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A model is developed which explains the collective plasma phenomena associated with the extended Franck-
Hertz experiment described in an earlier paper by Nicoletopoulos �Eur. J. Phys. 23, 533 �2002��. The particular
focus is on the formation of the free steady-state monotonic double layer. The approach used is a Bernstein-
Greene-Kruskal theory in which one postulates the space potential and a suitable multicomponent electron
distribution and uses Poisson’s equation to solve for a physically meaningful ion distribution. A key feature is
that the input space potential is chosen with a spatial scale much larger than the electron Debye length, with a
restricting condition derivable from the prescribed form of volume production of positive ions. The model
provides good quantitative agreement with the experimental results for mercury vapor, and can provide suffi-
cient and necessary conditions for double layer formation in other atomic gases in similar experimental
arrangements.
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I. INTRODUCTION

A. Standard versus extended Franck-Hertz experiment—from
swarm to plasma

The original Franck-Hertz experiment �1� involved a
“swarm” of low current electrons drifting in a gas of number
density N under the influence of a uniform electric field E
with an intermediate grid placed between cathode and anode
designed to filter electrons with energies above a certain
value. In this arrangement, spatially periodic structures de-
velop in electron properties in a certain “window” of E /N,
whose wavelength reflects the quantized nature of the atomic
structure �2�. The essence of the experiment is that it pro-
duces these measurable macroscopic manifestations of fun-
damental, microscopic atomic properties. Although the ex-
periment itself was first performed almost a century ago, it
has only been recently that modern kinetic theoretical �2–4�
and fluid modeling �5,6� techniques have been able to eluci-
date fully the microscopic-macroscopic connection. Other-
wise this seminal experiment, which confirmed the Bohr pos-
tulates and laid the foundations of modern atomic physics,
remains poorly understood and often misrepresented. The
usual textbook picture for example, is effectively one of a
completely unphysical “saw-tooth” periodic structure, while
in reality it is smoothed due to elastic collisions �2,6�. Fur-
thermore, the grid merely acts as a way of mirroring �not
producing� the internal periodic structure in the external an-
ode current. There is some interest in examining the way the
grid operates �7�, but one should never lose sight of the true
essence of the experiment, which is not about the measure-
ment process per se. Indeed, a less intrusive method of mea-
surement, such as the photon flux technique reported by
Fletcher �8�, may be a more satisfactory option.

More recently there has been a comprehensive attempt
�9–11� to elucidate the extended Franck-Hertz experiment,
which is designed to show more detail than simply the recur-
rence of the lowest excited state. In this arrangement the

electrons, rather than being subjected to a uniformly rising
potential between source and grid as in the standard Franck-
Hertz experiment, are accelerated in less than one excitation
mean free path by an extra grid close to the cathode and
allowed to travel toward a second grid across a presumed
field-free region. This involves production of a plasma �as
distinct from a swarm in the usual experiment� with associ-
ated collective phenomena, which in turn radically affect the
space potential. In particular, the competition among the
various species of space charge to establish overall equilib-
rium may lead to a pattern of two field-free regions separated
by a narrow sheath, a steady-state double layer. The physics
behind this experiment is yet to be fully understood, and the
present paper aims at providing a theoretical model to this
end.

In the standard experiment involving an electron swarm,
one solves the Boltzmann equation with elastic and inelastic
cross sections as input, and the field externally prescribed.
The problem is linear, and one can draw upon numerical
methods, which have been developed and refined over the
last 30 years or so. A similar depth of understanding of the
extended experiment is not possible at this time, since for
plasmas one has to solve the Boltzmann equation for both
ions and electrons, and couple them through Poisson’s equa-
tion for the space charge field. The situation is shown in Fig.
1 of Ref. �12�, and the inherent nonlinearity of the problem is
evident. At some time in the future, when the necessary tech-
niques have been developed, one should be able to make a
seamless transition between swarm and plasma physics in
general, and between the original and the extended Franck-
Hertz experiment in particular. In the meantime, we have to
improvise through the approximate and sometimes heuristic
analysis, which characterizes plasma physics.

B. Extended experiment, double-layer formation, and some
fundamental questions

As shown in Ref. �10�, a large amount of structure in the
current-voltage curve is readily displayed with the extended
arrangement, but it is far from easy to find a setting of the*pnicolet@skynet.be
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energy scale leading to a consistent interpretation of the ex-
citation peaks. A picture of the space potential �drawn in
idealized form in Fig. 1� was built up by analyzing the
changes in the current-voltage curves under controlled varia-
tion around assumed conditions.

It was found that if a constant decelerating voltage ��V�
of suitable magnitude is applied across the main collision
cell �the space between the two grids�, the excitation curve
�namely, the plot of the current between grid g2 and anode A
against the accelerating potential Vg1� could display two
copies of the e−-Hg spectrum. One of them corresponds to
thresholds of inelastic events excited at potential Vg1+� and
is independent of the value of �V. The other copy is sharper
and corresponds to the same series of inelastic events in-
curred at potential Vg1−�V, namely the voltage of g2. In-
creasing �V displaces the latter series of peaks rightwards
with respect to the former. �One can thus optimize the ex-
periment by adjusting the value of �V to hide the less pro-
nounced copy.�

The obvious inferences are that
�a� The scattering cell is separated into two field-free,

weakly ionized plasma regions, joined by a double layer
�DL� whose width is no larger than one excitation mean free
path.

�b� A rising wall sheath, of amplitude Vg1+�, of at most
similar width, is created at the exit of the first grid culminat-
ing at the “virtual anode” C of the effective electron gun.

Lacking as yet is a direct confirmation that these narrow
structures in the space potential are indeed present during
operation; neither is it likely that a nonintrusive measure-
ment of the potential is forthcoming in the sealed commer-
cial apparatus used in Ref. �10�. Suggestive as it may be, the
evidence presented so far to uphold the contention of DL
formation remains purely circumstantial.

Obviously a more persuasive case would be at hand, if
one could bring forth a physical model consistent with the
main experimental observations. The first question that
comes to mind is how is it possible for this potential struc-
ture to persist throughout the experiment despite the osten-
sible alteration of the various species of space charge as the
energy of the primary beam is raised?

Two types of kinetic approach, reviewed by Raadu �13�,
have been developed in the literature for modeling steady-
state electric double layers. One is the Bernstein-Greene-
Kruskal �BGK� method, in which one starts from a pre-
scribed form of space potential, and given phase-space
distributions for all but one species of charged particles, and
uses Poisson’s equation to solve for a physically meaningful
distribution of the remaining species. In the second method
one postulates all phase-space distributions and solves for
the space potential �see Sec. IX�.

In discussing the BGK approach, Raadu �13� pointed out
that “in principle, spatially extended quasineutral DL solu-
tions can be found by choosing the space potential ��z� with
a length scale much larger than the Debye length”—thus
essentially eliminating the differential term in Poisson’s
equation. Precisely this feature is at the root of the Tonks-
Langmuir model �14� for the plasma boundary, which could
thus exhibit DL solutions for suitably prescribed multicom-
ponent electron distributions. Jelić et al. �15� have effectively
implemented this program—though not in those words—by
adding a monoenergetic electron beam to the usual Maxwell-
Boltzmann electron component. This theory and its bearing
on the interpretation of the experimental results obtained in
Ref. �10� is the main theme of the present paper.

