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This paper questions the mode of collapse of some simple softening nonlocal structural systems comprising
the classical cantilever beam. Nanobeams can be concerned by such an elementary model. The homogeneous
cantilever beam loaded by a concentrated force at its extremity is first considered as a structural paradigm. A
nonlocal plasticity model is developed in order to control the localization process induced by microcracking
phenomena. An implicit gradient plasticity model equivalent to a nonlocal integral plasticity model is used in
this paper. It is shown that the regularized problem is well posed. Closed-form solutions of the elastoplastic
deflection are finally derived. The length of the plastic zone grows during the softening process until an
asymptotic limited value, which depends on the characteristic length of the material. Scale effects are clearly
obtained for these static bending tests. Other structural cases are also presented, including the simply supported
beam under uniform transverse loading. It is concluded that the mode of collapse is firmly a nonlocal
phenomenon.
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I. INTRODUCTION

In the early 21st century, there was considerable interest
in the application of nonlocal continuum mechanics for the
modeling and analysis of microrods or nanorods �1–9�. Non-
local continuum mechanics allow one to account for the
small scale effect that becomes significant when dealing with
microstructures or nanostructures. These articles presented
simplified nonlocal elastic model, for the bending, buckling,
and vibration analyses of small-scale rods. Integral type or
gradient nonlocal models abandon the classical assumption
of locality and admit that stress depends not only on the state
variables at that point. The first models of this type were
applied in the 1960’s to the modeling of elastic waves dis-
persion in crystals �10–12�. A systematic rational procedure
of nonlocal elasticity framework was established in the pa-
pers of Eringen �13–16�. Nonlocal field theory of mechanics
has been applied to some various engineering problems, such
as dispersion of phonon, Rayleigh wave, stress concentration
at the crack tip, etc. The distinction between gradient elastic
models �the stress is defined explicitly from the local strain
and its derivative� and integral elastic models �the stress is
obtained implicitly from an integral operator of the local
strain� can be established for nonlocal elastic models. More-
over, it can be shown that some integral elastic models can
be cast in a differential form �15�. The relevancy of both
gradient and integral elastic models is often discussed in the
literature. Gradient models can be considered as a “weakly”
nonlocal model, and the need to employ an integral
�“strongly” nonlocal� model can be discussed for specific
structural cases. Despite the numerous works recently de-
voted to nonlocal modeling of elastic beams �1–9�, very few
papers have been published on nonlocal elastoplastic beams.
Plasticity phenomena could, however, be predominant in the
localization of the failure process induced by microcracking
at small scale. Softening plasticity is typically observed for

large deformations. The study of softening behavior, which is
characterized by a negative stiffness or a loss in strength
after reaching a critical load-carrying capability, has ben-
efited from extensive coverage in the research literature over
the last three decades �17�.

This paper is devoted to the static response of a bended
beam composed of softening material through a nonlocal
plasticity model. Such a study can be understood as an in-
elastic extension of previous elastic studies devoted to non-
local microrods or nanorods. The main applications of such
theoretical study may be found in the field of nanomechan-
ics, where scale effects may be typically sensitive �see, for
instance, Refs. �1–9��, but also for large scale structural
members where nonlocal effects may control the failure pro-
cess �reinforced concrete structural members, composite
beams, wood beams, etc.�. The paper questions the inelastic
bending mode of failure of a beam in simple structural con-
figurations, through a plasticity model. The mode of failure
of beams can also be a shear mode, but only bending is
treated in this paper �see Ref. �18� for the use of a shear
beam model to model failure of interfaces—see also Refs.
�19–22� for the modeling of failure interfaces�. We also men-
tion that the beam model investigated in this paper is a time-
independent model �no delayed effect�. The studies of Refs.
�23–27� give the specific modeling of the creep failure phe-
nomenon and the modeling of creep failure of a simply sup-
ported beam �28�. Furthermore, the failure phenomenon is
assumed to be statically controlled, and no inertia effects
affect the failure process �the dynamic failure of a brittle
beam is investigated in Ref. �29��. Finally, no nonlinear geo-
metrical phenomena are introduced in the model: The beam
is assumed to be sufficiently restraint in order to prevent
lateral-torsional buckling �see Refs. �30,31� for the modeling
of lateral-torsional buckling of cantilever beams�. Hence, no
geometrical instability may arise in the softening beam
treated in this paper �only material nonlinearity governs the
mode of failure driven by a nonlocal plasticity model�.
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Nonlocal elasticity was further extended to nonlocal elas-
toplasticity by Eringen �32,33� in the early 1980’s. Nonlocal
inelastic models �damage or plasticity models� were later
successfully used as a localization limiter with a regulariza-
tion effect on softening structural response �17�. The nonlo-
cal character of the constitutive law, generally introduced
through an internal length, is restricted to the loading func-
tion �damage loading function or plasticity loading function�.
Pijaudier-Cabot and Bažant �34� elaborated a nonlocal dam-
age theory, based on the introduction of the nonlocality in the
damage loading function. This theory has the advantage to
leave the initial elastic behavior unaffected and to control the
localization process in the post-peak regime. It is worth men-
tioning that this idea was already used before to model shear
bands �35,36�. As for nonlocal elastic models, gradient plas-
ticity models �also called explicit gradient plasticity models�,
and integral plasticity models may be distinguished. Gradient
plasticity models first initiated in the 1970’s �37�, were in-
cluded at the beginning of the 1990’s in a variational formu-
lation with a view to computational analyses �38,39�. Fol-
lowing earlier results obtained for elastic models �15�, some
integral plasticity models can be cast in a differential form,
and are called implicit gradient plasticity models �40,41�.
The theoretical challenges related to these nonlocal inelastic
theories �plasticity or damage� were mainly oriented towards
the relevancy of an integral or a gradient-based formulation,
the justification of relevant boundary conditions associated to
the nonlocal nature of the constitutive law, or the thermody-
namically background of these models �42�.

