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Coherent structures emerging from turbulence in the nonlocal complex
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The nonlocal complex Ginzburg-Landau equation (NCGLE) has been recently derived as a general model
for electrochemical systems close to a supercritical Hopf bifurcation [V. Garcia-Morales and K. Krischer, Phys.
Rev. Lett. 100, 054101 (2008)]. We carry out the stability analysis of plane waves for arbitrary Fourier
numbers providing the generalized Eckhaus criterion for stability to long-wavelength fluctuations in the
NCGLE. We also show that coherent structures (standing waves, heteroclinic orbits) arise in the NCGLE at
intermediate coupling ranges from states which are turbulent under local coupling. These results are substan-
tiated through simulations of the full NCGLE and bifurcation analysis of the truncated NCGLE which pre-
serves the symmetry of the observed patterns. We briefly discuss the effect of the nonlocal coupling on other
localized structures (Bekki-Nozaki holes) found in the NCGLE.
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I. INTRODUCTION

The complex Ginzburg-Landau equation (CGLE) consti-
tutes a general model for spatially extended oscillatory non-
linear systems [1,2] in which the spatial coupling between
oscillators is diffusive and, therefore, described by a (local)
Laplacian operator. The CGLE has an extremely rich and
complicated behavior and has been the subject of intense
study in the past two decades. It is a useful model for the
dynamics of oscillatory reaction-diffusion systems and al-
lows one to describe the essentials of spatiotemporal chaos
and turbulent states which arise when the uniform oscillation
loses stability to a set of oscillating Fourier modes [3]. It also
describes spatially coherent structures [4—6] which are in
turn regarded as building blocks for spatiotemporal intermit-
tency. When fully rescaled, the CGLE depends only on two
essential parameters, c; and c¢,, which can be calculated from
the actual homogeneous dynamics of any oscillatory system
close to a supercritical Hopf bifurcation (SHB). This calcu-
lation is in general very cumbersome for systems with more
than two components.

Despite such generality, the CGLE cannot rigorously de-
scribe the behavior of systems under nonlocal coupling
(NLC). For example, globally coupled systems [7] fall into
this category. In certain surface reactions, this all-to-all cou-
pling is produced through interactions with the gas phase,
where rapid mixing is realized [8] prompting studies on the
globally coupled CGLE [7]. Yet, another general situation is
not captured with this ansatz, namely, spatial coupling with
an arbitrary coupling range. Normal forms with nonlocal ker-
nels are of great interest to many branches of physics [9].
Already more than one decade ago, Kuramoto [10] formu-
lated a nonlocal CGLE for a class of three (or more) com-
ponent reaction-diffusion systems by means of an extended
center manifold reduction in which the coupling of the oscil-
lators, although nonlocal, was explicitly assumed to be weak.
The latter assumption makes center-manifold theory (a local
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method) suitable also to deal with nonlocal interactions.
Such an approach allows one to describe patterns with char-
acteristic lengths comparable to the effective radius of the
coupling. As pointed out recently by Kuramoto and Tanaka
[11] the idea of introducing a weak, nonlocal coupling lies
behind multiple bifurcation theory, which aims to capture
such complex dynamics as is absent in the vicinity of a
simple bifurcation point. Novel dynamical states, such as
multiaffine turbulence [12] and chimera states [13] were
found in the simulations. However, despite its possible rel-
evance to reaction-diffusion systems of three or more com-
ponents the nonlocal CGLE introduced in [11] is not directly
related to any experimental system.

NLC arises naturally in electrochemical systems because
of the long range influence of the electric potential, an addi-
tional relevant dynamical variable besides (and coupled to)
chemical variables. At a given point, the effect of any inho-
mogeneity in the electric potential decays with ~1/r, where
r is the distance to a reference position, coupling in this way
an extended range of locations. This NLC, also called migra-
tion coupling, is synchronizing, and tends to smooth out any
potential gradient parallel to the working electrode (WE) in
absence of any nonlinear reaction kinetics [15]. The range of
the coupling is determined by the aspect ratio S=w/L,
where L is the length of the WE [16,17] and w is the distance
between the WE and the counterelectrode (CE). A nonlocal
complex Ginzburg-Landau equation (NCGLE) has been very
recently derived [14] as a general model for electrochemical
oscillators. The NCGLE is a partial integrodifferential equa-
tion since the spatial coupling can no longer be specified by
a Laplacian operator as in the CGLE but rather by an integral
operator containing a nonlocal kernel. The NCGLE reads

[14]

