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Resonant mixing in perturbed action-action-angle flow
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This paper presents a quantitative theory of mixing via chaotic advection in near-integrable time-dependent
volume-preserving flows for the case when the base (unperturbed) flow possesses two invariants (or actions).
Using a model cellular flow introduced by Solomon and Mezic as an example, we construct a quantitative
theory of mixing caused by the resonance-induced diffusion of an adiabatic invariant of the flow. We compute

the fraction of the mixed volume as a function of the frequency of the perturbation and show that this function
is strikingly nonmonotonic, with multiple peaks. In particular, essentially complete mixing inside a flow cell is
achieved on experimentally accessible time scales for certain special frequencies.
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I. INTRODUCTION

In the context of fluidic systems, mixing is conventionally
identified with homogenization of any initially localized dis-
tribution of passive tracers throughout the cross section (for
open flows) or volume (for bounded flows) of the fluid. Al-
though this is similar to the more technical definition of the
term in the context of ergodic theory, where it describes the
evolution of phase space volumes, we will accept a less for-
mal definition motivated by applications to experiment. Spe-
cifically, we will use the term mixing to describe the broad-
ening of the distribution of passive tracers advected by the
flow in such a way that it asymptotically (or after a suffi-
ciently long time) disperses over a subset of the fluid vol-
ume, covering it completely except for holes of size smaller
than some cutoff 8. In this way, one can define mixing to be
one, two, or three dimensional, depending on the dimension-
ality of the subset. The cutoff & can be interpreted as either
the resolution of an experimental measurement or an effec-
tive length scale below which molecular diffusion becomes
the dominant transport mechanism.

Weakly perturbed volume-preserving action-action-angle
flows (which possess two invariants in the absence of a per-
turbation) have a special place in the studies of Lagrangian
mixing. On the one hand, such flows arise frequently in mi-
crofluidic devices where geometric symmetries severely con-
strain the flow structure, leading to the emergence of mul-
tiple flow invariants (or actions). On the other hand, an
arbitrarily small perturbation can completely break the inte-
grability of such a flow, enabling essentially complete mix-
ing [1], unlike action-angle-angle flows in which surviving
Kolmogorov-Arnold-Moser- (KAM-)like regular tori impede
global transport, leading to poor mixing.

Mixing in action-action-angle flows in the presence of
time-independent perturbations is already quite well under-
stood. However, for time-periodic perturbations, only quali-
tative descriptions of the mixing process were available until
now. In fact, two rather different mechanisms have been pro-
posed to explain mixing.

The first study of this problem is due to Feingold and
co-workers [2,3], who recognized that mixing is caused by
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the breakdown of adiabatic invariance (the latter arising due
to averaging over fast time scales) near surfaces where the
frequency of the perturbation is in resonance with the fre-
quency of the unperturbed (base) flow. The resulting dynam-
ics was described as a combination of segments of adiabatic
motion away from resonance surfaces combined with seg-
ments of nonadiabatic motion near resonance surfaces. The
assumption of the randomness of the jump in the value of the
adiabatic invariant associated with the crossing of the reso-
nance surface was used to argue a gradual dispersion in the
value of the adiabatic invariant, leading to mixing. However,
the jump magnitude was not computed nor was the assump-
tion of randomness in the jump direction justified.

This qualitative theory of resonance-induced dispersion or
diffusion was later applied to a model of fluid flow between
concentric spheres rotating about different axes [1,4], where
it was discovered that, for some parameters and on very long
time scales, essentially complete mixing can be achieved due
to a special property of the flow—its resonance surfaces are
dense in the whole volume between the spheres.

The first attempt to achieve a more detailed understanding
of the effect of resonances was made by Mezic [5], who
suggested that the dynamics near resonance surfaces is gov-
erned by the hyperbolic saddle and saddle-focus periodic or-
bits, surviving in the presence of the perturbation, and their
heteroclinic connections. Specifically, it was proposed that
changes in the value of the adiabatic invariant are mainly
associated with passages through the neighborhoods of
saddle-focus-type periodic orbits, whose stable and unstable
manifolds are inclined with respect to the resonance surface.
However, again, no quantitative theory describing the change
in the value of the adiabatic invariant was constructed.

Following these theoretical studies, several experimental
and numerical investigations of Lagrangian mixing in time-
periodic flows were undertaken. These investigations discov-
ered that the mixing efficiency exhibits a nonmonotonic de-
pendence on the frequency of the time-periodic component
of the flow. Qualitatively similar results were obtained in the
presence of molecular diffusion [6,7] as well as without it
[8—10], suggesting that molecular diffusion likely does not
play a significant role in this phenomenon.

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.78.026302

VAINCHTEIN, WIDLOSKI, AND GRIGORIEV

Finally, a quantitative theory of resonance-induced adia-
batic diffusion was developed in Ref. [11] for time-
independent perturbations. The generalization of this theory
for time-periodic perturbations was summarized in Ref. [12],
along with an explanation of the observed nonmonotonic fre-
quency dependence of the mixing efficiency. The latter study
was based on the theory of resonance phenomena in
multiple-frequency systems developed recently by Neishtadt
[13]. The purpose of this paper is to present a more detailed
description of the dynamics in the vicinity of resonance sur-
faces that underlies the quantitative theory of mixing in near-
integrable time-dependent volume-preserving flows.

The paper is organized as follows. We start in Sec. II by
introducing the model flow. Section III describes the adia-
batic motion far from resonances. Different types of dynam-
ics near the resonance surface(s) are described in Sec. IV.
The cumulative effect of many resonance crossings on the
dynamics of the adiabatic invariant and the consequences for
mixing are considered in Sec. V. Finally, Sec. VI presents the
summary and conclusions.