Despite the numerous papers devoted to the modeling of
softening media with a nonlocal constitutive law, very few
works have been published on the application of such models
at the beam scale, or for simple structural members �see also
Ref. �43� for this problem�. Historically, moment-curvature
relationships with softening branch were first introduced for
reinforced concrete beams. Wood �44� did point out some
specific difficulties occurring during the solution of the evo-
lution problem for plastic softening models. More precisely,
he highlighted the impossibility of the plastic softening beam
to flow in presence of moment gradient, a phenomenon
sometimes called Wood’s paradox �see also Ref. �45��. It is
expected that the nonlocal moment-curvature relationship
can overcome Wood’s paradox. An explicit gradient plastic-
ity model, similar to the one developed in Refs. �38,39�, has
been considered by Challamel for the beam solicited by a
bending moment �46�. However, Wood’s paradox is also en-
countered for such gradient plasticity models in presence of
moment gradient, except in some specific inhomogeneous
beams �47�. We show in this paper that Wood’s paradox can
be overcome with an implicit gradient plasticity model
�integral-based nonlocal plasticity model�. The homogeneous
cantilever beam loaded by a concentrated force at its extrem-
ity is first considered. The cantilever beam can be considered
as a structural paradigm. An implicit gradient plasticity
model is developed in order to control the localization pro-
cess induced by microcracking phenomena. It is shown that
the regularized problem is well posed. Closed-form solutions
of the elastoplastic deflection are finally derived. The length
of the plastic zone grows during the softening process until
an asymptotic limited value, which depends on the charac-

teristic length of the material. Other structural cases are also
presented, including the simply supported beam under uni-
form transverse loading. It is concluded that the mode of
collapse is firmly a nonlocal phenomenon.

II. LOCAL CONSITUTIV LAW: WOOD’S PARADOX

The homogeneous cantilever beam of length L is loaded
by a vertical concentrated load P at its end �Fig. 1�. The
cantilever beam loaded by a concentrated force can be
viewed as a typical case of plastic beams with nonconstant
bending moment. The axial and transversal coordinates are
denoted by x and y, respectively, and the transverse deflec-
tion denoted by w. Further, the beam is assumed to be suffi-
ciently restraint in order to prevent lateral-torsional buckling.
The symmetrical section has a constant second moment of
area denoted by I �about the z axis�. We assume that plane
cross sections remain plane and normal to the deflection line
and that transverse normal stresses are negligible �Euler-
Bernoulli assumption�. According, the curvature � is related
to the deflection through

��x� = w��x� , �1�

where a prime denotes a derivative with respect to x. The
problem being statically determinate, equilibrium equations
directly give the moment distribution along the beam

M�x� = P�L − x� with P � 0 and x � �0;L� . �2�

At the end of the beam, the displacement v=w�L� of concen-
trated force P is used to control the loading process. The
local moment-curvature relationship �M ,�� considered is bi-
linear with a linear elastic part and a linear strain-softening
part �Fig. 2�. This model is first considered in a local form,
i.e., classical plastic model with negative hardening. The

FIG. 1. Beam model—Cantilever case.

FIG. 2. Plastic softening moment-curvature law.
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nonlocal extension will be investigated later in the paper. MP
is the limit elastic moment and �Y is the limit elastic curva-
ture �Y, related through Mp /�Y =EI, where E is the Young
modulus of the homogeneous beam. In practice, the curva-
ture cannot increase indefinitely and is limited by �u �the
ultimate admissible curvature�. However, such a limitation is
not taken into account in the present study. The elastoplastic
model represented in Fig. 2 is a classical plastic model with
negative hardening �softening�. The yield function f is given
by

f�M,M*� = �M� − �Mp + M*� , �3�

where M* is an additional variable which accounts for the
loading history. The plastic curvature �p is obtained using the
normality rule

�̇p = �̇
�f

�M
. �4�

The overdot denotes the time derivative. As a rate-
independent constitutive law is considered in this paper, it is
equivalent to replace the time variable by a monotonic in-
creasing variable such as the displacement at the tip of the

beam v=w�L�. The plastic multiplier �̇ must satisfy the
complementary conditions

�̇ � 0, f�M,M*� � 0, �̇f�M,M*� = 0. �5�

The softening being linear, the following relation holds:

M*��p� = k�p. �6�

According to the sign of the plastic modulus k, we can have
softening for k�0. Using the decomposition of the total cur-
vature � into an elastic part and a plastic part, the moment-
curvature relation gives

