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We explore numerically the flow induced in a spherical shell by differentially rotating the inner and outer
spheres. The fluid is also taken to be electrically conducting �in the low magnetic Reynolds number limit�, and
a magnetic field is imposed parallel to the axis of rotation. If the outer sphere is stationary, the magnetic field
induces a Shercliffe layer on the tangent cylinder, the cylinder just touching the inner sphere and parallel to the
field. If the magnetic field is absent, but a strong overall rotation is present, Coriolis effects induce a Stewartson
layer on the tangent cylinder. The nonaxisymmetric instabilities of both types of layer separately have been
studied before; here, we consider the two cases side by side, as well as the mixed case, and investigate how
magnetic and rotational effects interact. We find that if the differential rotation and the overall rotation are in
the same direction, the overall rotation may have a destabilizing influence, whereas if the differential rotation
and the overall rotation are in the opposite direction, the overall rotation always has a stabilizing influence.
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I. INTRODUCTION

The study of free shear layers and their instabilities is one
of the oldest problems in fluid dynamics, dating back to the
pioneering work of Kelvin �1� and Helmholtz �2�. In this
work we will consider two types of shear layer, the magneti-
cally induced Shercliffe layer and the rotationally induced
Stewartson layer, which can easily be set up in a differen-
tially rotating spherical shell. Previous work has studied each
of these layers and its corresponding instabilities in isolation
�3,4�. The basic shear layers are similar in many ways, but
their instabilities may be very different. Here we compare
and contrast the two problems, and then consider the mixed
case, when both magnetic and rotational effects are present.

Previous studies on magnetohydrodynamic spherical Cou-
ette flow have included analytic �5–7�, numerical �8–10�, and
experimental �11,12� work, with a variety of imposed mag-
netic fields. Nonmagnetic Stewartson layers have also been
widely studied, in both cylindrical �13–17� and spherical
�18–20� geometries.

II. EQUATIONS

We start with two concentric spheres, of radii ri and ro,
rotating about a common axis �z axis� with angular velocities
�i and �o. The fluid filling the shell is taken to be electri-
cally conducting, and a magnetic field B=B0êz is externally
imposed. The question then is, what sort of flow states will
result as the parameters B0, �i, and �o are varied, and can
the solutions be classified in some systematic way, for ex-
ample, according to whether they are magnetically or rota-
tionally dominated?

In the reference frame rotating with the outer sphere, the
governing equations are

�U

�t
+ Re U · �U + Taêz � U

= − �p + �2U + Ha2�� � b� � êz, �1�

�2b = − � � �U � êz� , �2�

where the Hartmann number

Ha =
B0ri

�����
�3�

measures the strength of the imposed magnetic field, the Tay-
lor number

Ta =
2�ori

2

�
�4�

measures the overall rotation of the whole system, and the
Reynolds number

Re =
��i − �o�ri

2

�
�5�

measures the differential rotation of the inner sphere. The
density �, viscosity �, diffusivity �, and permeability � are
�constant� material properties of the fluid.

In these equations, length has been scaled by ri, time by
ri

2 /�, and U by ��i−�o�ri. Finally, the induced magnetic
field b has been scaled by Rm B0, where
Rm= ��i−�o�ri

2 /� is the magnetic Reynolds number, and
Eqs. �1� and �2� have been formulated in the Rm→0 limit, in
which Rm no longer appears in the equations at all, but only
in the interpretation associated with b. See also �3�; the prob-
lem considered here is precisely the extension of �3� to in-
clude the overall rotation given by Ta.

The boundary conditions associated with �1� are the usual
spherical Couette flow conditions

U = r sin� ê	 at r = ri, U = 0 at r = ro, �6�

where the radii will be fixed at ri=1 and ro=3. For the
boundary conditions associated with �2� we take the exterior
regions r
ri and r�ro to be insulating. As shown in �3�,
taking these regions to be conducting instead can have dra-
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matic consequences, yielding a counterrotating jet rather
than a shear layer. However, precisely because we want to
focus on shear layers here, we consider only the insulating
case.

These equations and associated boundary conditions are
solved numerically using the spherical harmonics code �21�.
We begin by considering the axisymmetric basic states; then,
we linearize about these solutions and compute the linear
onset of nonaxisymmetric instabilities. Resolutions as high
as 300 Legendre functions in � and 180 Chebyshev polyno-
mials in r were used, and results were tested to ensure that all
aspects of the solutions were fully resolved.