C. Scope of the paper

We aim to develop a model which furnishes a faithful
explanation of the phenomena described in Ref. �10�, and
which, in particular, fully supports the inferences drawn
there in regard to the formation of the “free” double layer
shown in Fig. 1, and is in sufficient quantitative agreement
with the numerical data for mercury, to be usable for predict-
ing whether DL formation should or should not occur in
other atomic gases, in similar experimental arrangements,
under a predeterminable set of conditions.

The theory itself is particularly attractive because the
space potential initially input in the BGK method is not ob-
tained merely by an educated guess: A one-parameter class
of potentials—containing the final answer—is derivable ana-
lytically at the outset by way of the Tonks-Langmuir pre-
scription of volume ionization, which acts like a closure con-
dition. The authors of Ref. �15� noted the existence of
double-layer solutions, but doubted both their mathematical
consistency and their physical meaning. These doubts will be
dismissed here: It will be shown that the DL or “DL-like”
structures of Ref. �15� are bona fide double layers in all
respects. The paper is organized as follows: Sec. II A gives a
summary of the experimental facts presented in Ref. �10�,
with supplemental information, obtainable quantitatively and
visually, on the evolution of the discharge toward the stable
form governed by the space potential shown in Fig. 1. This
summary clarifies the physical objectives of the model, and
sets the goals of the theory, as outlined in Sec. II B. Readers
interested only in a theory of DL formation may skip Sec. II
and proceed directly to Sec. III. Onwards from Sec. III, in
the interest of simplicity, the physical arguments and the sub-
sequent theory are presented in parallel plane geometry. �In
the actual apparatus only the first grid is planar; the other

FIG. 1. Space potential between cathode �K� and anode �A�
showing two field-free regions joined by a free double layer. The
high-potential plasma is initially �solid curve� at the applied value
of grid 1 voltage �Vg1�, but is raised dynamically �dashed curve� by
� volts in the course of the experiment. The arrow at C indicates an
appropriate cut used in the theory.
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three electrodes are concentric cylinders.� Sections III–V are
devoted to elaborating the basic theory and obtaining the DL
solutions. In Sec. VI the model is refined in regard to certain
idealized features �such as the assumption of a cold electron
beam� and, in Sec. VII, it is extended, by including a mo-
noenergetic ion beam—an important element in the experi-
ment of Ref. �10�. Section VIII is a detailed comparison of
the theoretical results with the experimental facts listed in
Sec. II. Section IX is an appraisal of the model in connection
to related literature. Section X contains some comments on
the basic physical assumption of free-fall motion. A sum-
mary with conclusions is given in Sec. XI.

II. REVIEW OF MAIN EXPERIMENTAL OBSERVATIONS

A. Evolution of the discharge

The experiment is carried out on mercury at vapor pres-
sures of 3–5 Torr. The distance between the grids g1 and g2
is about 1 cm. The potential configuration shown in Fig. 1
sets in abruptly in two steps, at critical values called C1 and
C2 of the accelerating potential Vg1.

It is possible to ascertain highlights in the evolution of the
discharge, and to quantify the voltages C1 and C2, by peering
through the top end of the cylindrical structure while tracing
curves of the type shown in Ref. �10�. As the voltage Vg1 is
raised, the visible part of the region between the electrodes
appears at first dark. When Vg1 reaches the lowest excited
state �3P� of mercury �see Figs. 2–6 in Ref. �10�� two local-
ized blue-green glows are born, seemingly bordering the flat
sides of the first grid, and stretching in opposite directions
towards the second grid as the voltage increases.

The positive ion current at the anode can be monitored
separately by a small modification in the grid-anode circuit.
Curves recorded with that arrangement show that a weak ion
current sets forth concurrently with the glows. Although a
small amount of ions are being produced within the glows
�by cumulative ionization via the metastable �63P0 and 63P2�
members of the triplet of lowest excited states�, swarm con-
ditions are still prevailing and the current-voltage curve is
essentially drawing the first peak of the standard Franck-
Hertz experiment.

In different samples of the tube the rates of elongation of
the glowing paths in each direction may differ. When the
outer edge of a glow reaches g2, the entire half-volume on
that side is lit up and the color changes to pinkish. This
transition occurs precisely at the point where the voltage at
g2 reaches 4.7 V, the threshold of the lowest excited state
�63P0�. Therefore C1=�V+4.7 V.

Past the point C1, volume generation of positive ions evi-
dently extends all the way to the grid g2. Peaks in the
current-voltage curve corresponding to the next higher
thresholds �63P1 ,63P2 ,61P1 , . . . � excited by the primary
beam at the lower potential, may or not emerge from then
on, showing that a sufficient extent of field-free drift space
adjacent to g2 may or may not have been generated, and
hence the “free” double layer shown in Fig. 1 may or may
not have developed.

The ion current increases substantially at C1, but the ring
of gas between g2 and the anode remains dark. The absence

of visible light in that zone persists throughout the experi-
ment, indicating that plasma conditions never extend beyond
grid g2: The zone of gas between the grid and the anode is
governed by swarm physics; such circumstances are a basic
requirement for ensuring the type of microscopic kinetics
responsible for displaying the low-potential spectrum in the
electron current between grid g2 and the anode A, as ex-
plained in Ref. �11�.

A short further increase of Vg1 is followed by a sharp
kink in the excitation curve �marked as feature A in Figs.
2–6 of Ref. �10��. This is the second critical voltage, C2. The
value of C2 ��9.5 V� is close to the ionization threshold of
mercury �10.4 eV� and indeed the level of ion current rises
abruptly at the kink by at least an order of magnitude. So
strong is this ion current sometimes, that a positive potential
must be applied between g2 and the anode ��a in Fig. 1� to
prevent the excitation curves from dropping below the zero
axis. It is noteworthy that this current cancellation phenom-
enon occurs only at the larger settings of �V.

The onset of beam-excited single-stage ionization near g1
produces a sudden shift in the high-potential energy scale:
Subsequent peaks in the high-potential copy of the spectrum
correspond to excitations at voltage Vg1+� rather than Vg1.
Both the magnitude of � and the position of C2 �feature A�
depend on the pressure of mercury gas and on the strength of
the cathode emission current, but are independent of �V. At
optimal discharge conditions the values of these voltages are
consistently found to be �=2.6�0.1 and C2=9.5�0.1.

Apart from producing a shift in the high-potential voltage
scale, the changes occurring in the discharge at C2 do not
affect the high-potential copy of the spectrum. The changes
do affect, however, some of the low-potential peaks: any of
the latter class that have been shifted beyond feature A �by
increasing �V�, are much stronger than they would otherwise
be �at lower �V�. Ostensibly, a more substantial width of
field-free plasma at the potential of g2 is present beyond C2
from then on.

It should be stressed however, that the creation of the
low-potential copy of the spectrum is by no means guaran-
teed. Its emergence and continued presence is contingent on
the following two conditions:

�1� The current emitted by the oxide-coated cathode must
be adequately strong. Furthermore, the initial beam must be
sufficiently cold.

Therefore the state of activation of the oxide-coated cath-
ode is a crucial factor: raising the current by overheating a
poorly activated �high work function� cathode widens the
energy distribution of the primary beam and will not do �see
Ref. �10�, Sec. 8.�

�2� The total potential difference �=�V+� must be suf-
ficiently large.