M = EI�� − �p� . �7�

The maximum bending moment occurs at x=0, where the
beam is clamped. Plastic rotation starts as soon as the bend-
ing moment reach the plastic bending moment Mp. The
maximum elastic displacement at the beam end vY and the
corresponding load PY are given by

vY =
MpL2

3EI
and PY =

Mp

L
. �8�

For displacement v smaller than vY�v�vY�, the beam re-
mains elastic and the deflection can be computed using the
elastic solution

v � vY ⇒ EIw�x� = −
P

6
x3 + PL

x2

2
with P = 3

EI

L3 v . �9�

The relationship �9� gives the deflection w as a function of
the displacement at the end of the beam v which will be used
to control the loading process. For P= PY, we obtain the
characteristic deflection wY�x�:

v = vY ⇒ EIwY�x� = −
Mp

6L
x3 + MP

x2

2
. �10�

For v greater than vY �v�vY�, the plastic regime starts and
the beam can be split into an elastic and a plastic domain.
The size of the plastic domain is denoted by l0�L �see Fig.
2�. The governing equations in the plastic domain are

x � �0;l0�:�EI�w−��x� − �p�x�� = P�L − x� ,

�p�x� =
P�L − x� − Mp

k
,

� �11�

where w− denotes the deflection in the plastic region. The
elastic adjacent domain is governed by

x � �l0;L�:EIw+��x� = P�L − x� . �12�

w+ is the deflection in the elastic region. The boundary con-
ditions can be summarized as

�w−�0� = 0,

w−��0� = 0
�

and

� w−�l0� = w+�l0� ,

w−��l0� = w+��l0� .
� �13�

The deflection w�x� and the rotation w��x� must be continu-
ous functions of x �in particular at the intersection of the
elastic and the plastic domains�.

Enforcing that �p is a continuous function of x ��p�l0�
=0� leads to

�P�L − l0� = Mp,

PL � Mp,
� ⇒ l0 = 0. �14�

This additional assumption gives the Wood paradox. The un-
loading elastic solution is the only possible solution of the
softening problem �Fig. 3�. In this paper, an implicit gradient
plasticity model �equivalent to an integral nonlocal plastic
model� is developed, in order to overcome Wood’s paradox.

FIG. 3. Wood’s paradox—local softening plasticity models.
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III. NONLOCAL CONSTITUTIVE LAW

For the implicit gradient plasticity model, M* is related to
a nonlocal plastic curvature variable �̃p through the linear
model

M* = k�̃p with �̃p = �p + m��p − �p� , �15�

where the plastic modulus k is negative for softening models.
�̃p is defined as a linear combination of the local curvature �p
and the nonlocal plastic curvature �p. m is a dimensionless
combination parameter. Such a combination of local and
nonlocal plastic variables was initially proposed by Vermeer
and Brinkgreve �48� �see also Ref. �42��. It is worth mention-
ing that a linear combination of local and nonlocal variable
was already initiated by Eringen for a two-phase nonlocal
elastic material �16�. For the implicit gradient plasticity
model �40,41�, the nonlocal plastic curvature �p is defined as
the solution of the differential equation

�p − lc
2�p� = �p. �16�

Therefore, a characteristic length lc is introduced in the defi-
nition of the nonlocal plastic curvature �̃p. As shown by
Eringen for nonlocal elasticity �15�, this differential equation
clearly shows that the nonlocal plastic curvature �p is a spa-
tial weighted average of the variable �p. This spatial
weighted average is calculated on the plastic domain

�p�x� = �
0

l0

G�x,y��p�y�dy , �17�

where the weighting function G�x ,y� is the Green’s function
of the differential system with appropriate boundary condi-
tions. It can be shown that this nonlocal plastic softening
constitutive law may be also expressed by

M* − lc
2M*� = k��p + a2�p�� with a2 = �m − 1�lc

2 for m

� 1. �18�

This model comprises the purely nonlocal plastic softening
model �a=0� and the gradient plasticity model �lc=0�. In
case of the cantilever beam, the second derivative of the

bending moment is vanishing �M�=0⇒M*�=0�. Hence, for
the cantilever beam, Eq. �18� shows that the nonlocal plas-
ticity model looks similar to a gradient plasticity model, even
if the boundary conditions differ for both models. The par-
ticular case m=2 leads to the simple equality a= lc. In this
last case, it can be observed that the nonlocal plastic curva-
ture may also be defined as

m = 2 ⇒ �̃p = �p + lc
2�p�. �19�

It is clear that such implicit gradient plasticity model is an
integral nonlocal plasticity model. The apparently new defi-
nition of Eq. �19� is quite interesting, as the nonlocal plastic
curvature �̃p appears to be very similar to the standard defi-
nition of explicit gradient plasticity models expressed with
the nonlocal plastic curvature �p. It is worth mentioning that
Eq. �7� is still valid for the elastoplastic moment-curvature
relationship �see the discussion of Jirásek and Rolshoven
�42� at the material scale or Appendix A�.

The boundary conditions are expressed as �see also Ap-
pendix A�

�p�l0� = 0, �p��l0� = 0, and �p��0� = 0. �20�

An important difference with the implicit gradient plasticity
model presented in Refs. �40,41�, however, is that the extra
boundary conditions are valid over the plastic domain, rather
than over the entire domain. The system is now solved for
the nonlocal plastic curvature �p:

�p + lc
2�p� =

P�L − x� − Mp

k
�21�

with the three boundary conditions expressed in term of the
unknown variable �p

�p�l0� − lc
2�p��l0� = 0, �p��l0� = 0, and �p��0� = 0.