II. THE MODEL FLOW

To illustrate the effect of resonances on the mixing dy-
namics, we consider an incompressible fluid flow in a one-
dimensional array of cubic cells described by the following
equations:

X =v,=-cos(mx,)sin(my) + & sin(2mx,)sin(7z),
y =v, =sin(mx,)cos(my) + & sin(2my)sin(mz),

Z=v,=2¢ cos(mz)[cos(2mx,) + cos(2my)], (1)

where x,=x+b sin wt. This system was introduced by So-
lomon and Mezic in [10] as a qualitative model of a Lorenz-
force-driven cellular flow in a channel of rectangular cross
section (—=0.5<y,z<<0.5). It is easy to check that the no-slip
boundary condition at the channel walls is not satisfied.
However, we point out that using the exact solution of the
Navier-Stokes equations satisfying the proper boundary con-
ditions will lead us to qualitatively the same conclusions
while making the calculations unnecessarily complicated.

The terms proportional to & describe a weak correction to
the main recirculation flow caused by inertial effects (Eck-
man pumping). The time dependence of the flow is due to an
external perturbation—the shift, with amplitude b, of the
boundaries between the cells (planes x=n+1/2, nEZ). For
nonzero b, there is transport between the cells; however, our
objective is to understand the transport properties of the flow
inside each of the cells. Since the dynamics in all the cells is
identical, we will consider only the cell with —0.5 <x<0.5.

Following [10], we consider the limit 0=&<1 and 0
=b<<1. Linearizing (1) with respect to € and b, we obtain a
time-periodic near-integrable flow

X =— cos(mx)sin(my) + 7b sin(7x)sin(ry)sin wt

+ & sin(2mx)sin(mz),
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FIG. 1. Unperturbed system: (a) typical streamlines in the z
=const plane and (b) the frequency Q(WV).

y = sin(mx)cos(my) + wb cos(mx)cos(my)sin wt

+ & sin(2my)sin(7z),

2 =2¢ cos(mz)[cos(2mx) + cos(2y)], (2)

which can be analyzed using perturbative techniques.

II1. ADIABATIC MOTION

In this section we describe the dynamics far from the
resonance surfaces. Our main objective in the present section
is to derive the averaged equations of motion and show that,
for small b and &, the dynamics conserves an adiabatic (ap-
proximate) invariant, restricting transport to two dimensions.

A. Unperturbed flow

First, consider the unperturbed (base) flow characterized
by €=0 and b»=0. In this case, x,=x and (1) is reduced to

X =— cos(mx)sin(my),
y = sin(mx)cos(my),

z=0. (3)

This is a two-dimensional autonomous flow which possesses
two invariants (actions, integrals of motion):

Z =const,

W = cos(mx)cos(my) = const, (4)

with W proportional to the stream function of the unper-
turbed flow in the (x,y) plane. All the streamlines I, y, of the
unperturbed flow are closed, except for those residing on the
cell boundaries [see Fig. 1(a)], with the period of motion

Fmax | *max d
(V) = 2f —dx= 4f —/%, (5)
X o Vecos*(mx) -V

where X,x=—Xmin=(1/m)cos™! W. The corresponding fre-
quency Q=27/T is shown in Fig. 1(b) and ranges from ()
=0 on the cell boundaries to (=1 at the center. On every
I", y we can introduce a uniform phase, y mod(2), such that
x=0 on the positive x axis and

X=QP). (6)

The base flow (3) can therefore be rewritten as a system of
Egs. (4) and (6), explicitly illustrating that it is of the action-
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action-angle type. The actions W, z, and the angle y provide
a convenient set of coordinates that parametrize all interior
points of the flow cell.

The unperturbed flow is characterized by mixing in only
one dimension (along the streamlines I', y). Using (5) and
(6) we find that an initial tracer distribution of finite width
will get stretched along I', y at a rate O(1), eventually be-
coming uniform over the whole streamline.

B. Time-independent perturbation

Next, consider the effect of the Eckman pumping (g>0),
ignoring the time-dependent shift for the moment (»=0). In
this limit, the flow (2) is steady but conserves neither z nor
V. The dynamics is characterized by two different time
scales: the variable y is fast [changes on O(1) time scale],
while the variables z and ¥ are slow [change on O(g™") time
scale].

The evolution equations for the slow variables follow di-
rectly from (2). Specifically,

¥ = — 2 sin(rz) W[sin?(mx) + sin’(7y)],

and the equation for 7 is unchanged. Averaging these over the
quick oscillations in yx over one period of the unperturbed
motion, we obtain the following dynamics:

” 167 . —— f Tmax gin?(7rx) J
=—g———siml(mz /= _x’
(V) o Veos*(mx) — W2
16 f fmax cos(2mx)
Z. =& COS 7TZ T X. 7)
(V) (m2) o Veos*(mx) — W2 (

It can be shown [14] that the averaged (slow) system (7)
possesses a new integral of motion: the flux ® of the vector
field
sin(27rx)sin(7rz)
V.= sin(2ry)sin(mz) ,
2 cos(mz)[cos(2mx) + cos(2my)]
the e-dependent part of the perturbation in (2), through a

surface St bounded by an unperturbed streamline I', y,. Spe-
cifically, we have

®=| (v, -n)dS, (8)
St

where n and dS are the unit normal vector and the surface
element on Sp, respectively. Using a vector potential

A, — sin(27ry)
A,=| A, |=—cos(mz)| sinmx) |, 9)
B v
A 0

Z

such that v.=V X A_, we can rewrite (8) as

f

where dl is a length element on I', y. Substituting (9) into
(10), we get

(A, - dl), (10)

(A
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FIG. 2. Autonomous perturbed system (e=10"*,5=0): (a) Qua-
siperiodic motion in the physical space; (b) The projection on the
slow plane. The vertical line shows the location of the 1:1 reso-
nance (for b#0 and w=2.5) and the bold curve is I'g+ (see Sec.