In actual fact there are both lower and upper bounds,
namely, 4.7���7.6 �in volts�. Below �=4.7 only high-
potential peaks are seen, regardless of primary beam condi-
tions. Past 4.7 V, both classes of peaks �say high and low
features� are present, and the strength of the low class in-
creases with the setting of � and attains a maximum at �
�6.7. At this point the high peaks are masked and never
reappear. Past �=6.7 the peaks decline in strength and even-
tually disappear amidst a noisy signal. Presumably, the “free”
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double layer is closer to the first grid at the better settings of
�, so that a larger proportion of field-free space exists at the
lower potential. What is interesting is that the optimal inter-
val 4.7���6.7 corresponds exactly to the range of fine
splitting of the 6P state, the lowest excited state, whose
members �63P0 ,63P1 ,63P2 ,61P1� have by far the largest in-
elastic electron-scattering cross sections.

B. Goals of the theory

The aim now is to construct a steady-state model appli-
cable to the final stage of the discharge. Primarily, the theory
should be capable of showing unequal widths of low- and
high-potential plasma on each side of a double layer, and
should thus reveal the mechanism leading to the two extreme
configurations where one or the other of the two plasmas
invades the entire intergrid region. In particular, the model
should elucidate the basic factors of large enough decelerat-
ing intergrid potential, and sufficiently strong and cold pri-
mary electron beam, and should thus clarify their role in the
formation of the low-potential plasma.

Also explainable should be the apparent sudden displace-
ment of the DL further leftwards toward the first grid, at the
threshold of beam-excited single-stage ionization, as de-
scribed above in Sec. II A.

Finally, the theory should be capable of showing the ob-
served near-cancellation of the total current, upon DL forma-
tion, at the larger settings of �. The ratio of electron and ion
currents—called the Langmuir ratio—is an important param-
eter in electric double-layer physics. In most cases �13� this
ratio is very large, of the order of �M /m�1/2, where M and m
are the atomic and electron masses. For mercury, �M /m�1/2

=607. Evidently, in the experiment of Ref. �10� the Lang-
muir ratio can be as much as 607-fold smaller than usual,
and a theoretical model has no real chance of being success-
ful unless it can explain this.

The upward shift ��� of the space potential in close vicin-
ity of the first grid has been described before �16,17�, in
similar experiments with various gases, each gas producing a
different stable value of �, but a good theoretical description
of this phenomenon is still at issue. The fast transitions at C1
and C2 require a time-dependent approach and should also
be studied in their own right in the future.

III. PHYSICAL SYSTEM

The part of the discharge to be modeled occupies the
space between a small extent of plasma, acting as a virtual
anode, and a plane close to the second grid. Within this re-
gion the potential � is decreasing monotonically from zero
to the imposed value −��� with ���=�+�V V. Specifically,
the left boundary �=0 of our model is taken to be at the
point C in Fig. 1, near the edge of the accelerating sheath,
which has climbed above the applied value Vg1

past the grid
g1, culminating at potential Vg1

+�.
In the first stage of the theory, the electron velocity dis-

tribution is assumed to be a superposition of two compo-
nents: A Maxwell-Boltzmann group �temperature T, density
n0 at �=0�, and a delta function ���mV2−2e����+ ���

+��� corresponding either to a single monoenergetic beam
of unspecified direction, or to identical oppositely streaming
beams �total density nb at �=0, kinetic energy mV2 /2
=e��� at �=−���; e ,m ,V, being the electron charge, mass,
and velocity�. Streaming beams arise from inelastic scatter-
ing of the primary beam in the high-potential field-free re-
gion. Counterstreaming beams are produced by similar
events in a small zone between the plane at �=−��� and g2
which acts like a virtual cathode. Integrating the electron
distributions over velocity gives the total electron density:
ne���=n0 exp�e� /kT�+nb�1+� / ����+ �����−1/2 �where k is
Boltzmann’s constant�.

Ions are created at a constant rate 	 throughout the vol-
ume of the discharge, in a manner to be prescribed. Between
the grids, electron and ion motion is determined only by the
self-consistent electric field �readers who feel uncomfortable
with this assumption could glance at Sec. X�.

In a later stage of the theory, an additional positive com-
ponent, a cold ion beam, will be added to the ion velocity
distribution. The ion beam is prepared by single-stage ion-
ization in the region between the cathode K and the point C.
It is then injected into the volume of the discharge, at �=0,
with initial energy �
� and density pb and contributes an
additional term pb�1−� / �
��−1/2 to the ion density.

IV. THEORY

Following Tonks and Langmuir �14�, let us assume that
positive ions of mass M and charge e are generated at rest at
any position z past the point z=0 at �=0, and free fall to-
wards g2 �z=zG� in the negative monotonic self-consistent
potential. An ion formed at z1�z has a velocity at z of Uz
= �2e /M�1/2��1−�z�1/2, where �1 is the potential at z=z1.
Assuming also that the ions are generated at a constant rate
	, the ion density ni�z� at z is

ni�z� = 	
0

z 	


�2e/M���1 − �z�
dz1. �1�

If G�U ,z�dU is the number of ions at z having velocity in
the range U to U+dU it follows that G�U ,z�dU=	 dz /U. In
a collisionless regime, the ion total energy X=e�+MU2 /2 is
a constant of the motion. Hence, in �U ,e��z�� phase-space
coordinates, the ion distribution depends only on the total ion
energy X and it turns out that

G�X� = −
M

e
	

dz

dX
, �2�

where X varies from e� to zero. The derivation of Eq. �2�
has been carried out in Ref. �18� by adding a source term
�	��U�, describing ion gain, to Vlasov’s kinetic equation for
the ion distribution function, where ��U� is a Dirac function
signifying that ions created by ionization have vanishing ini-
tial velocity.

Converting to dimensionless quantities, Eq. �2� takes the
form F�x�=ds /dx, and Poisson’s equation d2� /dz2

= �−e /�0��ni−ne� is given by
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�2d2

ds2 = 	
0

 F�x�

2� − x�

dx − e− −
N


1 − /�� + ��
, �3�

in which x=−u2 /2, and the dimensionless quantities are
F�x�= �kT /M�−1/2G�X�, x=−X /kT, =−e� /kT, �=e��� /kT,
�=e��� /kT, u=U�kT /M�−1/2, N=nb /n0, s=z /L, �=� /L, L
= �kT /M�1/2 /	, and �= ��0kT /e2n0�1/2.

For mercury, the length scales L and � in cm, with density
in cm−3, and kT=� in eV, are given by L=6.9�104��1/2 /	�
and �=743�� /n0�1/2, and therefore �=0.011	n0

−1/2. The pa-
rameter � determines the degree of charge neutrality in the
plasma.

Solutions of Eq. �3� are sought by the following proce-
dure. We assume that � is very small and begin by seeking
the solution F0�x ,N� of the resulting integral equation in the
“plasma approximation” �=0. In the present case, this solu-
tion can be obtained semianalytically by Abel inversion �19�.
For given values of � and �, a range N�N0 of the density
ratio N is determined in which the solution F0�x , ;N� is
physically meaningful. Equation �2� leads to

s�,N� = 	
0



F0�x;N�dx . �4�

Equation �4� and the inverse relationship ds /d=F0� ;N�
are the cardinal features of the Tonks-Langmuir model.