�22�

The general solution of the differential equation �21� is writ-
ten as

x � �0;l0�:�p�x� = A cos
x

lc
+ B sin

x

lc
+

P�L − x� − Mp

k
.

�23�

The nonlinear system of three equations with three un-
knowns A, B, and l0 is finally obtained

�
2A cos

l0

lc
+ 2B sin

l0

lc
+

P�L − l0� − Mp

k
= 0,

−
A

lc
sin

l0

lc
+

B

lc
cos

l0

lc
−

P

k
= 0,

B

lc
−

P

k
= 0.

� �24�

The following dimensionless parameters may be introduced
as

� = 	1 −
PY

P

L

lc
� 0 and 	 =

l0

lc
� 0 �25�

and the load-plastic zone relationship is finally written as

� = 	 − 2
1 − cos 	

sin 	
for sin�	� � 0. �26�

The solution �	=2n
� has to be excluded, as this solution
cannot be connected to the elastic solution. The asymptotic
expansion for small values of 	 shows that in this last case

	 � 1 ⇒ � � −
	3

12
. �27�

The third-order term of the asymptotic expansion may take
negative values for positive values of the plastic length. For
� being in the admissible range, 	 is inside its admissible
range, and the plastic zone may spread �see also Fig. 4�:

	 → 0+ ⇒ � → 0−. �28�

Therefore, the connection of the elastic and the plastic solu-
tion is implicitly fulfilled with this regularization method. In
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particular, it is easy to check that the nonlocal plastic curva-
ture �p is a positive parameter during the softening evolu-
tion. Furthermore, it is shown in Appendix B that no unload-
ing could appear inside the plastic zone. Hence, the
continuous bifurcation phenomenon recently observed by
Benallal and Marigo �49� cannot occur for the beam with
moment gradient. However, it is worth mentioning that the
lost of uniqueness would be also observed for the beam un-
der uniform bending moment, as observed by Benallal and
Marigo �49� for the bar in tension. In other words, Wood’s
paradox is overcome for the cantilever cases and uniqueness
prevails for the softening evolution considered in the paper.
Figure 4 shows the evolution of the plastic zone 	 in term of
the positive dimensionless parameter ���. The parameter ���
varies between 0 and tends towards an infinite value when P
tends towards zero. Moreover, the size of the plastic zone
tends towards an asymptotic value for large values of ���
�and sufficiently small values of P�

	0 = 
 . �29�

	0=
 is the limiting value of the maximum width of the
localization zone. The plastic zone evolves from a transitory
regime towards a material scale that does not depend any-
more on the loading range. The results reveal that the evolu-
tion tends towards one unique solution with a finite energy
dissipation that depends only on the characteristic length.
The maximum width of the localization zone l0 directly de-
pends on the characteristic length of the nonlocal model via
the relation l0=
lc �for the cantilever beam�. The determina-
tion of the characteristic length lc �or the maximum width of
the localization zone l0� is related to the question of the
finite-length hinge model, a central question of the present
nonlocal model. Wood �44� inspired by the works of Barnard
and Johnson �50� suggested the term of discontinuity length.
Many papers have been published on the experimental or
theoretical investigation of such a length �51–55�. Based on
the experience with three-dimensional softening media, the
characteristic length lc must be bounded by the size of inho-
mogeneities in the material, and cannot be less than several
aggregate sizes in concrete �55�. It seems, however, that this
bound may be too small for bending problems. The value of

lc �or the maximum localization zone l0� must be also related
to the depth of the cross section h. In fact, in the beam
theory, a limitation arises from Saint-Venant’s principle and
the basic assumption of plane cross sections. The bending
theory that we are using is not valid for large deformations
occurring within a length that is less than approximately the
size of the cross section h �55�. Therefore, it is recommended
that the maximum width of the localization zone l0 is chosen
in the order of magnitude of the depth of the cross section h
�see also Ref. �52��. This implies for the cantilever beam that
the characteristic length lc is in the order of magnitude of
h /
. The existence of this finite size fracture process zone
leads to the specific structural size effect. The softening pro-
cess is firmly associated to the deflection-controlled loading
studied in this paper. A load-controlled test with monotonic
increasing load would lead to a brittle response without soft-
ening state.

IV. RESOLUTION OF THE CANTILEVER CASE

The solution of the plastic curvature in the plastic zone
can finally be written as

x* � �0;	�: �p
*�x*� = − 2

cos 	 − 1

sin 	
cos x* − 2 sin x* + x*

− ��	� with �x* =
x

lc
,

�p
* = �k�

�p

Plc
,

� �30�

where 	 is computed from � �or P� from Eq. �26�. The size
of the plastic zone is increasing as ��� is increasing �Fig. 5�.
It should be mentioned that the non-local plastic curvature is
not continuous at the boundary between the plastic and the
elastic zones �see Fig. 6�. The nonlocal plastic curvature also
grows in the plastic zone:

FIG. 4. Evolution of the plastic zone 	 versus the loading pa-
rameter �.