V B)
v=¢
Fz,‘l’
2
w

16 fmax AP P2
= —cos(mz) —\/1 - —F—dx. (11)
T o cos(mx) cos*(x)

One can see that (7) can be written as

(A dx +Aydy)

T
cos(wz)‘l’f [sin?(7rx) + sin®(y)]dt
0

™ 0P
Tw) ow

a Jd

—sma—z, (12)

z=

Therefore, @ is an invariant of the averaged system and,
hence, is an adiabatic invariant (AI) of the exact system: far
from the cell boundaries, where Q(W)=0, the value of ®
oscillates with an amplitude O(e), but on any one full turn of
the fast motion the change in ® is only O(&?), compared
with O(e) changes in W and z [13]. Therefore, on time in-
tervals O(e™!), ¥ and z experience an O(1) change, while ®
only changes by O(e). For a detailed proof that ® is an Al,
see [14].

In the physical space, the streamlines of the flow with b
=0 lie on the nested tori 74 [see Fig. 2(a)] defined as the
level sets of the AL The (quasiperiodic) motion along these
tori corresponds to motion, with slow period T.(®), of the
averaged system (12) along the closed curves I'q, on the
(W,z) plane [see Fig. 2(b)]. In the physical space, the Al
reaches its maximum value ®,~0.7845 on a closed curve
that resides in the center of the nested tori and is given by

z=2.=0, ¥=¥,~0418. (13)
It follows from (7) that z can be written in terms of a com-
plete elliptic function of W, with W, being its only zero for
-0.5<z<0.5 (see, e.g., [15]). Also, one can find that 7 is
negative for ¥ <W,_ and positive for ¥ >W,. Therefore, all
trajectories in the slow plane move around the point (¥,,z,)
in a counterclockwise direction [Fig. 2(b)].

The steady perturbed flow is characterized by mixing in
two dimensions (along a level set 7, y)). In addition to the
fast stretching along I', y described previously, the tracer dis-
tribution will also be stretched in the direction normal to I, y
at a slower rate [more specifically, O(g), according to (12)],
eventually becoming uniform over the whole level set.
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FIG. 3. Complete flow with e=h=10"* and w=2.5: (a) Plots of
O/ w (dashed line) and ® (solid line) vs time for complete flow (1);
(b) projection of one slow period on the slow plane, the 1:1 reso-
nance is shown.

C. Time-dependent perturbation

The addition of the time-dependent perturbation can make
the structure of the flow much more complex. Numerical
simulations show that the limit 0<b<<e is qualitatively
similar to the case with b=0 and €>0.

The limit 0 <& <<b is qualitatively similar to the case with
e=0 and >0, where the flow is effectively two dimensional
and a narrow chaotic layer of width O(b) appears near the
cell boundaries. While this layer has little influence on trans-
port inside any one cell, it plays a key role in the intercell
transport. As these layers from the adjacent cells are con-
nected, their existence opens the possibility of Lévy-flight-
like transport across many cells (see [16,17]).

The case where b and € are of similar magnitude is of the
most interest for transport inside cells. Hence, in what fol-
lows we assume B=b/e=0(1). Furthermore, since we are
interested in the dependence of mixing properties of the flow
on the frequency w of the perturbation, we will also assume
w=0(Q)=0(1).

The evolution equations for the slow variables are now

WV = — 277e sin(arz) W[sin?(mx) + sin?(my)]

- %mﬁﬁ[sm@m)sin(wt)],

7 =2¢e cos(mz)[cos(2mx) + cos(2mry)]. (14)

If O and w are incommensurate, then averaging over y and ¢
can be performed independently (see, e.g., [13]). In this case,

the time-dependent terms in the equation for ¥ average out
and we would expect the AI (11) to be conserved as before.
The evolution over a longer time interval shows that the Al
remains essentially constant except for the short periods of
time when ()= w, as Fig. 3 illustrates. We therefore find, as
previous studies [1-4] did, a clear indication of the fact that
the breakdown of adiabatic invariance is a consequence of
processes occurring in the vicinity of resonances.

IV. RESONANT PHENOMENA

In this section we develop a quantitative description of the
dynamics near resonance surfaces based on the theory of
resonance phenomena in multiple-frequency systems [13].
The primary goal of this description is to compute the mag-
nitude of the jump experienced by the Al upon crossing a
resonance surface.
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As the value of W slowly drifts, so does (V). Hence, at
certain values of ¥ a resonance condition

nQ(¥)-w=0 (15)

will be satisfied for some nonzero integer n. Note that (15) is
a special case of a more general resonance condition n{)
=mw which corresponds to a generic time-periodic perturba-
tion. The restriction to m=1 in our case is a consequence of
the particular form of the time-dependent perturbation in (2),
namely, that only the first harmonic is present. Since () is
independent of z, all resonance surfaces R,, defined by
W(x,y)=V,=QO"!(w/n), are vertical cylinders in the physi-
cal space or vertical lines W=V, in the slow plane [see Fig.
2(b)].

Near R,, we can expect neither the averaged system to
adequately describe the exact dynamics, nor the value of @
to be conserved. Hence, we must consider the dynamics near
resonances separately. Unlike autonomous systems with
resonance phenomena (see, e.g., Ref. [11]), where the fast
(unperturbed) dynamics slows down near a resonance, for
the flow studied here both the fast angle variable x and the
phase of the perturbation wt keep changing rapidly. It is only
a particular linear combination of these phases that slows
down:

Yy=nx— wt.