From Eq. �4�, the corresponding family of space poten-
tials �s ,N ;N�N0� can be obtained implicitly. For N near
the lower boundary N0, and small �, it will turn out that these
solutions exhibit a narrow sheath followed by a considerable
extent of low-potential plasma.

In order to proceed to the general case where ��0, the
differential term �2�d2 /ds2�� in Poisson’s equation must be
expressed as a function of , using the inverse function
s��. This is given by �n��=�2�d2s /d2��ds /d�−3

=�2�dF0�� /d��F0���−3. The modified form F��x ,N�
=F0�x ,N�+�F0�x ,N� of the ion phase-space distribution at
��0 can now be found by numerical Abel inversion of
�n��. A range N�N��N0 generally exists in which the
new distribution F��x ,N� is physically meaningful. The sub-
set �s ,N ;N�N�� of the previously obtained family of so-
lutions is the final answer. It will be seen below that, for
small � and values of N close to the new lower bound N�,
the DL is still very narrow.

At this point the BGK scheme for finding a DL solution
has been fully implemented: starting from a two-component
electron distribution and a DL-like form of the space poten-
tial, namely, �s ,N ;N�N0�, an ion energy distribution
F��x ,N ;N�N�� has been computed that is physically rea-
sonable, i.e., positive and with no singularities everywhere in
phase space. The spatial scale of �s�—essentially the ion-
ization mean free path—is determined from the values of M,
	, and T in the discharge, and thanks to the assumed form of
internal volume ionization, which implies Eq. �4� and the
inverse relationship F0��=ds /d, no element of guessing is
involved in prescribing the input space potential.

It should be clear, however, that from the point of view of
the BGK method, Eqs. �2� and �4� are irrelevant. One could
conceivably have guessed the above expression �s ,N� for

the space potential, and then used Eq. �3� to calculate the
missing ion distribution and to show that it has no unphysical
features—provided that N is large enough. He would end up
with the same result. Nevertheless, he would be at a loss to
explain the physical basis of his guess.

Lest the reader be surprised by the fact that the space
potential is directly calculable from Eq. �4�, it is helpful to
translate the picture to more conventional DL language.
Monotonic collisionless double layers are solutions of Pois-
son’s equation d2 /ds2=n��, where n�� is the total
charged particle density, with the boundary conditions �I�
n��=n���=0 �charge neutrality� and �II� d /ds=0 at 
=0 and =� �zero electric field�. A first integration from
zero to  yields �1 /2��d /ds�2+V��=0, where V�0�=0;
the function V�� is the “Sagdeev potential” �13� �the nega-
tive of the normalized Maxwell stress�. The boundary condi-
tions �I� and �II� imply that V�� is an inverted bell-shaped
curve between =0 and =�. In addition, self-consistency
between the electric field and charges near the boundaries
require that, for a monotonic potential, the net charges on the
low- and high-potential side are negative and positive, re-
spectively. This implies another existence condition, namely,
that �III� V����0 at both end points, which is the general-
ized Bohm criterion for a double sheath �13�, and ensures
that the DL is shielded from the ambient plasmas.

Given V��, the space potential �s� is calculable implic-
itly by simple quadrature and will obviously be of the step-
like form shown in Fig. 1. In the present case, n��
=�n�� /�2 and therefore

V�� = − ��2/2��F0�,N��−2. �5�

Of course, here there is no need to perform the integration
because the solution �s ,N ;N�N1�, alias “BGK equilib-
rium,” is already known, and conditions �I�–�III� have been
satisfied automatically, as can be verified explicitly �see be-
low� by using Eq. �5� to calculate V��. As pointed out in
Ref. �13�, the interesting conclusion is that in the BGK ap-
proach, the boundary conditions are met simply by prescrib-
ing that the ion phase-space distribution should be positive.

The condition V�0�=V���=0 is a requirement of stress
balance: the total particle pressures, dynamical and “ther-
mal,” must be in balance across the double layer. This is the
generalized Langmuir condition �13�. The case mentioned in
Sec. II B, where the “Langmuir ratio”—conventionally given
by �= �m /M�1/2�Ie / Ii�, where Ie and Ii are the ion and elec-
tron current densities—is close to unity, requires that the
dynamical pressures of externally injected particle beams
dominate. In the present case any ions emerging at =�
have been created internally, and one can no longer expect
that ��1 at both ends of the discharge region. The extreme
case of current cancellation implied by the data of Ref. �10�
would imply that, at =�, �= �m /M�1/2.

The ion flux density at =� is obtainable by integrating
the quantity uF�x�u�� over u, and is thus given simply by n0
�� /M�1/2s���. Hence, for a single beam of either direction

���� = �j��� + N��2� + 2��1/2�/s���� , �6�

in which the quantity n0 �� /m�1/2j��� is the random electron
flux density at =�. We are now ready to apply the theory to
the mercury discharge of Ref. �10�.
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V. RESULTS

Before proceeding to the solutions, we need a reasonable
estimate for �, the charge-neutrality parameter �a more ap-
propriate name would be “Tonks-Langmuir number” in anal-
ogy to the “Reynolds number” in fluid physics, that similarly
controls the weight of a differential term�.

The present type of 1-cm-wide discharge, between con-
centric cylinders, at a few Torr, is parallel in most respects to
the “anchored ball of fire” mode of thermionic discharge,
discussed extensively by Johnson �16� for rare gases. Typical
values of temperature � and bulk density n0 found in Ref.
�16� for the heavier element �Xe� are around 1 eV and
1013 cm−3. It will seen in the next section that with �
�1 eV, and values of potential ��� characteristic to the ex-
periment of Ref. �10� with mercury, the computed value of
the dimensionless distance s��� is close to 1. Hence the spa-
tial scale is L�1 cm. This implies that 	�6.9�104 s−1.

Another set of experimental data �20�, this time on posi-
tive columns of mercury discharges of transverse radius R,
shows that at low gas pressure p the combined quantity
R	�Rp� is a descending function of Rp. At Rp=0.1 Torr cm
this function levels off, so that at higher pressures R	�Rp�
�const and 	�7�104 s−1 �the figure found above� regard-
less of radius; the corresponding electron temperature �as
computed in Ref. �20�, using the “plasma balance” equation
of Ref. �14�� is, once more, ��1 eV.

Therefore it may not be far amiss to assume that, at op-
erating pressures of a few Torr, the choice L�1 cm, � /L
=�=0.011	n0

−1/2�2.35�10−4 represents fairly closely the
experimental conditions of Ref. �10�.

To facilitate the actual comparison to experiment, we re-
place dimensionless energy variables ��� by products ���� of
dimensional quantities. Hence the term exp�−� in Eq. �3� is
changed to exp�−��, so that potentials are expressed di-
rectly in volts and the electron temperature is �−1 eV. As
stated in Sec. IV, the solution of the “plasma equation” ��
=0� is obtainable semianalytically by Abel inversion �19�,
yielding.