FIG. 5. Evolution of the plastic curvature �
p
* for three loading

cases.
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x* � �0;	�: �p*�x*� = −
cos 	 − 1

sin 	
cos x* − sin x* + x*

− ��	� with �p* =
�p

Plc
�k� . �31�

The rotation function ��x� �or w��x�� is calculated from inte-
gration of the differential equation

���x� = �p�x� +
P�L − x�

EI
with ��0� = 0. �32�

The rotation in the plastic zone is obtained from

�−�x� = P	 1

EI
+

1

k

	Lx −

x2

2

 −

Mp

k
x

+ 2
Plc

2

k

cos	 l0

lc

 − 1

sin	 l0

lc

 sin	 x

lc

 − 2

Plc
2

k
�cos	 x

lc

 − 1
 .

�33�

The rotation in the elastic zone is derived from the continuity

of the rotation along the elastoplastic boundary �see Eq. �13��

�+�x� =
PL

EI
�x − l0� −

P

2EI
�x2 − l0

2� + �−�l0� . �34�

The rotation at the end of the beam is denoted by 
 �and

Y = PYL2 /2EI�. The relationship between this normalized
rotation and the loading parameter is simplified in





Y
=

P

PY
+

2EI

k
� l0

L

P

PY
−

P

2PY
	 l0

L

2

−
l0

L

 . �35�

An example of softening response is shown in Fig. 7, for the
load-rotation response. The regularization of the implicit gra-
dient plasticity model is no more ambiguous. The deflection
in the plastic zone is obtained by integrating the rotation,
given by Eq. �33�:

FIG. 7. Response of the elastoplastic beam P
PY

versus 



Y
, EI

k =

−5,
lc

L =0.1.

FIG. 8. Response of the elastoplastic beam P
PY

versus v
vY

,
EI
k =−5,

lc

L =0.1.

FIG. 9. Influence of the stiffness ratio on the response of the

elastoplastic beam P
PY

versus v
vY

,
lc

L =0.1.

FIG. 6. Evolution of the nonlocal plastic curvature �p* for three
loading cases.
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w−�x� = 	PL

EI
+

PL − Mp

k

 x2

2
− 	 P

EI
+

P

k

 x3

6

− 2
Plc

3

k

cos	 l0

lc

 − 1

sin	 l0

lc

 �cos	 x

lc

 − 1


− 2
Plc

2

k
�lc sin	 x

lc

 − x
 . �36�

The deflection in the elastic zone is derived from the conti-
nuity condition given by Eq. �13�:

w+�x� =
PLx2

2EI
−

Px3

6EI
+ �w−��l0� −

PLl0

EI
+

Pl0
2

2EI

x

+ �w−�l0� − l0w−��l0� +
PLl0

2

2EI
−

Pl0
3

3EI

 . �37�

The evolutions of the deflection at the beam end are shown
in Figs. 8–10. The global ductility increases as the stiffness
ratio �EI /k� increases, or the length ratio lc /L increases. Evo-
lution of the plastic zone during the plastic softening process
is shown in Fig. 11.

V. SIMPLY SUPPORTED BEAM UNDER CONCENTRATED
LOAD

Another simple statically determinate model is the simply
supported beam under central concentrated load �Fig. 12�.
We will show that this case is very close to the cantilever
case. More specifically, the plastic zone parameterized by the
length l0 is related to the loading parameter through a similar
law. For symmetrical reasons, the bending moment is sym-
metric with respect to the central axis �bending moment is
assumed to be positive in this case due to the change of the
y axis�:

M�x� =
PL

4
−

P

2
�x� with P � 0 and x � �−

L

2
;
L

2

 .

�38�

Using symmetrical considerations, it is sufficient to analyze
half a structure, leading to the differential equation for the
nonlocal plastic curvature

�p + lc
2�p� =

PL

4
−

P

2
x − Mp

k
with x � �0;

L

2

 . �39�

In this case, and using symmetrical arguments �41�, the
boundary conditions are written as

�p	 l0

2

 = 0, �p�	 l0

2

 = 0, and �p��0� = 0. �40�

Let us introduce the change of variable

P̂ =
P

2
, L̂ =

L

2
, l̂0 =

l0

2
, P̂Y =

Mp

L̂
,

	̂ =
l̂0

lc
, and �̂ = 	1 −

P̂Y

P̂

 L̂

lc
. �41�

A new differential system is obtained:

FIG. 11. Evolution of the plastic zone during the softening pro-

cess, deflection of the cantilever beam, EI
k =−5,

lc

L =0.1.

FIG. 12. Simply supported beam.