Therefore, near every resonance surface there is just one in-
dependent fast variable, y, rather than two far from the reso-
nances. Of the three other variables, ¥ [or (V)] and z are
slow and v is semislow, with characteristic rates of change of
order O(g) and O(g'?), respectively. We can still average the
exact equations of motion for all the slow and semislow
variables over y (perform the so-called partial averaging;
see [13]) in order to obtain the equations of motion near a
resonance surface:

Z
7' = \E—. (16)
£

In (16), the prime denotes the derivative with respect to the
rescaled time 7= Vet and W,z were defined in (14).

A. Scattering on resonance

For most initial conditions, tracers pass through the vicin-
ity of resonance in a relatively short time and the value of ®
undergoes a relatively small change. In the first approxima-
tion we can fix the value of slow variables () and z at the
resonance values, which yields a forced-pendulum-like equa-
tion for 7y:
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FIG. 4. Schematic phase portraits on the (y,y’) plane. The
dashed line shows the separatrix X of the hyperbolic fixed point
(v#,0); = encloses the elliptic fixed point (7yg,0).

n

i

1
v'=—=nQ'"=a,+b, cos v, (17)
Ve

where the coefficients a, and b, correspond to the averages
of the first and the second term, respectively, in the expres-

sion for W in (14) over the fast period 7, =T(¥,)=2mn/ w:

21
a,=—-nV sin(mz,) — [sin?(7x) + sin?(7y) Jdx,
(79 21
b, =— Z‘—Tn/a&—q, fo sin@my)sin(ny)dy,  (18)

and the asterisk denotes the value of z at which the crossing
occurs (see Appendix A for details).

The relative magnitude of a,, and b, defines the structure
of the phase portrait describing the dynamics in the (7, y')
plane. The phase portrait for the case |b,|>|a,| is shown in
Fig. 4(a) for one period of . The phase portrait for the case
|b,|<la,| is shown in Fig. 4(b). As presented, Fig. 4 corre-
sponds to a>0. For a <0, the phase portraits would be re-
flected with respect to the vertical axis and the direction of
the flow would be reversed. We should point out that the
relative magnitude of a,, and b, depends on the values of w,
B, and @ and is independent of €.

The average of ® over one fast period 7, can be com-
puted using (12) and (14), yielding

, DAY oDdz
(@), =( o 2
" oV dr 9z dt T,

=- ;ﬂ(z’ sin(Zﬂy)sin(wt))Tn
= egmPc,cos(mz,.)cos v, (19)

where the coefficient c, is given by

2
[cos(2mx) + cos(2ary)Jsin(27ry)sin(ny)d .

Cp=——
wJo

Now the jump of the Al on crossing the resonance can be
computed as a change in @ over a time interval (¢, ,,) during
which the resonance is crossed once, at time t., such that
|t; ,—1./=0(7"). To the leading order,
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FIG. 5. Change in the Al on crossing the 1:1 resonance as a
function of ¢ for z,=0.35, w=2.5 with 8= (a) 1 and (b) 0.5. The
solid lines correspond to the theoretical value (21) and the asterisks
show the values obtained by numerical integration of (1) with &
=107*. Note the singularity at &ing=0.02 in (a) associated with
close passages by the hyperbolic fixed point (7y,0) not resulting in
captures.

lz .
Ad= f (DYdr=- 2\/;S7T,3 cos(mz.)c,
4

¥(ts) cos
x f —2Y_iy+0e). (20)
e \2(V.-)

where V(y)=-a,y-b, sin v, V.=V(y(t,)), and s=sgn(a,).

Define
=y
N 27T|a,1 ’

where {-} denotes the fractional part. This variable param-
etrizes different trajectories in the (7, y') plane (as well as on
the torus 7¢ in the physical space). In terms of & we can
write (20) as

AD=- Zw'gsw,B cos(7z.,)

S
Via,|
At
cos
X f T z ; dy
s \2|s2mE+ y+ (b,/a,)sin

+0(¢g).
21)

This analytical result is compared with the jump in the value
of the Al computed by solving (1) numerically for |b,]
>la,| in Fig. 5(a) and for |b,|<|a,| in Fig. 5(b). In the
former case, A®(§) has a singularity at &,
=(2m)'cos™!(|a,/b,|) which corresponds to the trajectory
passing near the hyperbolic fixed point in Fig. 4(a). It fol-
lows from (21) that the singularity is logarithmic. Therefore,
there is a possibility (albeit quite small) of large jumps of ®
in the process of scattering.

For every set of initial conditions, the values of & and A®
can be calculated exactly. However, a small change O(e) in
the initial conditions produces in general a large change O(1)
in & Hence, for small g, in computing the statistical proper-
ties of many consequent jumps, it is possible to treat & as a
random variable uniformly distributed on the interval (0,1)
(see Ref. [18]). The results of numerical integration of 2000
trajectories with initial conditions located in a small ball
away from the resonance, presented in Fig. 6(a), confirm the
uniform distribution of & This allows us to readily evaluate
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FIG. 6. Statistical properties of a single crossing of the 1:1 reso-
nance for @=2.5, e=107%, and B=1. (a) Histogram of the distribu-
tion of &. (b) Dispersion o of the jump magnitude as a function of ®
before the jump.

the moments of the corresponding distribution of A®d(£).
When |b,|>|a,|, the average value of the jump, (A®), is
finite:

(AD) =— S\EB cos(ﬂz*)%S, (22)

n

where S is the area under the separatrix loop in Fig. 4(a):

Yo
S= J V=2(V=Vp)dy

Y0

where we have defined
Vi =V(iyw) = V(n).