F0�x� =

2

� � 1

�x

�1 +
N�� + ��
� + � − x

 − 
�e−�x erfi�
�x�� ,

�7�

where erfi�y� denotes the error function of imaginary argu-
ment �erfi�y� is 2�−1/2 times the Dawson integral D�y�
=�0

y exp�w2�dw�. From Eqs. �4� and �7�, the space potential
�s� between 0 and � is given implicitly by

s�� =

2

�
�2N
��� + �� arctanh� 



� + �


+ 
�e−� erfi�
��� . �8�

Figure 2 shows the ion energy distribution F0�x� obtained
from Eq. �7� with ��=3, �=1, N=0.15, for various values
of the “energy excess” at =�, represented by the quantity
��. In each case the function F0�x ,N=0.15� has a deep mini-
mum where F0�0. Given that F0�x�=dx /d, this means that

a narrow layer �a “free” sheath in conventional parlance� is
being formed within the volume between 0 and �. The part
of F0�x� due to the bulk electron density is known as the
Harrison-Thomson distribution �21�, which becomes nega-
tive at x=0.854. The additional density due to the electron
beam renders F0�x ,N� physically meaningful, i.e., positive
and nonsingular, throughout the range of energy x in the
discharge. This imposes a lower bound on the parameter N.

The corresponding forms of the space potential �−�s�
obtained from Eq. �8� are given in Fig. 3. In our example,
s��� is close to unity but varies somewhat �logarithmically�
with �. For easier visual comparison, we have normalized
every case to s���=1. Figure 3 shows that for small �, a
substantial extent of field-free space is created at the lower

FIG. 2. �Color online� Ion energy distribution for N=0.15, ��
=3, �=1, �=0, at successive values of beam energy excess ��
�namely, 0.001, 0.03, 0.1, and 1 in descending order�.

FIG. 3. �Color online� Theoretical space potential �− for N
=0.15, ��=3, �=1, �=0, at successive values of beam energy
excess �� �namely, 0.001, 0.03, 0.1, and 1 from left to right�.
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potential. This phenomenon is due to the steep increase of
the beam density as →�, and is independent of the value
of N.

The position of the sheath depends on the product ��.
The larger this value, the closer the sheath is to the left
boundary �C in Fig. 1, at relative potential �−�; in other
words, for a given value of the voltage � �at fixed ��, de-
creasing the electron temperature �increasing �� displaces the
sheath toward g1, and vice versa. Alternatively, for a given
electron temperature �−1, the DL can be moved closer to g1
by raising the intergrid potential �. Figure 4 shows two ex-
treme cases ���=1.5 and ��=6�, with �=3 and ��=0.001.

Decreasing N �at any �� reduces the width of the sheath,
since F0�x�→0 at the minimum. For �=3, �=0.001, �=1,
the narrowest sheath arises for N=N0�0.116 and lies about
midway between the end points �at x�1.55�. This solution is
shown as �a� in Fig. 5.

Of course, the mere requirement that F0�x��0 cannot fix
the optimal value of N. Too narrow a sheath at a point s
=s0 �large d2 /ds2� violates the plasma approximation in the
neighborhood of s0. Moreover, at �=0 there is no charge
separation and so the narrow structure is not really a double
layer. These consistency issues are remedied by imposing a
nonvanishing value of �.

Proceeding by the method outlined in Sec. IV, we use
the value �=2.35�10−4, derived above, to calculate
the left-hand side �n� ,N�=�2�d2 /ds2�=�2�dF0�� /
d��F0���−3 of Eq. �3� as a function of , corresponding to
the charge-neutral ��=0� solutions s � ,N; �=3, �=0.001,
�=1�. The increments �F0�x ,N� are then obtained by carry-
ing out the Abel inversion of �n� ,N� numerically. For N
=0.116, the modified ion distribution F�x ,N�=F0�x ,N�
+�F0�x ,N� is now a rapidly varying function, with closely
spaced excursions below the zero axis near the point x
�1.55. As before, we can increase the parameter N until
F�x ,N��0. This yields the new critical value N�=0.124.

The narrowest allowed quasineutral DL solution satisfy-
ing the full Poisson equation is shown as �b� in Fig. 5, in

comparison to the narrowest charge-neutral solution �a�. The
neutrality-breaking term �n� ,N�� is shown in Fig. 6�a�.
The increment �F0�x ,N�=0.124� is shown in Fig. 6�b�. The
complete distribution has now two closely spaced minima, as
shown in Fig. 6�c�. Figure 6�d� shows the Sagdeev potential
V�� corresponding to �x ,N�=0.124�, as calculated from
Eq. �5�; the form of V�� shows immediately that the exis-
tence conditions �I�–�III� of Sec. IV are satisfied. This com-
pletes the picture drawn in Sec. IV.

The exact value of s��� for our solution is 1.24. This
means that in order for a 1 cm discharge of Tonks-Langmuir
number �=2.35�10−4 to adapt to this solution ���=3, ��
=0.001�, at the ionization frequency 	=6.9�104 s−1, we
need L=0.8 cm, �=0.65 eV, n0=1�1013 cm−3, and �
=1.95 eV Alternatively, for �=1 eV, we should have 	
=8.6�104 s−1, n0=1.6�1013 cm−3, and �=3 eV.

It remains to calculate the Langmuir ratio. Using Eq. �6�,
with j���= �2���−1/2 e−��, and ��=3, ��=0.001, �=1, N
=0.124, we find ����=159 /607=0.26. Obviously this is
much too large, and therefore we are forced to adopt the
view that the density nb is due to two oppositely streaming
beams of comparable energies and densities nb+�nb−
�nb /2 so that ����� j��� /s���=9.6 /607. Larger values of
�� will reduce the random flux density j���, and we can
now readily reach �=1 /607—in the present example, we
would need ��=4.8.

So the model has passed the crucial test of current can-
cellation at =�, but there is still a problem: at =0,s��
→0, so that ��0�→�. Including an external ion beam will
remove this discrepancy, as will be seen in Sec. VII. Mean-
while, a number of idealized assumptions need to be dis-
cussed.

VI. REFINEMENTS

A. Truncated Maxwell-Boltzmann electron distribution

The assumption of Maxwell-Boltzmann electrons
throughout the intergrid region is somewhat unreasonable:

FIG. 4. Space potential �− for �=3, ��=0.001, at ��=6 and
��=1.5 and �=0. The respective values of N have been adjusted
for narrowest double layers.

FIG. 5. �Color online� Narrowest DL solutions at ��=3, �=1,
��=0.001, from �a� the plasma equation ��=0, N=0.116, solid
line� and �b� the full Poisson equation ��=2.35�10−4, N=0.124,
dashed line�.
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collisionless electrons with kinetic energy less than e��� can-
not reach the boundary. Hence the bulk electron distribution
can at best only be a cutoff Maxwellian, namely, it should
vanish for electron velocities V such that mV2 /2�e��
+ ���� Integrating the Maxwellian over this bounded interval
of V, converting to dimensionless variables, and normalizing
to unity at =0, yields the new form of the bulk density

neB�� =
e−� erf 
��� − �

erf�
���
. �9�

The Abel inversion of this expression must now be carried
out numerically. For modestly large ��, the results obtained
do not differ significantly from the analytic expressions
given by Eqs. �7� and �8�. The main difference is that some-
what larger values of the parameter N are found for the nar-
rowest double-layer solution. For �=3, �=1, �=0.001, �
=0, the deepest minimum of F0�x� corresponds to N=0.132

�instead on 0.116� and the position of the double layer is
virtually unchanged. In the optimal experimental range 4.7
���6.7 eV, the analytic expressions �7� and �8� may be
used with virtually no loss of accuracy.