FIG. 10. Influence of the characteristic length on the response of
the elastoplastic beam P

PY
versus v

vY
, EI

k =−5.
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�p + lc
2�p� =

P̂�L̂ − x� − Mp

k
with �p�l̂0� = 0,

�p��l̂0� = 0, and �p��0� = 0. �42�

One recognizes the cantilever problem with the new vari-
ables introduced in Eq. �41�. The load-plastic zone relation-
ship is given by Eq. �26� corrected with the new variables

�̂ = 	̂ − 2
1 − cos 	̂

sin 	̂
for sin�	̂� � 0. �43�

Figures 6–9 obtained for the cantilever beam are still valid
for the simply supported beam �with the new notation of Eq.
�41��. However, in the case of a simply supported beam, the
boundary conditions dealing with the displacement function
differ from the one of the cantilever case

�w�L̂� = 0,

w��0� = 0.
� �44�

This means that the solution of the cantilever case can be
used for the rotation function, but not for the displacement
function. The rotation in the plastic zone is obtained from

�−�x� = P̂	 1

EI
+

1

k

	L̂x −

x2

2

 −

Mp

k
x

+ 2
P̂lc

2

k

cos	 l̂0

lc

 − 1

sin	 l̂0

lc

 sin	 x

lc



− 2
P̂lc

2

k
�cos	 x

lc

 − 1
 if x � �0; l̂0� . �45�

The rotation in the elastic zone is derived from the continuity
of the rotation along the elastoplastic boundary

�+�x� =
P̂L̂

EI
�x − l̂0� −

P̂

2EI
�x2 − l̂0

2� + �−�l̂0� if x � �l̂0;L̂� .

�46�

The deflection in the elastic domain can be written as

w+�x� =
P̂

EI
	L̂

x2

2
−

x3

6
−

L̂3

3

 + �x − L̂�	 P̂l̂0

2

2EI
−

P̂L̂l̂0

EI

+ �−�l̂0�
 if x � �l̂0;L̂� . �47�

VI. CANTILEVER BEAM UNDER DISTRIBUTED
LATERAL LOAD

The failure process of the cantilever beam solicited by its
own weight �or under uniform distributed lateral load� can be
also studied �Fig. 13�. In this case, the bending moment no

more varies as a linear function, but as a parabolic function

M�x� =
q

2
�L − x�2 with P � 0 and x � �0;L� . �48�

The differential equation for the nonlocal plastic curvature is
now written as

�p + lc
2�p� =

q

2
�L − x�2 − Mp

k
. �49�

The solution of such a differential equation is obtained from

x � �0;l0�:�p�x� = A cos
x

lc
+ B sin

x

lc
+

q

2k
�L − x�2

−
Mp

k
−

qlc
2

k
�50�

with the three constants �A ,B , l0� identified from the three
boundary conditions given by Eq. �22�. The following di-
mensionless parameters may be introduced:

� = 	1 −
qY

q

L

lc
� 0, 	 =

l0

lc
, lc

* =
lc

L
, with qY =

2Mp

L2

�51�

and the load-plastic zone relationship is finally written as
�see Fig. 14�

FIG. 13. Cantilever beam under uniformly distributed load.

FIG. 14. Evolution of the plastic zone 	 versus the loading pa-
rameter �—cantilever beam under distributed load—l

c
*=0.1.
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� = − 4
1 + �lc

*	 − 1�cos 	

sin 	
− lc

*	2 + 2	 + 4lc
* for sin�	� � 0.

�52�

The solution of the plastic curvature in the plastic zone can
finally be written as

x* � �0;	�: �p
*�x*� = − 2

cos 	 − 1 + 	lc
*

sin 	
cos x* − 2 sin x*

−
1

2lc
* �1 − x*lc

*�2 +
1

2� 1

lc
* − ��	�
 + 2lc

*

with

�x* =
x

lc
,

�p
* = �k�

�p

qLlc
,

� �53�

where 	 is computed from � �or P� from Eq. �52�. The size
of the plastic zone is increasing during the softening process
�Fig. 15�. The nonlocal plastic curvature slowly varies in the
plastic region �see Fig. 16�. This nonlocal variable also
grows in the plastic zone during the softening process

x* � �0;	�: �p*�x*� = −
cos 	 − 1 + 	lc

*

sin 	
cos x* − sin x*

−
1

2lc
* �1 − x*lc

*�2 +
1

2� 1

lc
* − ��	�


+ lc
* with �p* =

�p

qLlc
�k� . �54�

VII. SIMPLY SUPPORTED BEAM UNDER DISTRIBUTED
LATERAL LOAD

Another simple statically determinate model is the simply
supported beam under uniform distributed lateral load �Fig.
17�. We will show that this case is not analogous to the
cantilever case under distributed load. For symmetrical rea-
sons, the bending moment is symmetric with respect to the
central axis �bending moment is assumed to be positive in
this case due to the change of the y axis�:

M�x� =
qL2

8
−

qx2

2
with x � �−

L

2
;
L

2

 . �55�

Using symmetrical considerations, it is sufficient to analyze
half a structure, leading to the differential equation for the
nonlocal plastic curvature

�p + lc
2�p� =

qL2

8
−

qx2

2
− Mp

k
with �p	 l0

2

 = 0,

�p�	 l0

2

 = 0 and �p��0� = 0. �56�

The following change of variable can be adopted:

L̂ =
L

2
, l̂0 =

l0

2
, q̂Y =

2Mp

L̂2
, 	̂ =

l̂0

lc
,

l̂c
* =

lc

L̂
, and �̂ = 	1 −

q̂Y

q

 L̂

lc
. �57�

A new differential system is obtained:

�p + lc
2�p� =

q

2
�L̂2 − x2� − Mp

k
with �p�l̂0� = 0,

FIG. 15. Evolution of the plastic curvature �
p
* for three loading

cases—cantilever beam under distributed load—l
c
*=0.1.

FIG. 16. Evolution of the plastic curvature �p* for three loading
cases—cantilever beam under distributed load—l

c
*=0.1.