In the opposite case |b,|<|a,|, there is no separatrix, S=0,
and hence (A®)=0. Generally, a nonzero ensemble average
of A® results in a unidirectional drift of ®. However, in the
current problem, two successive crossings occur at almost
the opposite values of z. Thus, they cancel each other on
average because of the change of the sign of s, and the
aggregate change of ® on one period of the slow motion has
zero mean. The second moment of AP,

1
o’ = f (AD(8) - (AD))2dé= Vef, (@), (23)
0

is finite for any value of ®. The function f,(®) describes the
dependence of the jump statistics on the value of ® before
the crossing [see Fig. 6(b)] and on the order n of the domi-
nant resonance.

The dependence of AD on the order of the resonance is
determined by the scaling of a,, b,, and c,, which are the
Fourier coefficients of smooth functions (see Appendix A for
details). In particular, a, corresponds to the zeroth harmonic
and increases linearly with n. On the other hand, b, and c,
correspond to higher harmonics and decrease exponentially
with n. As a consequence, the characteristic magnitude of the
jumps decays exponentially. Thus, only low-order reso-
nances contribute significantly to the change in the value of
the AL For high-order resonances,

AD ~ Vge, (24)

where a is some constant. To illustrate (24), we computed
the values of ¢,—the most important factor in (21)—for sev-
eral values of @ (chosen in such a way that the 1:n reso-
nance surfaces R, are located at the same location W=V, in
the slow plane, which corresponds to the fixed value of
=2.5). The results are presented in Table I. Only the values
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TABLE I. The scaling of coefficients ¢, with the order of the
resonance.

n c, n c,

-8.8x 107! 7 —22%1072
3 -6.3%1072 -3.0x 1073
5 —1.3x 10! 11 -3.4%1074

for n odd are presented, as c, vanishes identically for n even
(see Appendix A). Note that the value of ¢, is independent of
€ and b.

B. Capture into resonance

It should be mentioned that under certain conditions a
small fraction of tracers may be captured into resonance, i.e.,
follow trajectories that stay near the resonance surface for
considerably longer periods of time compared with the case
considered previously. It was shown in Ref. [13] that capture
can be considered a probabilistic process: for a ball of initigl
conditions, only a small fraction of trajectories, of order Ve,
are captured.

A typical trajectory experiencing capture is shown in Fig.
7. The captured dynamics is regular and possesses an Al
which has nothing in common with ®—the AI away from
the resonance. Specifically, during capture tracers move near
the cylinder V=V, [see Fig. 7(a)], so both ¥ and (), which
is a function of W, are essentially constant [see Fig. 7(b)].
Therefore, capture into resonance can be considered as a
transition from one adiabatic-type motion to another.

In the physical space, captured trajectories are spirals near
the resonant cylinder W(x,y)=W,, with fast (period-T,) ro-
tation around the cylinder and slow O(g) drift in the positive
(for W, >WV,) or negative (for ¥, <W,) z direction. For the
1:1 resonance, the frequency of the fast rotation is almost the
same as the frequency of the perturbation. Thus, a strobo-
scopic map (with the period Ty=27/w) of the flow looks
like a tight spiral, or even a one-dimensional (1D) curve [see
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FIG. 7. Captured dynamics for e=b=10"* and w=2.5. (a) Pro-
jection on (W,z) plane. (b) Evolution of frequency € (solid line)
and the AT ® (dashed line) as a function of slow time. (¢) Projection
on the resonance (vy,7y’) plane. (d) Stroboscopic map. Superim-
posed are two trajectories connecting successive iterates.
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Fig. 7(d)]. To demonstrate that the trajectory is indeed a spi-
ral, we also plotted a couple of coils connecting successive
points of the stroboscopic map.

A more detailed description of the captured dynamics can
be obtained by considering the evolution in the resonant
(,7") plane [see Fig. 7(c)]. One can see that the trajectory
approaches the resonance (which corresponds to the 7 axis)
and leaves only after spending a significant amount of time
in its vicinity. The captured trajectories are confined to the
region inside the separatrix X as opposed to scattering on
resonance, described by trajectories that pass outside the re-
gion inside . Thus, at a given location, capture is possible if
|la,| <|b,| (the condition for the separatrix 3 to be present).
Moreover, it can be shown that capture may not happen on
every crossing, but only when z,<0 for ¥,>W¥, or z,>0
for ¥,<W.. A more quantitative description of the captured
dynamics is provided in Appendix B.

V. LONG-TERM DYNAMICS
A. Resonant processes and mixing

We have shown in the previous sections that, as a result of
advection by the flow, an initially compact distribution of
tracers [centered at a point (W, z, x)] is quickly stretched in
one dimension to cover the streamline I,y on a time scale
O(1). Over a longer time scale O(g™!), the distribution is
stretched over the whole level set 7, ) of the Al, becoming
effectively two dimensional. In the absence of singular (e.g.,
resonance) manifolds, this is the greatest achievable degree
of mixing.

It has long been recognized [4,5] that it is the spreading of
the tracer distribution in the direction normal to the level sets
T w) Tesulting from changes in the Al associated with reso-
nant processes that is responsible for three-dimensional mix-
ing. However, limited understanding of the resonant phe-
nomena prevented any attempt at a quantitative description
of the mixing dynamics. In fact, it was even unclear which of
the resonant processes was responsible for the changes in the
AL

At first glance, it would appear that capture into resonance
should have the most profound effect on the dynamics of the
Al which may change by O(1) during captured motion,
while scattering only changes the Al by O(Ve) (which is the
scaling of the second moment of the distribution of the
jumps). On the other hand, as we _pointed out earlier, only a
small fraction of trajectories, O(\e), are captured, while the
rest get scattered. Therefore, in a generic case, when the
phase portrait of the averaged system possesses no special
symmetry, in terms of the expectation values (the product of
a characteristic magnitude of an event and its probability)
capture and scattering play an equally important role in mix-
ing (see, e.g, Ref. [11]). However, for the flow considered
here, the trajectory is released at the value of z opposite to
that at which it was captured (details are given in Appendix
B). Hence, it follows from (11) that (in the first approxima-
tion) the values of @ before and after capture are the same.
Thus, in this particular problem capture provides a negligible
contribution to the change in the Al and hence to the mixing
dynamics.
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05

FIG. 8. Complete and partial mixing. z=0 Poincaré section of a
single streamline with e=b=10"* and w= (a) 4.0 and (b) 2.5.