B. Finite temperature beam

The effect of relaxing the assumption of a cold electron
beam can be investigated by replacing the delta function dis-
tribution by the displaced Maxwellian of temperature Tb,
studied by Schamel �22�, namely,

Fb�u,� =
1


�
exp�−

1

2�
��sgn u��u2 − 2�1/2 − u0�2�

�u2 � 2� �10�

in dimensionless variables, where �=Tb /T. The resulting
beam density, adapted to the present definitions of , �, and
�, is now given by the expression

FIG. 6. Modifications due to the differential term of Eq. �2�, calculated for ��=3, �=1, ��=0.001, �=2.35�10−4, by means of the
charge-neutral ��=0� solution �x ,N� for N=0.124; �a� neutrality-breaking density increment �n��; �b� increment �F0�x�; �c� complete
distribution F��x�=F0�x�+�F0�x� in the neighborhood of the minimum; �d� Sagdeev potential corresponding to �n� ,N=0.124� calculated
by means of Eq. �5�.
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nb�,�� =
K�,�� + L�,��
K�0,�� + L�0,��

, �11�

in which

K�,�� =
2


�
	

0

�/2

d�
�

�
cos � erf�
�

�
cos �

�exp�−
1

�
�� sin2 � + �� − �tan2 ��� , �12�

L�,�� = exp�� −  − �

�
erfc�
� − 

�
 , �13�

where in Eq. �13�, erfc�y� is the complementary error func-
tion.

In the limit �→0, L� ,��→0 and �K� ,�� /K�0,���
→ �1− / ��+���−1/2 as it should. A comparison of this lim-
iting value with the “warm” beam density nb� ,�� for �
�0 is given in Fig. 7. Increasing � lowers the beam density
near =� and hence reduces the extent of low-potential
field-free space. The effect is entirely analogous to the influ-
ence of � shown in Fig. 3.

C. Adding a higher energy electron beam

Including an extra monoenergetic electron beam of den-
sity nF �with nF /n0=NF� and excess energy �F�1 has no
significant influence on the space potential. For instance, the
effect on the previous example ��=0, �=3, �=1, N=0.116,
�=0.001� of adding a fast beam with identical density �NF
=0.116�, but with �F=5, is similar to the change caused by
increasing N from N0 to N�, shown in Fig. 5.

VII. ADDING AN ION BEAM

The addition of an ion beam to the model is straightfor-
ward. As outlined in Sec. III, an ion beam injected into the

volume of the discharge at �=0, with initial energy �
� and
density pb, contributes an additional term pb�1−� / �
��−1/2 to
the ion density. Converting to dimensionless quantities, P
= pb /n0, �= �
� /kT, and Abel inverting this new ion term,
changes Eqs. �7� and �8� to

F0�x� =

2

� � 1

�x

�1 +
N�� + ��
� + � − x

−
P�

� + x


− 
�e−�x erfi�
�x�� , �14�

s�� =

2

�
�2N
��� + �� arctan h� 



� + �


− 2P
�� arctan h�



�
 + 
�e−� erfi�
��� .

�15�

To see the effect of the ion beam, we compare the ex-
ample of Sec. V ��=2.35�10−4, ��=3, �=1, N=0.124,
��=0.001, P=0� with the new result obtained from Eqs.
�14� and �15� with P=1, �=0.3. One difference is that
F��x��0 now requires a somewhat larger value of N�, i.e.,
N�=0.223, instead of N�=0.124. But the important change is
that the DL moves significantly leftwards, as shown in the
curves marked �a� in Fig. 8. The larger the value of P, the
farther left the DL will move.

Despite these changes, the value of s��� is about the same
as for the narrowest DL solution without the ion beam:
s���=1.34 instead of 1.24.

It remains to evaluate the changes to the Langmuir ratio.
For identical oppositely streaming electron beams at any ,
Eq. �6� becomes

FIG. 7. Modification with temperature ratio �=Tb /T of the elec-
tron beam density near the low-potential boundary, for ��=3, �
=1, ��=0.001.

FIG. 8. �Color online� �a� �Dashed lines� Leftward displacement
of a DL �parameters ��=3, �=1, ��=0.001, N=0.223, P=0�,
caused by an ion beam �P=1, initial energy ��=0.3�. �b� �Solid
lines� Same effect on a narrower DL �parameters ��=3, �=1,
��=0.001, N=0.175, P=0�, caused by an ion beam with smaller
initial energy �P=1, ��=0.15�.
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��� = �j���/�P�2 + 2��1/2 + s���� . �16�

In the current example, we find ����=3 /607 and ��0�
=0.515. Thus, not only has the previous unphysical diver-
gence of ��� at =0 been removed, but we are also closer
to exact current cancellation at =�.

At fixed P, lower values of ion initial energy � entail
smaller values of N� and s���, and higher values of ��0�, but
the DL still moves leftwards by about the same distance.
Thus, for P=1, �=0.15, we find N�=0.175, s���=1.13,
����=3.3 /607, ��0�=0.73 �see the curves marked �b� in
Fig. 8�.

The magnitude itself of ��0� is another welcome feature,
because it should allow a smooth connection to a future
theory of the K-C region in Fig. 1, in which the dynamical
components should dominate the stress balance, and so the
Langmuir ratio at C would be expected to approach unity.
This completes the mathematical analysis of our model.

VIII. COMPARING TO EXPERIMENT

At this stage it should be clear that the main goals set
forth in Sec. II B, have been realized. In this section it will
be explicitly delineated that the physical premises of the
model, and the solutions described in Secs. III–VI, realisti-
cally portray every single experimental detail listed in Sec.
II A.

(a) Space charge species. The basic assumption of vol-
ume ionization is verifiable visually, and the subsequent in-
jection of an ion beam is manifest from the observed large
surge in the ion current, as described in Sec. II A.

Equally plausible are the postulated negative species.
Firstly, a Maxwell-Boltzmann electron component should be
formed since part of the primary beam is randomized, as is
always found in similar discharges �see Ref. �16��. Secondly,
the display of beam components was the very purpose of the
experiment in the first place: In the field-free regions of Fig.
1, as a result of inelastic collisions at thresholds Eex, a cath-
ode beam of energy Ec will show an energy spectrum with a
series of maxima at all possible values of Ec−Eex. More
generally, peaks occur at all values Ec−�i �ciEex

i � by succes-
sive inelastic scattering at linear combinations �i �ciEex

i � of
important thresholds Eex

i .
The maxima show up as narrow peaks in the electron

energy distribution Fe�E�, as has been otherwise demon-
strated experimentally �23� with the same mercury apparatus.
Note furthermore that a truly Maxwellian distribution with a
“bump-on-tail” has been displayed elsewhere—in a neon dis-
charge with moving striations, as seen in Fig. 6 of Ref. �24�.

(b) Beam tuning via � and the smallness of �. The quan-
tity e��� in our model is given by e���=Ec−�i�ciEex

i �−e���.
Significantly wide field-free plasma at the lower potential
will be created whenever the quantities Ec, �i�ciEex

i �, and
e��� combine to produce a small enough value of e���.