FIG. 17. Simply supported beam under uniform distributed
load.
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�p��l̂0� = 0 and �p��0� = 0. �58�

This system cannot be cast in the form given by Eq. �49�,
and there is no equivalence between the cantilever case and
the simply supported beam in case of uniform loading. The
load-plastic zone relationship is finally written as �see Fig.
18�

�̂ = 4	̂l̂c
*cos 	̂

sin 	̂
+ l̂c

*	̂2 − 4l̂c
* for sin�	� � 0. �59�

The solution of the plastic curvature in the plastic zone can
be finally written as

x* � �0;	�: �p
*�x*� = 2

	̂l̂c
*

sin 	̂
cos x* −

�̂�	̂�
2

− 2l̂c
*

+
1

2
l̂c

*x*2 with �x* =
x

lc
,

�p
* = �k�

�p

qL̂lc

.

� �60�

The nonlocal plastic curvature also grows in the plastic zone
as

x* � �0;	�: �p*�x*� =
	̂l̂c

*

sin 	̂
cos x* −

�̂�	̂�
2

− l̂c
*

+
1

2
l̂c

*x*2 with �p* =
�p

Plc
�k� . �61�

VIII. CONCLUSIONS

This paper questions the mode of collapse of some simple
softening structural systems, comprising the classical canti-
lever beam. Civil engineering, classical mechanical or nano-
mechanics are concerned by such an elementary model. The

homogeneous cantilever beam loaded by a concentrated
force at its extremity is first considered as a structural para-
digm. A nonlocal plasticity model, also called implicit gradi-
ent plasticity model �equivalent to an integral nonlocal plas-
ticity model�, is developed in order to control the localization
process induced by microcracking phenomena. It is shown
that the regularized problem is well-posed �and, in particular,
uniqueness of the evolution problem is shown�. Such a result
closes the discussion concerning explicit versus implicit gra-
dient plasticity models �or integral-based plasticity models�,
as explicit gradient plasticity models may fail to capture the
failure process of the cantilever beam �47,56�. Nonlocal plas-
ticity models �implicit gradient plasticity models� are defini-
tively needed to solve the modeling of beam failure.

Closed-form solutions of the elastoplastic deflection are
finally derived. The scale effect linked to the nonlocal failure
process is clearly highlighted. The length of the plastic zone
grows during the softening process until an asymptotic lim-
ited value, which depends on the characteristic length of the
material. The existence of this finite size fracture process
zone leads to the specific structural size effect. As a conse-
quence of this model, the plastic length evolves during the
loading process, a phenomenon often noticed in structural
design. The cantilever case can be understood at this stage as
an elementary structural case, with moment gradient. Other
structural cases are also presented, including the simply sup-
ported beam under uniform transverse loading. These results
are valid for the beam bending problem, but also for the
simple analogy of the bar subjected to distributed axial force
�43,56�.

It is concluded that the mode of collapse is firmly a non-
local phenomenon. A local constitutive law cannot accurately
describe the softening-induced microcracking phenomena.
Structural collapse mobilizes a characteristic length intro-
duced in the nonlocal constitutive law. Such phenomena may
appear at the macrostructural level, but also when scale ef-
fects may be significant as it is typically observed in the field
of nanomechanics. An extension of this study could be the
necessary coupling between nonlocal elasticity and nonlocal
plasticity.

APPENDIX A: DERIVATION OF THE NATURAL
BOUNDARY CONDITIONS FROM A VARIATIONAL

PRINCIPLE

Let us consider the energy functional

W�w,�p� = �
0

L 1

2
EI�w� − �p�2 −

k

2
lc

2�p��p� + Mp�p

+
k

2
�p�pdx − Pw�L� . �A1�

The first variation of the energy functional leads to the ex-
tremal condition

FIG. 18. Evolution of the plastic zone 	 �or 	̂� versus the loading

parameter � �or �̂�—Beam under distributed load—l
c
*=0.1.
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�W�w,�p� = �
0

L

EI�w� − �p���w� − ��p�

−
k

2
lc

2���p��p� + �p���p�� + Mp��p

+
k

2
���p�p + �p��p�dx − P�w�L� = 0.

�A2�

Following a classical procedure also used for explicit gradi-
ent plasticity models �see Refs. �38,39��, the overall domain
can be divided into a plastic domain and an elastic one:

�W�w,�p� = �
0

L

EI�w� − �p��w�dx + �
0

l0

− EI�w� − �p���p

−
k

2
lc

2���p��p� + �p���p�� + Mp��p +
k

2
���p�p

+ �p��p�dx − P�w�L� = 0. �A3�

Moreover, the following Green-type identity associated with
the self-adjoint property of the regularized operator for rel-
evant boundary conditions �see, for instance, Refs. �57,58��,
the following identities hold:

�
0

l0

�p��pdx = �
0

l0

�p��pdx − lc
2��p���p�0

l0 + lc
2��p ��p��0

l0.