III. TWO PURE CASES

A. Basic states

Figure 1 shows the solutions at Re=Ta=0 and Ha2

=104 ,105 ,106, corresponding to an infinitesimal differential
rotation, no overall rotation, and an increasingly strong mag-
netic field. We see the emergence of an increasingly thin
shear layer, the Shercliffe layer, located on the so-called tan-
gent cylinder C, the cylinder just touching the inner sphere
and parallel to the magnetic field. The origin of this layer is
easy to understand in terms of the magnetic tension along the
field lines. Fluid columns outside C are coupled at both end
points to the outer boundary only, so they remain at rest. In
contrast, fluid columns inside C are coupled to both bound-
aries, which are rotating at different angular velocities, 0 at
the outer boundary and 1 at the inner boundary, as imposed
by �6�. These columns then rotate at a rate intermediate be-
tween 0 and 1. The result is a jump in angular velocity across
C, which is precisely the Shercliffe layer observed in Fig. 1.
�Inside C there are also Hartmann layers at the outer and
inner boundaries, accommodating the jump from �1 /2 in
the interior to 0 and 1 at the boundaries. We will not be
interested in these boundary layers though.�

Figure 2 shows the solutions at Re=Ha=0 and Ta

=103.5 ,104 ,104.5. We again see the emergence of an increas-
ingly thin shear layer, the Stewartson layer, on the same tan-
gent cylinder C as before. The origin of this layer is also very
similar to that of the Shercliffe layer, the only difference
being that now it is the Taylor-Proudman theorem that
couples fluid columns along the z axis, and not magnetic
tension, which is of course entirely absent for Ha=0.

Despite their similarities, there are also important differ-
ences between Shercliffe and Stewartson layers. Note, for
example, how the contour lines in the Stewartson layer are
almost perfectly parallel, whereas in the Shercliffe layer they
spread out somewhat away from the inner sphere. Related to
this is the fact that the asymptotics of these two shear layers
are also slightly different; the Shercliffe layer consists of a
single layer of thickness Ha−1/2 �22�, whereas the Stewartson
layer consists of a primary layer of thickness Ta−1/4 across
which the shear is resolved, but also contains secondary lay-
ers of thicknesses Ta−2/7 just inside C and Ta−1/3 just outside
C �18�.

B. Onset of instabilities

The results in Figs. 1 and 2 are all for the case of infini-
tesimally small differential rotation, Re=0. Now suppose the
differential rotation is gradually increased. As the shear
across the layers is increased, one might expect the layers to
become unstable eventually, to something like a Kelvin-
Helmholtz instability. That is, one might expect the initially
circular, axisymmetric basic state to adopt a wavy, nonaxi-
symmetric structure.

The instabilities of the pure Shercliffe layer were consid-
ered by �3�; the left panel in Fig. 3 shows their results �Fig.
4a in �3��, over the range of Hartmann numbers shown in
Fig. 1. The instabilities of the pure Stewartson layer were
considered by �4�; the right panel in Fig. 3 shows these re-
sults �Fig. 4 in �4��, again over the range of Taylor numbers
shown in Fig. 2. �Note though that the equations here are
scaled differently from those in �4� to allow for the possibil-
ity of Ta=0 here. The Ekman and Rossby numbers in �4� are
related to the Taylor and Reynolds numbers used here by E
=1 / �2Ta� and Ro=2Re /Ta.�

Comparing the two panels in Fig. 3, there are clearly simi-
larities between the two cases. Most obviously, for compa-
rable thicknesses of the underlying shear layers �as indicated
in Figs. 1 and 2� the critical Reynolds numbers for the onset

FIG. 1. Examples of the pure Shercliffe layer, showing contours
of the angular velocity, with a contour interval of 1 /9. From left to
right, Ha2=104 ,105 ,106 and Ta=Re=0 for all three.

FIG. 2. Examples of the pure Stewartson layer, showing con-
tours of the angular velocity, with a contour interval of 1 /9. From
left to right, Ta=103.5 ,104 ,104.5 and Ha=Re=0 for all three.
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FIG. 3. �a� shows log10�Rec� as a function of log10�Ha2� for the
pure Shercliffe layer; �b� shows log10�Rec� as a function of log10�Ta�
for the pure Stewartson layer. The numbers beside individual curves
indicate the azimuthal wave numbers m, showing only the most
unstable modes. In �b�, the solid curves m=3 to 7 are for Re�0,
whereas the dashed curve m=1 is for Re
0.
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of instabilities are also comparable, with �Rec��103 for the
Ha and Ta ranges shown. Beyond that, in both cases the
critical Reynolds numbers increase as the thickness of the
shear layers decreases.