Streaming beams with small e���, and similar counter-
streaming beams are produced by inelastic collisions in the
high- and low-potential regions, respectively. It is highly
plausible therefore that, if Ec is varied at an appropriate rate,
with a suitable setting of �, a pair of oppositely streaming

beams of small energy excess �1��2�1 is always present
so that the theoretical mechanism causing the desired con-
figuration of space potential can function continuously. Jus-
tifiably, this is more likely to occur when � itself is in the
range 4.7���6.7 spanned by the thresholds of the 6P
states.

(c) DL position and the magnitude of �. Regardless of the
role of particular inelastic thresholds in establishing the
lower bound ���=��5 eV, via the parameter �, the magni-
tude of this bound also follows from the computed depen-
dence of the position of the DL on the product ��. At any �,
wider �and presumably increasingly stable� field-free plasma
at the lower potential would require that the double layer be
located leftwards of the midpoint between grids. In view of
the main example in Sec. V, this implies that ���3. A good
setting would be ��=6, as shown in Fig. 4 for �=3, �=2.
An electron temperature of ��5 /6 eV �a temperature osten-
sibly inherent to this mode of discharge� would then require
��5 eV. Larger values of �� were also found to entail
larger values for the critical density fraction N due to the
beam, in accordance with the observed enhancement of the
low-potential peaks in the later part of the optimal range
�4.7, 6.7� of settings for �.

(d) External ion beam. The effect of an ion beam pro-
duced externally at the ionization threshold was explained in
Sec. VII. The resulting change of stress balance forces the
DL further leftwards and increases the extent of low-
potential plasma.

(e) Current cancellation. Also derived in Sec. VII is the
virtual equality of electron and ion fluxes at the low-potential
boundary, observed experimentally at the higher values of
retarding potential �.

(f) DL width. The width of the double layer can be esti-
mated from the distance between maximum and minimum of
the total density in Fig. 6�a�, and is found to be at most
1 mm. This is entirely consistent with the magnitude of the
average e−-Hg excitation free path in the pressure range
3–5 Torr of Ref. �10�.

(g) Large cathode current. The condition of the large
cathode current follows from the relationship between the
plasma density and the length ratio �: a sufficiently narrow
DL cannot develop unless � is very small. Hence n0, the
Maxwell-Boltzmann component of electron density near the
virtual anode—and so also the density of the injected cath-
ode beam—must be large enough.

Having said that, it should be noted that there is an upper
limit on the strength of the cathode current. As mentioned
already, the type of discharge present throughout the experi-
ment is the “ball-of fire” mode—with the ball “anchored” at
g1, as described in Ref. �16�. As the cathode current setting is
increased, a point is reached at which this mode can no
longer subsist �25�. The system cannot enter smoothly into a
different mode because this transition is a potentially cata-
strophic event—the ball can explode.

Above a critical current, when the critical voltage C2 is
reached, � does not settle to an equilibrium value �0 but
increases dramatically beyond �0 to a large value �L, the
virtual anode C shoots upwards to Vg1+�L, and the current
increases by orders of magnitude. As long as the cathode
current is not too large, the system is able to react by drop-
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ping the space potential: the upward path of the voltage to
Vg1+�L at C2 immediately turns back �at a large value of
current�, the voltage of the virtual anode decreases, as does
the current, until the quantity � drops back to zero. This
process then starts again and the system enters a phase of
self-sustained relaxation oscillations �see Ref. �10�, Sec. 8.2�
described by a “hysteresis” loop in the current-voltage plane.
Since the accelerating potential drops periodically below the
first critical point C1, the tube flashes. Oscillations can last
forever—and have been left on for days by the author �10�—
unless the cathode current is reduced.

It is plausible from the solutions in Sec. IV that while the
system is oscillating with a variable value of ��, the double
layer is moving back and forth in the interval between the
grids. Several authors have studied this phenomenon in the
unstable circumstances of marginal ball-of-fire discharges
�see, for instance, Ref. �26��, and have even observed period
doubling routes to chaos �27�. Whether or not the apparatus
of Ref. �10� can be used to measure the Feigenbaum con-
stants as in Ref. �27� remains to be attempted.

Future work along the lines of the present model, duly
adjoined to the region in Fig. 1 between the cathode K and
the point C, could shed light on the critical value of � at the
onset of instability, and on the role of ion starvation por-
trayed by the ostensible change of sign of the ion distribution
near its minimum, in creating the instability, and in produc-
ing the restoring mechanism during self-sustaining oscilla-
tions.

(h) Cold cathode beam. The influence of beam tempera-
ture is explained in Sec. VI B: For a group of secondary
electrons produced by inelastic scattering to acquire the char-
acter of a fairly monoenergetic beam, the primary cathode
beam too must be sufficiently cold.

(i) Variable cathode beam energy. At this point, the an-
swer to the question asked in Sec. I B is evident: The basic
species of space charge necessary for creating and maintain-
ing the space potential of Fig. 1 is not the fast primary beam
of variable energy, but of its products, bulk Maxwellian elec-
trons, slow secondary electron beams, positive ions gener-
ated throughout the volume, and an ion beam created near
the exit of the electron gun. Provided that the system stays in
the ball-of-fire mode of discharge in the entire range of ac-
celerating potential, these secondary components are largely
independent of the energy of the primary beam. As shown in
Sec. VI C, any remaining fraction of the primary beam tra-
versing the discharge with increasing energy can have no
substantial influence on the space potential.

In actual fact, monitoring the current between the anode A
and the cathode K, rather than between A and g2, can di-
rectly verify this. This arrangement eliminates the primary
electron current since the anode is now below cathode po-
tential. The resulting “excitation curve” is then the usual se-
ries of peaks superimposed on a descending �increasingly
negative� background due to the ion current.

(j) Collapse of the high potential plasma. Although a
small value of N is necessary for producing a free DL, larger
beam densities are not detrimental to the existence of low-
potential plasma. As long as the quantity � is small, increas-
ing N does not affect plasma conditions in the downhill re-
gion. In contrast to this, the high-potential plasma eventually

collapses and the double layer reduces to a wall sheath at the
fist grid �g1�. This is easily verified by varying N in the
Sagdeev potential V� ,N�: a value of N is eventually
reached beyond which the tangential behavior of the inverted
bell as →0 disappears; the curvature changes sign and
V�� reaches zero with a positive sign of V���. In the ex-
ample of Sec. IV the upper bound on N for a free DL is about
N=0.5.

Note that at lower gas pressure the fraction of randomized
beam is smaller and thus the value of N is necessarily larger.
Therefore the high-potential spectrum should not appear at
all, in accordance with the observations in Ref. �10�, Sec.
8.1. Of course the experiment itself is mediocre at low pres-
sure because the signal-to-background ratio is too low.

In conclusion, one can hardly deny that the present model
is in remarkably close agreement with the mercury experi-
ment, and should be useful for designing similar experiments
with other gases and for setting objectives for future theoret-
ical investigations.

IX. CONNECTION TO RELATED LITERATURE

The single-component Tonks-Langmuir model �14� was
originally devised in order to study the plasma-sheath tran-
sition near a floating wall. For that purpose, the plasma equa-
tion is used between the center of the discharge and the
“sheath edge,” and the full Poisson equation between that
edge and the wall. The sheath edge is identified with the
point where the solution of the plasma equation becomes
singular. There is vast literature on this problem going back
many years, recently reviewed by Franklin �28� and Riemann
�29�. In that approach, one is always faced with the subtle
task of suitably joining the plasma and sheath solutions in
the neighborhood of the singularity.