An alternative mixing mechanism (singularity-induced
diffusion) proposed by Mezic [5] is based on changes in the
value of the Al associated with passages through the vicinity
of hyperbolic saddle- and saddle-focus-type periodic orbits
with temporal period Ty=27mn/w (and their heteroclinic con-
nections) surviving in the vicinity of the resonance surface
for finite . Such periodic orbits would correspond to the
hyperbolic fixed points (yy,0) and the elliptic fixed point
(vg,0), respectively, in the resonant plane (see Fig. 4). How-
ever, periodic orbits would also have (Z)=0 which, according
to the discussion at the end of Sec. III B, is only possible for
z==*0.5 for the generic case ¥, # ¥, so that periodic orbits
would be confined to the top and bottom of the cell. Since
very few trajectories ever pass near the very top and bottom
of the resonance cylinder (and hence approach the periodic
orbits and their heteroclinic connections), those heteroclinic
connections cannot be responsible for mixing by this flow
either.

Summing up, we find that it is the accumulation of many
(mostly small) jumps of the AI associated with scattering on
resonance that leads to chaotic advection, the adiabatic dif-
fusion and, as a result, mixing in three dimensions [11]. The
distribution of the AI, and hence the tracer distribution,
broadens until eventually the whole chaotic domain is cov-
ered. Similarly to the case of steady flows in which adiabatic
diffusion and mixing is due to separatrix crossings [19], two
useful metrics can be introduced to provide a global descrip-
tion of chaotic advection and Lagrangian mixing: (1) the size
(and shape) of the chaotic domain and (2) the characteristic
rate of mixing inside the chaotic domain. We discuss these in
turn below.

B. Volume of the mixed domain

On every period T,(®) of the slow motion along a given
trajectory [see Fig. 2(b)], the value of W changes between
Woin and W . If no (low-order) resonance W, falls in this
interval, then that trajectory (and all trajectories inside it)
remains regular. If, on the other hand, the trajectory crosses a
resonance surface, the Al experiences jumps and the motion
becomes chaotic.

In the € — 0 limit, the boundary between the chaotic and
the regular domains is, thus, given by the trajectory I'g+ that
(i) touches a resonance surface and (ii) has the largest value
of ® among all such trajectories on the (¥,z) plane [bold
line in Fig. 2(b)]. Condition (ii) is necessary when multiple
resonances are considered. In the physical space the bound-
ary is formed by the corresponding torus 74+ The Poincaré
section of the complete flow by the plane z=0 [see Fig. 8(a)]
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0.4
d

0.2

FIG. 9. Width d of the regular domain as a function of the
perturbation frequency o for e=b=10"*: solid line, theoretical pre-
diction; dots, numerical simulations.

confirms that the space inside the torus 74+ corresponds to
the regular domain discovered in Ref. [10], while the rest of
the physical space belongs to the chaotic domain. Moving
the frequency w closer to the resonance with Q(WV,)=2.2
completely wipes out the regular domain [see Fig. 8(b)].

The width d of the regular domain can be computed easily
for any value of w (see Fig. 9). For 0<w<1, all the reso-
nances are located near W=0 (i.e., cell boundary). As w is
increased, the 1:1 resonance is the first to penetrate deeper
into the cell. For 0<w =, "¢+ is tangent to the resonance
W=V, [see Fig. 2(b)]. As w approaches mr, the 1:1 resonance
is pushed out of the cell and the 1:3 resonance becomes the
most prominent for 7= w=<3 (recall that even resonances
do not lead to jumps in ® and thus do not contribute to
adiabatic diffusion). Then the process repeats itself: as w is
increased further, low-order resonances are pushed out of the
cell and higher resonances become prominent. Finally, as w
— 0, the cell becomes uniformly covered by high-order reso-
nances. However, the impact of the high resonances is expo-
nentially small and hence we can expect mixing to become
spatially uniform only on exponentially long time scales. On
finite time scales characteristic of experiments (e.g., those
reported in Ref. [10]), it would appear that no mixing is
taking place in three dimensions. We should also point out
that, for the flow between concentric spheres considered in
Refs. [1,4], complete mixing relies on high-order resonances
and, while conceptually possible, would similarly require ex-
ceedingly long times.

In our case, complete mixing on experimentally acces-
sible time scales can be achieved by eliminating the domain
of regular dynamics via a proper placement of a low-order
resonance. This can be accomplished by setting the fre-
quency w of the perturbation such that ¥, (w)=¥, for some
n. More precisely, the resonance must be within the interval
|W,-W |=0(e), as the chaotic domain penetrates inside
'y by a distance O(\&) [20]. This property, negligible in
most similar problems, is important here as the magnitude of
the jumps vanishes at W,. Indeed, ® ~ 7 according to (19), so
AD=0 at W=, as 7=0 there. Since the width of the regu-
lar domain d~ |V, (w)-¥, |, we find the width of the fre-
quency intervals yielding complete mixing (where d=0) to
scale as Aw~ e (see Fig. 9).

C. Characteristic time of mixing

Formal definition of the regular and chaotic domains as-
sumes evolution over an infinite time. However, any particu-
lar experiment is characterized by a finite time interval.
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While the evolution inside the regular domain remains quali-
tatively the same, the thoroughness of mixing in the chaotic
domain (as well as the mixed volume fraction) depends on
the time interval of observation.