However, there is also one crucial difference between the
instabilities of these two types of shear layer, more funda-
mental than any difference between the shear layers them-
selves. Specifically, for the pure Shercliffe layer, the results
are invariant to the sign of Re—that is, the direction in which
the inner sphere rotates. The easiest way to see this is to note
that reversing the rotation of the inner sphere is equivalent to
turning the entire system upside down. This merely reverses
the sign of the imposed magnetic field though, which clearly
has no effect.

In sharp contrast, the results for the Stewartson layer are
not invariant to the sign of Re. One can, of course, still
imagine turning the system upside down, but instead of re-
versing the magnetic field, this now reverses the sense of the
overall rotation. And unlike the magnetic field, whose sign
does not matter, the sign of the overall rotation does matter.
That is, instead of reversing the sign of Re one could just as
well reverse the sign of Ta, but the result is still not equiva-
lent to the original configuration. Having Re and Ta of the
same sign is fundamentally different from having them of the
opposite sign.

Returning to the right panel in Fig. 3 then, we note that
Re�0 and Re
0 do indeed yield strikingly different insta-
bilities. Positive Re has increasingly large azimuthal wave
numbers m for increasingly large Ta, exactly as one would
expect for a Kelvin-Helmholtz-type instability, whereas
negative Re has m=1 over the entire range of Ta shown here.
Comparing with the �Re invariant Shercliffe results in the
left panel, we see that these are more like the Re�0 Stew-
artson results, in that they also show a progression to higher
m.

One reason for considering the mixed Shercliffe-
Stewartson problem then is simply to see how this �Re
asymmetry manifests itself in this case and at what point the
results are more like the symmetric Shercliffe problem or
more like the asymmetric Stewartson problem.

C. Location of the instabilities

First though we consider a few more aspects of the two
pure problems: namely, the spatial location of the instabili-

ties. Figure 4 shows the Shercliffe case, Fig. 5 the Re�0
Stewartson case. The first panels in each figure show the
angular velocity, as before in Figs. 1 and 2. One point to note
here is how similar these solutions at nonzero Re are to the
Re=0 solutions in Figs. 1 and 2. The inertial term ReU ·�U
is crucially important in driving the instabilities, but in the
basic states themselves it is almost completely balanced by
the pressure-gradient term. The second panels show the as-
sociated meridional circulation. This is very weak though in
comparison with the shear layers and does not appear to play
an important role in the instabilities. Finally, the gray shad-
ing in the third panels shows the azimuthally integrated ki-
netic energy of the instabilities—that is, the quantity
��u�2r sin� d	. As expected, both instabilities are concen-
trated on the tangent cylinder C, although it is interesting to
note that the concentration is far greater in the Shercliffe case
than in the Stewartson case.

Figure 6 shows the corresponding results for the Re
0
Stewartson case, the anomalous m=1 mode. The instability
now appears to have curious gaps in cylindrical radius, re-
sulting in a striped appearance. Furthermore, the instability
reaches its maximum concentration not on C, but instead just
inside, where the Stewartson layer intersects the Ekman layer
on the inner sphere. This would suggest that this anomalous
mode is perhaps not a Stewartson layer instability at all, but
instead an Ekman layer instability, for which it is well known
that the Re�0 case �von Kármán flow� and the Re
0 case
�Bödewadt flow� are indeed very different �23�.

The numerical tests conducted by �4� considered exactly
this possibility and suggest that however plausible this idea
may be, it is incorrect: this Re
0 mode is not a Bödewadt
instability, but a Stewartson layer instability, just like the
Re�0 modes. However, these numerical tests �4�, in which
the meridional circulation and the Ekman layers were simply
deleted from the basic state before computing the instabili-
ties, can be—and indeed have been—criticized as being un-
physical, not corresponding to anything that one could actu-
ally set up in a laboratory, for example.

FIG. 4. The Shercliffe layer at Ha2=105, Rec= �1588, and Ta
=0. The left panel shows the angular velocity, with a contour inter-
val of 1 /9; the middle panel shows the meridional circulation, with
a contour interval of 10−4; the right panel shows the azimuthally
integrated kinetic energy of the instability, having wave number
m=3, as indicated in the left panel of Fig. 3.

FIG. 5. The Stewartson layer at Ta=104, Rec=665, and Ha=0.
The left panel shows the angular velocity, with a contour interval of
1 /9; the middle panel shows the meridional circulation, with a con-
tour interval of 10−3; the right panel shows the azimuthally inte-
grated kinetic energy of the instability, having wave number m=5,
as indicated in the right panel of Fig. 3.