This difficulty does not arise in the present multicompo-
nent model. The space charge density due to the electron
beam prevents the self-consistent ion distribution from be-
coming negative. Therefore the singularity near the wall is
smoothed out into a double layer within the volume of the
discharge and the plasma equation is applicable all the way
to the boundary. There is also a significant change of venue
here: the wall is a conducting electrode. Hence the amplitude
� of the “boundary layer” is not fixed by the equality of
electron and ion fluxes at the boundary, but can be controlled
externally.

Different kinds of multicomponent Tonks-Langmuir mod-
els have also been used to study double-layer formation. Bra-
dley �30� has considered the sum of a Maxwellian and a
“waterbag” electron distribution; other authors have used
two Maxwellians of different temperature �31,32�. A com-
mon feature of these models is that—in contrast to the
present case—both components of the electron density vary
with  in the same direction. As a result the ion energy
distribution cannot rise again within the active plasma re-
gion, and the creation of a field-free region of plasma at the
lower potential cannot take place.

As mentioned in the Introduction, an alternative kinetic
theoretical avenue for modeling collisionless plasma double
layers—extensively addressed by Schamel �33,34�—consists
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in solving for the space potential using postulated distribu-
tions for all species of charged particles. An early attempt
�35� to explain the present experiment was based on that type
of approach, using truncated Maxwellian distributions for
trapped particles and monoenergetic beams for free particles.
Recently, the theory of Ref. �35� was refined and modified in
several respects �36�. Mainly, �a� a new class of viable DL
solutions was discovered and shown to obey a principle of
least field energy, and �b� better quantitative agreement with
the experiment of Ref. �10� was obtained by changing to the
concave electron and ion distributions for trapped particles,
invented by Schamel �35� for modeling electron and ion
phase-space “holes.” As a result, the electron beam must be
slowed to almost zero velocity near the outer grid in order to
produce field-free space in that area—as in the present paper,
and unlike the convex case. Schamel’s concave distributions
are somewhat similar to the ion distributions given by Eqs.
�7� and �14� above. Nevertheless, the physical basis of such
distributions could not be explained realistically, and there-
fore the bearing of the model of Ref. �36� to the interpreta-
tion of the results of Ref. �10� was, at best, somewhat con-
trived.

Still, several results of that model are in good agreement
with other double-layer experiments, and it is of interest that
the preferred �least field energy� solutions correspond to
“quasizeros”—local maxima at points 1 and 2—of the
Sagdeev potential V�� within the region 0���. Plasma
conditions and the generalized Bohm criterion �13�, given by
V����0, can thus be created dynamically inside a bounded
discharge, regardless of nonneutrality of charge at the bound-
aries 0 and �.

Imposing conventional Bohm criteria �in addition to the
usual boundary conditions of charge neutrality and vanishing
electric field� at the outset prevents access to the least energy
solutions of Ref. �36�; this was the view taken originally by
the authors of Ref. �35�. In actual fact, Andrews and Allen
�37� had already proposed the model of Ref. �35� at an earlier
date, albeit with nontruncated Maxwellians, in order to
model a DL experiment carried out by their group.

Lieberman and Charles �38� have recently used the
Andrews-Allen theory, supplemented by a subsidiary condi-
tion based on a simplified diffusion model, in order to ex-
plain DL formation in a helicon-type discharge used in a
plasma thruster for space propulsion. However, they showed
that their double layer could not exist at pressures larger than
2.5 mTorr, and therefore their model is certainly not appli-
cable to the type of discharge discussed in the present paper.

X. IS FREE-FALL MOTION JUSTIFIED?

The main shortcoming in the present theory is the glib use
of free-fall motion. This is a common feature of hitherto
developed kinetic DL models and is dictated primarily by
mathematical convenience, since the inclusion of binary col-
lisions would increase the difficulty by at least one order of
magnitude. On the other hand, it is conceivable that double-
layer formation actually occurs on the �greatly shorter?� time
scale of collective events so that a collisionless approach is

indeed legitimate. The very fact that the present experiment
works supports this view: electrons seem to encounter tailor-
made field-free drift space before they undergo the inelastic
collisions responsible for the display of the multipeaked in-
elastic spectrum. In the words of the very inventor of the
names “plasma” and “double sheath” �39�: “The sheath thus
acts like an ideal grid for accelerating primary electrons into
a field-free region.”

A closely related question concerns the assumption of
Maxwell-Boltzmann electrons. As pointed out by Emmert et
al. �40�, the basis of this is the experimental observation that
electrons tend toward a Maxwell-Boltzmann distribution on
a time scale much shorter than could be explained on a col-
lisional basis. This is the notorious “Langmuir paradox”
�41,42� most recently discussed by Tsendin �43�.

For electrons, a criterion of collisionality, based on Max-
wellian equilibria, has been given by Franklin �see Eq. �1.13�
in Ref. �44��. Using this in the present context yields a lower
limit of n0=1.5�1012 cm−3 for free-fall motion, comfortably
below the present figure of 1013. Unfortunately this criterion
cannot be used for ion motion because it uses the two-term
approximation in Boltzmann’s kinetic equation, an invalid
premise for ions.

A definitive understanding of the time-scale problem in
the process of formation of electrostatic phase-space struc-
tures in gas discharges is long overdue. An exciting develop-
ment in this direction was reported very recently �45� and
will hopefully be followed up before long.

XI. CONCLUSION

The Tonks-Langmuir model with a superposition of
Maxwell-Boltzmann and monoenergetic electrons, and inter-
nally created ions, previously introduced in Ref. �15�, was
studied in detail. It was shown that this theory is equivalent
to a Bernstein-Greene-Kruskal model, in which the scale of
the postulated space potential is much larger than the Debye
length, supplemented by a subsidiary condition on the poten-
tial, based on the prescribed form of the ionization mecha-
nism �Eqs. �2� and �4��. The model was extended to finite
values of the quasineutrality parameter � and its integrity in
regard to double-layer solutions was established: ideal
plasma conditions on both sides of the double layer, as well
as the Bohm criterion—generalized for double sheaths—are
met simply by prescribing that the ion phase-space distribu-
tion should be positive.

Also discussed were the more realistic cases of a finite
temperature electron beam, a bulk electron density given by
a truncated Maxwell-Boltzmann distribution, and the effect
of an externally prepared, and subsequently conserved, mo-
noenergetic ion beam.

The model was inspired by, and successfully bench-
marked against, experimental results obtained in a classic
form of thermionic discharge, underlying a well-known and
easily accessible experiment on mercury. Therefore it can be
used for predicting whether a DL, of width inferior to the
average excitation free path, will or will not be formed, un-
der suitably rescaled discharge conditions, in any atomic gas,
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with a carefully prepared source of primary electrons. The
discharge should simply produce a sufficiently small length
ratio �, and appropriate values of the density ratio N. Of
course, the final answer still rests on experiment, because, as
yet, whereas � can be estimated, N is only a phenomenologi-
cal parameter. The ab initio theoretical determination of N is
a tall task involving at least an approximate calculation of
the electron phase-space distribution Fe �V ,��z�� with sim-

plified assumptions on ��z�, in terms of the cross sections
for elastic and inelastic scattering.
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