Quantitative properties of the diffusion of the Al depend
on statistical properties of the resonance phase & As we ar-
gued previously, for a single crossing the values of & can be
considered a random variable uniformly distributed on the
interval (0,1). Using the ergodicity assumption, we can de-
duce the same property for any given long-time trajectory.
Furthermore, it can be shown that consecutive crossings are
statistically independent. Statistical independence follows
from the divergence of phases & along trajectories and, for
Hamiltonian systems, was demonstrated in Ref. [18]. In
volume-preserving systems, it can be confirmed following
similar lines (see also [21]).

Using statistical independence of consecutive crossings,
we can estimate the rate of mixing. The evolution of ® can
be considered a random walk with a characteristic step size
A®. A characteristic time of mixing can be defined as the
time needed for a &-localized distribution of initial condi-
tions with &=, to diffuse over the entire chaotic domain.
For small times ¢, the width of the distribution inside the
chaotic domain (and hence the mixed volume fraction)
grows as oN'"2, where N(®)=2¢/T,(®) is the number of
resonance crossings, Ts(g))=0(s‘1) is the period of motion
around I'g, and o(P)=vef, (D) is the dispersion of AD over
one crossing. As we have shown in Sec. IV A, f,(®) takes
O(1) values for n small and decreases exponentially with
increasing n for n large. It takes N~ &2 resonance crossings
for the distribution to diffuse over the entire chaotic domain,
where o is a weighted average of o(®) which can be com-
puted analytically (to be discussed in more detail in a subse-
quent presentation). Therefore, the characteristic time of
mixing

Ty ~ T.N=0(s72e*™) (25)

diverges, while the rate of mixing, defined as 1/7,,, van-
ishes, as either e =0 or n—oc. A similar result was reported
in Ref. [3].

A more accurate estimate can be obtained by including
the contributions to the adiabatic dispersion from all the
resonances that a given trajectory crosses. As only the low-
order resonances contribute significantly and they are far
apart, their effect may be considered independently. More-
over, the contributions of different low-order resonances can
vary considerably with the resonance order (e.g., only odd
resonances contribute to the flow considered here) and with
the value of WV, (e.g., the jumps near ¥,=V. are strongly
suppressed), so additional simplifications are possible.

D. Mixing uniformity

Although this was not our focus here, one could obtain a
more quantitative description of the mixing uniformity inside
the chaotic domain, e.g., as a function of time. It is known
[22] that the chaotic region may contain small regular islands
of size 6=0(g). Our analysis shows that the tracer distribu-
tion will be uniform at length scales larger than & at long

026302-8



RESONANT MIXING IN PERTURBED ACTION-ACTION-...

times (asymptotically); however, nonuniformity can still be
found at smaller length scales or shorter times. This (non-
)Juniformity can be represented, for instance, in terms of the
length-scale-sensitive mix norms [23].

We should also point out that popular characteristics of
mixing based on the introduction of a Poincaré section (see,
e.g., [24]) provide a poor description of mixing properties of
weakly perturbed flows at short times due to the presence of
very long [O(e™!) or longer] time scales. A more efficient
description can be provided, at least on length scales larger
than &, in terms of an effective diffusion equation describing
the long-time evolution of the probability density function of
the Al, which can be derived using the second moment given
by (23). This latter approach is currently under investigation.

VI. CONCLUSIONS

In summary, we have confirmed that Lagrangian mixing
in the periodically driven near-integrable cellular flow intro-
duced by Solomon and Mezic [10] is due to the accumula-
tion of (mostly small) changes experienced by an adiabatic
invariant of the flow when the streamlines cross the surfaces
on which the perturbation frequency is in resonance with the
natural frequency of the unperturbed flow, confirming the
resonance-induced adiabatic diffusion mechanism proposed
by Feingold and co-workers [2,3]. In particular, we have
shown that the mechanism proposed by Mezic [5] does not
contribute appreciably to the adiabatic diffusion. Moreover,
we have shown that capture into resonance [13] associated
with large changes in the Al does not contribute to mixing in
this flow either.

We have constructed a quantitative theory predicting the
magnitude of the jumps experienced by the adiabatic invari-
ant upon crossing resonance surfaces which, when combined
with the statistics of the crossing events, can be used to
quantitatively describe adiabatic diffusion and mixing on
long time scales. Finally, the nonmonotonic dependence of
the mixed volume on the frequency of the perturbation dis-
covered in Ref. [10] was traced to the dependence of the
position of the resonance surfaces on the perturbation fre-
quency. In particular, we have shown that different low-order
resonances (e.g., 1:1 or 1:3) can be used to achieve essen-
tially complete mixing inside the cell on experimentally ac-
cessible time scales.

ACKNOWLEDGMENTS

This paper is based upon work supported by the NSF
under Grant No. 0400370. Acknowledgment is also made to
the Donors of the ACS Petroleum Research Fund, for partial
support of this research. D.V. is grateful to the Russian Basic
Research Foundation Grant No. 06-01-00117. We are also
grateful for useful discussions with A.I. Neishtadt and A.A.
Vasiliev.

APPENDIX A

Here we derive the leading-order expansions for b,, and ¢,
near the resonance. To compute these, we need to find the
following averages over the fast period:

PHYSICAL REVIEW E 78, 026302 (2008)

1 2
{(fCosin(wn)r, = 5~ f fQosin(wn)dy,
0

where f(x)=f(x(t(x)),y(t(x))) denotes one of two functions:

sin(27y),

flxy)= {[COS(ZWX) + cos(2ry) Jsin(2y).

In the above averages, x=x(f) and y=y(r) is the solution of
the unperturbed system for W' =W, such that ny="y at r=0.