FIG. 6. As in Fig. 5, but with Rec=−1404 and m=1.
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We would therefore like to repeat something like this de-
letion of the meridional circulation and the Ekman layers,
but in a way that is physical and could be set up in an ex-
periment. Fortunately, this can be accomplished rather easily:
we simply replace the outer boundary condition U=0 by U
=r sin� ����ê	 at r=ro, where ���� is 1 inside C and 0
outside �for numerical reasons the transition is actually
smoothed out over a degree or so�. Physically this would
correspond to having the outer sphere split into differentially
rotating segments, with the regions inside the tangent cylin-
der now corotating with the inner sphere, which is precisely
how many Stewartson layer experiments are indeed done
�16,20�.

Figure 7 shows these results. If we begin by comparing
the basic states in Figs. 6 and 7, we see that this new bound-

ary condition has roughly doubled the jump in angular ve-
locity across the shear, because everything inside C is now
corotating with the inner sphere, whereas before the fluid
inside C was rotating at a rate intermediate between 1 at the
inner boundary and 0 at the outer. Turning next to the Ekman
layers, these have been largely eliminated; if everything in-
side C is corotating, there is simply no need for Ekman layers
at the boundaries. And correspondingly, the meridional cir-
culation, which is driven by Ekman pumping in the boundary
layers, is also dramatically reduced.

This new boundary condition has thus accomplished ex-
actly what we wanted, but in a way that is physically realiz-
able, unlike the numerical tests presented in �4�. And if we
compare the instabilities in the two cases, then the original
boundary condition �Fig. 6� has m=1 and Rec=−1404 and
the new boundary condition �Fig. 7� has m=1 and Rec
=−826. That is, doubling the shear across the layer roughly
halves the critical Reynolds number, exactly as one would
expect if it is indeed the shear layer that is triggering the
instability. This new boundary condition therefore confirms
the claim made by �4� that this anomalous m=1 mode is also
a Stewartson layer instability �although beyond that there are
unfortunately still many aspects of this mode that are not
entirely clear�.

IV. MIXED CASE

Figure 8 shows stability results for the mixed case, when
neither Ha nor Ta is zero. Starting with Hartmann numbers
Ha2=104.5 and 105.5, Ta is increased from 102 to 105.5 for
both positive and negative Re. For Ta
Ha2, �Re are not
surprisingly almost the same. As rotational effects become
comparable with magnetic effects, though, the rotationally
induced asymmetry becomes more and more pronounced.
For positive �negative� Re the wave number increases �de-
creases�, until for Ta=105.5 we are almost back to the pure
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FIG. 8. The critical Reynolds numbers for the onset of instabili-
ties, as functions of log10�Ta�, with Ta=102 almost the pure Sher-
cliffe regime and Ta=105.5 almost the pure Stewartson regime. �a�
is for Ha2=104.5; �b� is for Ha2=105.5. Within each panel the upper
set of curves, with decreasing wave numbers, is for Re
0; the
lower set of curves, with increasing wave numbers, is for Re�0.

FIG. 9. The top row shows results at Ha2=104.5, Ta=103.75,
Rec=946, and m=4, the bottom row at Ha2=105.5, Ta=104.75, Rec

=1827, and m=8—that is, at the minima of the Re�0 curves in
Fig. 8. The left panels show the angular velocity, with a contour
interval of 1/9; the middle panels show the meridional circulation,
with a contour interval of 10−3 �top� and 5�10−4 �bottom�; the right
panels show the azimuthally integrated kinetic energy of the
instabilities.

FIG. 7. As in Fig. 6, but with the split outer sphere boundary
condition. Rec=−826 and m=1.
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Stewartson regime, with large m for positive Re and small m
for negative Re. It is unfortunately not entirely clear why the
wave numbers behave in this way, but the fact that there is
this smooth transition from the symmetric Shercliffe case to
the asymmetric Stewartson cases, for both positive and nega-
tive Re, further reinforces the view that even these “anoma-
lous” m=1 modes above are not so anomalous after all, but
are merely the limiting case in this family of shear layer
instabilities.

One other interesting and completely unexpected result in
Fig. 8 is this initial decrease in the Re�0 curves, reaching a
minimum when Ta /Ha2�10−0.75	0.2. Ta /Ha2=O�1� is, of
course, precisely the regime where rotational and magnetic
effects are comparable, so it is not surprising that any inter-
action between the two would manifest itself most strongly
there. That rotational and magnetic effects can destabilize
one another even though each separately has a stabilizing
influence is also familiar in other contexts, such as Rayleigh-
Bénard convection �24�. It is not clear though why this mu-
tual destabilization in this case does not occur for Re
0 as
well.