�A4�

Unmixed boundary conditions and periodic boundary condi-
tions lead to the self-adjoint property of the regularized op-
erator �57�. The same reasoning can be applied for the fol-
lowing identity:

�
0

l0

�p���p�dx = �
0

l0

�p���p�dx − lc
2��p���p��0

l0

+ lc
2��p���p��0

l0. �A5�

Using Eqs. �A4� and �A5�, the extremal condition �A3� can
then be simplified:

�W�w,�p� = �
0

L

EI�w� − �p��w�dx + �
0

l0

− EI�w� − �p���p

− klc
2�p���p� + Mp��p + k�p��pdx

−
klc

2

2
���p���p�0

l0 − ��p ��p��0
l0�

+
klc

4

2
���p���p��0

l0 − ��p���p��0
l0� − P�w�L� = 0.

�A6�

Moreover, the following integration by part is obtained for
the plastic curvature:

�
0

l0

�p���p�dx = ��p���p�0
l0 − �

0

l0

�p���pdx . �A7�

The first variation of the functional W is then written as

�W�w,�p� = �
0

L

M�w�dx − �
0

l0

�M − Mp

− k��p + lc
2�p�����pdx − klc

2��p���p�0
l0

−
klc

2

2
���p���p�0

l0 − ��p ��p��0
l0�

+
klc

4

2
���p���p��0

l0 − ��p���p��0
l0� − P�w�L� = 0.

�A8�

The following integration by part can be considered for the
deflection

�
0

L

M�w�dx = �M�w��0
L − �M��w�0

L

+ �
0

L

M��wdx with M = EI�w� − �p� .

�A9�

The extremal condition leads to the equilibrium equation and
the yield condition

M� = 0 and M = Mp + k��p + lc
2�p�� �A10�

with the natural boundary conditions

M�L� = 0, M��L� = − P, w�0� = w��0� = 0,

�p��0� = �p��l0� = �p�l0� = 0. �A11�

The high-order boundary conditions considered in Eq. �20�
are then obtained from a variational principle, which can be
condensed as

��p���p�0
l0 = 0. �A12�

Some similar boundary conditions have also been considered
for implicit gradient damage models �59�. The structure of
the energy functional considered in Eq. �A1� can now be
commented. Using Eq. �17�, the nonlocal term of Eq. �A1�
can be written in a more readable form

�
0

l0

�p�x��p�x�dx = �
0

l0 �
0

l0

G�x,y��p�x��p�y�dxdy .

�A13�

A similar functional can be defined for the nonlocal term
incorporating the gradient terms in Eq. �A1�, based on the
derivation of Eq. �16�:
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��p�� − lc
2��p��� = �p� and �p��0� = �p��l0� = 0 ⇒ �p��x�

= �
0

l0

H�x,y��p��y�dy . �A14�

The nonlocal term incorporating the gradient terms can be
written in a similar format:

�
0

l0

�p��x��p��x�dx = �
0

l0 �
0

l0

H�x,y��p��x��p��y�dxdy .

�A15�

Finally, some other energy functional could be studied, such
as,

W�w,�p� = �
0

L 1

2
EI�w� − �p�2 + k�p�p + Mp�p −

k

2
�p

2dx

− Pw�L� . �A16�

The stationarity of this functional also leads to Eq. �A10�,
except for the fact that the boundary conditions �p̄��0�
=�p̄��l0�=0 are not necessarily derived from the variational
principle �unmixed boundary conditions and periodic bound-
ary conditions also lead to the self-adjoint property of the
regularized operator �57��, but have to be postulated as an
additional condition. The main advantage of the energy func-
tional �A1� is that the high-order boundary conditions are
rigorously derived from application of a variational prin-
ciple. A similar discussion can be found for nonlocal elastic
beam models �60�.

APPENDIX B: UNIQUENESS PROOF FOR THE
CANTILEVER CASE

We show in this appendix that unloading in the plastic
zone is not possible if the plastic curvature is assumed to be
a continuous function �and in particular the matching condi-

tion �p=0 at the end of the plastic zone�. The nonlocal plas-
tic curvature is given by Eq. �21�:

x* � �0;	�: �p*�x*� = −
cos 	 − 1

sin 	
cos x* − sin x* + x* − ��	� .

�B1�

The derivation of the nonlocal plastic curvature, with respect
to the dimensionless spatial coordinate is written as

x* � �0;	�: �p*��x*� =
cos 	 − 1

sin 	
sin x* − cos x*

+ 1 with 	 � �0;
� . �B2�

A necessary condition for unloading in the plastic zone is
obtained from the boundary condition at the elastic-plastic
boundary, i.e., the vanishing of the derivation of the nonlocal
plastic curvature

�p*��x0
*� = 0 ⇔ sin�x0

* − 	� = sin x0
* − sin 	 . �B3�

Using trigonometric identities, Eq. �B3� can be solved with

sin�x0
* − 	� = 2 cos

x0
* + 	

2
sin

x0
* − 	

2
⇒ sin	 x0

* − 	

2



= 0 or cos	 x0
* − 	

2

 = cos	 x0

* + 	

2

 . �B4�

The only solution for x
0
*� �0;	� and 	� �0;
� is the bound-

ary of the plastic zone

x0
* = 0 or x0

* = 	 . �B5�

Therefore, no unloading can occur in the plastic zone, and
uniqueness prevails for the softening evolution. A different
conclusion would have been obtained if the continuity as-
sumption of the plastic curvature would have been relaxed
�uniqueness is no more guaranteed without the continuity
assumption of the plastic curvature�.
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