In both cases, f(—x)=—f(x) and f(7+ x)=—f(x). There-
fore, in the Fourier expansion

f(x) = 2 g, sin(my) (A1)

there are no cos(my) terms and only odd-m terms are
present. Multiplying both sides of (A1) by sin(w?) and inte-
grating over one period in y, we get in the leading approxi-
mation

2 2
f FOosin(wr)dy = f > gsin(my)sin(wr)dy
0 0 m

(

1
= Eg,,cos Y,

where n is the resonant term, as all nonresonant terms aver-
age out. For g, we have

2
gulw)=— | fOgsinn x d. (A2)
0
Substituting (A2) into (17) and (19), we obtain the expres-
sions for b, and c,,.

APPENDIX B

The relative magnitude of a, and b, defined by (18) de-
termines both the possibility of capture into resonance and
the structure of the phase space that corresponds to captured
dynamics. At a given location on the resonance surface, cap-
ture is possible only if |b,/a,| > 1. For fixed values of » and
n, the ratio b,/a, depends only on the value of B and the
location of the crossing, z., as a,=a,(z.)=a, sin(7z,) and

b,=b,B, with @, and b, some constants. Since a,=0 at z
=0, capture is always possible near the z axis, inside the
domain (=z.4,Zmax) Whose width depends on the value of 8.
If |b,/a,| <1, we have z,,,=sin"'(|b,/a@,|)/ = If |b,/a,| =1,
we have z,,,=1/2, so that capture can happen anywhere on
the resonance surface R,,.

As the captured trajectory drifts along R, the value of ¥
is fixed, but z slowly changes and hence the phase portrait
also slowly changes. In particular, for |z| <z, the phase
portrait looks like the one in Fig. 4(a). There are two fixed
points on the (y,y') plane—an elliptic point (yg,0) and a
hyperbolic point (y,0)—and a separatrix X. As |z| ap-
proaches z... the separatrix shrinks to a point, the fixed
points merge, and all of them disappear for |z| >z, Where
the phase portrait looks like the one in Fig. 4(b).

The captured motion is described by a trajectory confined
inside the separatrix 3 and possesses an additional AT © (see
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Ref. [13]). This invariant is defined as the area enclosed by a
trajectory during one revolution in the (7, y') plane [one coil
in Fig. 7(c)] or, equivalently, as the area inside the corre-
sponding level set of the resonance Hamiltonian

1
H(%v’)=57’2+V(7)- (B1)

For a given captured trajectory, the value of © is equal to the
area S(z.) under the separatrix 3 at the moment of capture.
S(z) is an even function of z that achieves its maximum at
z=0 and its minimum S;, at £z,,,,, and which is monotonic
on the intervals (—zp.,0) and (0,z,,,,). Hence, after the tra-
jectory has been captured, ® stays constant, while S(z) first
increases and then, after the z axis is crossed, starts to de-
crease. Once S(z) becomes once again equal to O, the trajec-
tory crosses the separatrix and is released from resonance.
The conservation of O, therefore, relates the values of z at
which the trajectory is released from, and captured into, the
resonance: to leading order, the trajectory is released at z=
ey

Furthermore, it can be shown that, S,;,=0 for z,,,,<1/2
and S,,;,>0 for z,,,,=1/2. Since during the captured motion
® is bounded by S,;, from below, for |b,/@,/=1 no trajec-
tory can be captured into the resonance with @ <S,;.. There-
fore, for every z, the level set of (B1) corresponding to ©®
=Sin defines the boundary of an “excluded” domain that is
separated from the rest of the plane. No trajectories ever
enter the excluded domain from outside and no trajectories
ever leave the excluded domain. Every trajectory found in-
side the excluded domain has initial conditions inside that
domain. The larger is the value of S, the larger the excluded
domain.

The captured motion has the same separation of scales as
the adiabatic motion; namely, the (x,y) motion is fast and the
evolution on the (W,z) plane is slow. Thus, captured motion,
regardless of the value of ®, looks like a spiral on the “thick”
cylinder ¥ =V, (w). The smaller is the value of ©, the closer
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FIG. 10. Stroboscopic (with the period T,=2/w) map of cap-
tured trajectories near the elliptic fixed point on the resonance plane
with e=b=10"* and w=2.5. Trajectory in (a) and outside (b) the
excluded domain.

is the projection of the corresponding trajectory on the
(y,v") plane to the elliptic point y; and the smaller is the
thickness of the cylinder [defined as the maximum distance
from the resonant cylinder V=W, (w), or equivalently, the
amplitude of the waving in Fig. 7(a)]. However, the size of
the (x,y) oscillations is almost independent of the value of
0.

A typical captured motion near (yg,0) for the 1:1 reso-
nance is illustrated in Fig. 10. The thick lines on both panels
show the iterates of a stroboscopic map with the period Ty
=27/ w. Right on Ry, Ty is exactly equal to the period of the
(x,y) motion. As a result, a stroboscopic map of a spiral
looks like a 1D curve in Fig. 10. To illustrate that the trajec-
tory is indeed a spiral, we plotted a couple of coils between
the subsequent points of the stroboscopic map. The curve in
Fig. 10(a) corresponds to the excluded domain. The trajec-
tory stretches from z=—1/2 to z=1/2 and, upon coming to
z=1/2, stays there. This trajectory is similar to the one pre-
sented in Fig. 2(c) in [10] and corresponds to a heteroclinic
connection between two periodic orbits, one at the top and
one at the bottom surface of the cell. On the other hand, Fig.
10(b) shows the captured motion for parameters at which
there is no excluded domain, with the trajectory captured and
released at z= *=(.44. Before and after the release the tra-
jectory corresponds to regular adiabatic motion near the top
and bottom of the cell.
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