Finally, we wish to consider the spatial structures of both
the basic states and the instabilities in this case Ta /Ha2

=10−0.75, where rotational and magnetic effects are interact-
ing most strongly, and see whether they are more like the
pure Shercliffe case or more like the pure Stewartson case.
Figure 9 shows the results for Re�0; comparing with Figs. 4
and 5, we see that they look more like the pure Shercliffe
case. Figure 10 shows the results for Re
0; comparing with
Figs. 4 and 6, we see that the basic state again looks more
like the pure Shercliffe case. The instabilities though have
aspects in common with both the Stewartson case �namely,
this striped appearance�, as well as the Shercliffe case
�namely, the concentration more outside C�, rather than in the
equatorial region as in the Stewartson case.

V. CONCLUSION

In this work we have explored the stability of two types of
free shear layers that may be set up by magnetic and rota-
tional effects. Although the shear layers themselves are very
similar for the two effects, the instabilities are quite different
in one important aspect—namely, that in the magnetic Sher-
cliffe case they are invariant to the sign of the differential
rotation that induces them, whereas in the rotational Stewart-
son case they are not. However, as different as the �Re pure
Stewartson cases may at first sight appear to be, by consid-
ering the mixed case, we showed that there is in fact a
smooth progression from the invariant Shercliffe limit to
both of the �Re Stewartson cases, suggesting that these
cases are not so different after all.

�1� Lord Kelvin, Philos. Mag. 42, 362 �1871�.
�2� H. von Helmholtz, Philos. Mag. 36, 337 �1868�.
�3� R. Hollerbach and S. Skinner, Proc. R. Soc. London, Ser. A

457, 785 �2001�.
�4� R. Hollerbach, J. Fluid Mech. 492, 289 �2003�.
�5� S. V. Starchenko, Phys. Fluids 10, 2412 �1998�.
�6� N. Kleeorin, I. Rogachevskii, A. Ruzmaikin, A. Soward, and

S. Starchenko, J. Fluid Mech. 344, 213 �1997�.
�7� E. Dormy, D. Jault, and A. M. Soward, J. Fluid Mech. 452,

263 �2002�.
�8� R. Hollerbach, Proc. R. Soc. London, Ser. A 444, 333 �1994�.
�9� E. Dormy, P. Cardin, and D. Jault, Earth Planet. Sci. Lett. 160,

15 �1998�.
�10� R. Hollerbach, E. Canet, and A. Fournier, Eur. J. Mech.

B/Fluids 26, 729 �2007�.
�11� D. R. Sisan, N. Mujica, W. A. Tillotson, Y. M. Huang, W.

Dorland, A. B. Hassam, T. M. Antonsen, and D. P. Lathrop,
Phys. Rev. Lett. 93, 114502 �2004�.

�12� H.-C. Nataf, T. Alboussiere, D. Brito, P. Cardin, N. Gagniere,
D. Jault, J.-P. Masson, and D. Schmitt, Geophys. Astrophys.
Fluid Dyn. 100, 281 �2006�.

�13� K. Stewartson, J. Fluid Mech. 3, 17 �1957�.
�14� R. Hide and C. W. Titman, J. Fluid Mech. 29, 39 �1967�.
�15� F. H. Busse, J. Fluid Mech. 33, 577 �1968�.
�16� W. G. Früh and P. L. Read, J. Fluid Mech. 383, 143 �1999�.
�17� A. Aguiar and P. Read, Meteorol. Z. 15, 417 �2006�.
�18� K. Stewartson, J. Fluid Mech. 26, 131 �1966�.
�19� R. Hollerbach, B. Futterer, T. More, and C. Egbers, Theor.

Comput. Fluid Dyn. 18, 197 �2004�.
�20� N. Schaeffer and P. Cardin, Phys. Fluids 17, 104111 �2005�.
�21� R. Hollerbach, Int. J. Numer. Methods Fluids 32, 773 �2000�.
�22� P. H. Roberts, Proc. R. Soc. London, Ser. A 300, 94 �1967�.
�23� H. A. Jasmine and J. S. B. Gajjar, Philos. Trans. R. Soc. Lon-

don, Ser. A 363, 1131 �2005�.
�24� S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability

�Clarendon, Oxford, 1961�.

FIG. 10. As in Fig. 9, but for Re
0, with Ha2=104.5, Ta
=103.75, Rec=−1324, and m=2 for the top row and Ha2=105.5, Ta
=104.75, Rec=−3661, and m=3 for the bottom row.

INSTABILITIES OF SHERCLIFFE AND STEWARTSON… PHYSICAL REVIEW E 78, 026309 �2008�

026309-5


