hence the result in Eq. (14), which
mixes the scalar and dyadic Green functions, indeed provides
a consistent scheme for the introduction of G, in the case of
massive electrodynamics, and is determined the usual way
via Eq. (16). Once this is established, the dyadics introduced
in Egs. (14) and (15) will be the correct dyadics for the Proca
fields through the uniqueness theorem for Green functions.
With the dyadics given in Egs. (16) and (17), the fields can
then be obtained directly in terms of the source current in the
following forms:

E(r):%ik f G,(r,r)J(r)dx' (20)

and

1 ePr
(Ge)pq =|Opg + ﬁ‘ypaq m

elﬁr (
= o, + -
dar P10 ami®\ r
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B(r)=4—TrJGm(r,r’)J(r’)d3x’. (21)

III. CALCULATION OF GREEN DYADIC

In this section, we show how the dyadics in Egs. (16) and
(17) can be calculated with the singular terms explicitly in-
cluded. For the case of the Maxwell fields, the singularity of
the electric dyadic G, has been obtained previously in the
literature [4,9,11]. Here we shall follow a different approach
by deriving both G, and G,, via a direct calculation, with the
application of the various differentiation identities for the
(1/r) potential function involving the & function which are
well established in the literature [12].

For simplicity, let us set r’=0 and consider a component
of the dyadic tensor. Thus from Egs. (9) and (16), we have

1. 1, | 1
,d,e P + ap;aqe’ﬁ’ + aq;ape'ﬁ’ + e’ﬁfapaq;>

iBr iBr 1 . 3 4 3 _ 25
e e ) ip 3xx, AT XpXy =T Opy
:47Tr5pq+47Tk2<_§'3xpxq+?5pq_l'8 r _?5(r)5pq+ P
1 eiﬁr
=- ﬁa(r)apq * a5 [F(= 1 +iBr+kr?)5,,+ (3= 3iBr— Bri)x,x,], (22)
I
where  we have used the identity  d,d,(1/ r) clarified previously even for the massless Maxwell case [9],

=—(47/3)6,,0(r)+(3x,x,~r*8,,)/r established in Ref.
[12]. We also note that the singular term will be the same as
that for the case of static field (k— 0) and/or massless photon
(u—0), for the term e’#"&(r) is actually equivalent to &(r)
since ¢#"=1 at r=0. Thus the general form of the electric
dyadic for the Proca field including the singularity term can
be finally obtained in the following form:

oiPlr—r'|
ame el
X(=1+ifr=r'|+Kr—r'H)I
+(@=3ifr—r'|- Fr-r'P)(r-1r')(r-1)].
(23)

SOr—r' ) +

1
G(rr)=-— :
Arr)=-— |

Note that Eq. (23) can be applied to calculate the dynamical
electric field from an arbitrary localized source in massive
electrodynamics. In the limit of massless Maxwell electrody-
namics, B—k and the result in Eq. (23) reproduces the pre-
vious result obtained in the literature [9].

Next we derive the corresponding magnetic dyadic for the
Proca field. The possible singularity in this case has not been

but it is rather straightforward and we shall see that there are
no explicit singular terms associated with it. However, sin-
gular terms can still emerge during the calculation of the
magnetic fields using this dyadic (see below). Again, we set
r’'=0 and apply Eq. (9) to a component of Eq. (17) as fol-
lows:

ezBr
(Gm)pq = 8175!075(51‘11(;0) = 8psqﬁs< 4_’777' (24)

so that the dyadic can finally be expressed in the following
form

(r—r’)
r|3'

G, (r,r')=(1—iBlr—r'|)ePr'lf x (25)

[r—r

IV. APPLICATION TO THE CALCULATION
OF DIPOLE FIELDS

As an illustration of the usefulness of the results in Eqs.
(22)—(25), we shall apply them to Egs. (20) and (21) to de-
rive the fully dynamical dipole fields for massive electrody-
namics according to the Proca equations.
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A. Electric dipole fields

For a harmonic oscillating electric dipole p at the origin,
we have the current density given by J(r')=—iwpd(r’) [8].
Thus from Eq. (20), we obtain the following expression for
the electric field:

E(r) = 47k*G,(r,0)p, (26)

which, on using the result in Eq. (23) yields the following
result for the electric dipole Proca field:

iBr
E(r) == 43_77-[)5(1') + ¢ 5 [rz(_ 1+iBr+ k2r2)p
r
+(3-3iBr- (- p)rl. 27)

Let us examine the various limiting cases derived from Eq.
(27). For the case of “massive electrostatics,” we have k
—0 and B2 — —u?, Eq. (27) yields the following electrostatic
Yukawa field:

e
}"5 [r (_I_Mr)p

E(r)=- "polr) +
+ (B +3ur+ w2 -p)r], (28)

which was obtained previously in the literature [13] (except
for the singular term and a small error). It is clear that in the
case of zero photon mass u=0 and Eq. (28) reduces back to
the well-known electric dipole field with the singular term as
can be found in standard electrodynamics texts [8]. On the
other hand, if we set ©=0 in Eq. (27), we will recover the
following well-known dynamical electric dipole field [8] to-
gether with the same singular term as for the static field
[9,10]:

4 ikr
E(r)=- ?ﬂ-p(?(r) + [P 1+ ikr + Pr)p
r

+ (3 =3ikr—K*r*)(r - p)r]. (29)

B. Magnetic dipole field

For a magnetic dipole m at the origin, we have the current
density given by J(r')=cV' XM=cV’ X[md(r')]. To calcu-
late the magnetic field due to this current, it is safer if we go
back to calculate one of its component using the result in Eq.
(24) so that we will not miss any possible singular terms
from differentiating twice the potential function (1/r) [12].
Thus we have

4 el , 1A
Bp(r)=Tfspsq&s<m ~quab(9a[mb5(r V]d’x'.

(30)

By converting d, to —d. and integrating by parts, Eq. (30) can
be evaluated to obtain
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. _—
sy

)5(r’)d3x’.
(31)

The evaluation of the double derivative in the integrand has
already been calculated before in deriving Eq. (22). Using
the result obtained there and integrating over the delta func-
tion in Eq. (31), we finally obtain

Bp(r) = (517(!6317 - 5Pb550)mb f af:a:( |I' - I'(|

ipr 1 lﬁ
Bp(r) = (5pa5xb - 5pb5sa)mbe A (_ ﬁﬂzxaxx + ?b‘as

3x,X
A

3x,x, — r 5M>

) 4775( )5
- - —48(r)68,,+
i 3 as 5

3 3 2
+(E—%B—%>(r-m)x}, (32)

which leads to the following expression for the dynamical
Proca field due to a harmonically oscillating magnetic dipole
at the origin:

ipr
B(r) = 8?Wmé(r) 42 [ (- 1 +iBr+ B*)m
r
+(3=3iBr-BrH)(r -m)r]. (33)

Note that Eq. (33) is a generalization of a result first obtained
by Schrodinger [14] for the static case to the dynamical case
with the explicit inclusion of the singular term. Again, one
can check all the required limits as follows. For example, by
setting k— 0 and 8°— —u?, one recovers the magnetostatic
result first obtained by Schrodinger [14]:

e

B(r) = 8?ﬂ-mé(r) + 3

+ (3 +3ur+ u2rH)(r-mr], (34)

[- (1 + ur+ x2r*)m

with the singular term included. In the limit of zero photon
mass, Eq. (34) reduces back to the well-known expression
obtained by Jackson [8]. On the other hand, by setting the
mass to zero in Eq. (33), 8— k and one recovers the dynamic
magnetic dipole field in Maxwell’s theory with the singular
term explicitly included [10].

V. DISCUSSION AND CONCLUSION

In this work, we have derived the dyadic Green functions
for “massive electrodynamics” by using Proca’s equations to
include the singular term in the electric dyadic, while none is
needed for the magnetic dyadic [Egs. (22)—(25)]. As in con-
ventional electrodynamics, the knowledge of these dyadics is
very useful for they enable one to calculate the electromag-
netic fields directly from any given localized source [4], es-
pecially when these sources are expressed in multipole forms
[15]. As an illustration, we have worked out in details both
the electric and magnetic dipole fields, which reduce to the
appropriate results well established in the literature in the
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case of statics and/or Maxwell (massless) electrodynamics.
We also note that the singularity of the dyadic is unaffected
by either the photon mass or the dynamic behavior of the
fields. The physics behind this is that while the singular be-
havior is dominated by the near fields; the Yukawa factor
(e™*") becomes unity at the location of the source in the case
of the Proca fields. However, we notice that, unlike the Max-
well case where the dipole electric and magnetic fields have
exactly the same form away from the source, this symmetry
is destroyed in the presence of the photon mass as can be
seen from Egs. (27) and (33). Such asymmetry arises since in
the Proca theory, the mass term affects only the source pair
of Maxwell’s equations (1) and (4), while the other pair re-
mains homogeneous and is not affected. This occurs due to
the absence of magnetic monopoles and the associated cur-
rents even in the Proca theory [16], and it is the same origin
for the difference in the two singular terms in Egs. (27) and
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(33) [8,17]. These singular terms can be of high significance
in quantum physics since a charged particle in the form of a
wave can have nonzero presence at the origin of the source
for the fields. A famous example of these is the application of
the & function term in the magnetic dipole field to the calcu-
lation of the hyperfine transition for ground state H atom,
leading to the famous 21 cm emission in astronomy [8]. It
will be of interest to find further applications of the general
results obtained for the Green dyadics in Egs. (22)-(25) in
our present work such as in the calculation of higher order
multipole fields.
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