GW=W—=(1+ic,)|WW+(1+ic,)
Xf Hg(|x —x")[W(x') - W(x)]dx', (1)
WE

where W is the (complex) amplitude, ¢, and ¢, are dimen-
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sionless parameters that can be calculated from the homoge-
neous dynamics accompanying the nonlocal and nonlinear
terms, respectively, and S is the coupling range, the new
essential parameter of the NCGLE when compared to the
CGLE. B controls both the range and the normalization of
the nonlocal kernel Hg(|x—x'|). The latter couples two dif-
ferent positions x and x’. On a 1D ring electrode it is given

by [18]
T Slx=x'])

, @
P T
28

The CGLE is regained from the NCGLE when 8—0, i.e.,
for vanishing coupling range (local coupling limit). Although
the NCGLE can be extended to some 2D electrodes, it was
derived explicitly for one-dimensional (1D) ring electrodes
because of their enormous experimental interest [15-19].
The NCGLE was also successfully mapped to a two-
component system of experimental interest: an N-type nega-
tive differential resistance electrochemical oscillator [19] in
the vicinity of a SHB [14]. Even in the absence of any dif-
fusing species, this system was shown to exhibit (electro-
chemical) turbulence for wide parameter ranges. In [14], it
was also pointed out that the effect of the NLC in electro-
chemical systems is creating structures of longer wavelength
as well as compressing the band of unstable wave numbers.
In fact, the length of the structures is comparable to the cou-
pling radius, which can be tuned experimentally by changing

B

Hg(|lx-x'])=

The aim of this paper is twofold: (1) to extend the stabil-
ity results on the uniform oscillation of [14] to plane waves
with arbitrary wave number and (2) to describe some coher-
ent solutions that we have found in the NCGLE in the tur-
bulent regime which include standing waves and robust het-
eroclinic orbits between fixed points or limit cycles. The
structure of the paper is as follows. In Sec. II we briefly
explain how the NLC arises in electrochemical systems and
we describe several properties that allow one to derive the
NCGLE, analyzing also its asymptotic behavior. In Sec. III,
we carry out the linear stability analysis of plane waves for
an arbitrary Fourier number, deriving the generalized Eck-
haus criterion for the NCGLE. This allows us to determine
the band of stable plane waves in the Benjamin-Feir (BF)
stable regime elucidating the effect of the NLC in this mul-
tistability regime. Finally, in Sec. IV, we show the existence
of coherent structures in the NCGLE within the BF unstable
regime and substantiate our observations by means of bifur-
cation analysis. We conclude with some brief remarks on
other behaviors observed, which are of relevance to the study
of localized structures that were also found in the CGLE.

II. NONLOCAL COUPLING IN 1D ELECTROCHEMICAL
SYSTEMS AND THE NCGLE

In the following we consider a 1D ring working electrode
immersed in an electrolyte solution at a vertical position z
=z and a CE at position z=zy+w. For simplicity we take
Zwe=0. Our starting point is the dynamics for the double
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layer potential ¢,; which comes from the differential charge
conservation law at the interface [15]
J r,t
_ 3%uur)

dp(r,1)
o =
0z ot

SWE

+ip(r,1), (3)

where r=(x,z) is the position vector containing the coordi-
nates parallel x and perpendicular z to the WE, ¢(r,1) is the
electric potential in the electrolyte [15,17], C is the capaci-
tance of the double layer, o is the dimensionless conductiv-
ity, and iy is the Faradaic current, which couples the dynam-
ics of ¢p; to the electrochemical kinetics at the interface.
The differential term on the left-hand side of Eq. (3) is the
local electric current density reaching the electrode from the
electrolyte. When the potential distribution is homogeneous,
the latter term takes the form

dp(r,1)
Ll
0z

g
- Z¢

w
WE

: (4)

WE

where we have taken, for simplicity, that the potential at the
CE is zero. If U is the external voltage applied, the double
layer potential is then defined in terms of ¢|ZWE as

bp=U~- ¢ (5)

In case of an inhomogeneous potential distribution, the
deviation from homogeneity can be expressed as

)

Imig. coupling= — O ( gz w

IwE"

; (6)

WE

which provides the spatial coupling through the electric field
in electrochemical systems. For a given size of the WE, w
determines the range of the coupling which is a measure of
the characteristic distance over which a change in the state at
a particular position instantaneously affects neighboring
parts. The dynamics of the double layer potential coming
from Eq. (3) is usually coupled to the homogeneous reaction
kinetics governing the evolution of a vector of chemical spe-
cies ¢ and can be written as [16]

ibon = f(pss) — (i—fﬁ—g) , ™)
atc = g(¢DL7c)7 (8)

where f(dp;,¢) and g(pp,,c) are (vector) functions specify-
ing the homogeneous dynamics and we have made the trans-
formations t— Ct and z—zL.

As shown in [18], we can express the NLC Eq. (6) in a
more convenient form by means of a Green’s function as

“, 9

imig coupling =~ o (
: dz B

WE

= Uf Hy(|x = x" [ dpr(x") = ¢ppr(x)]dx’,

)
with Hg(|x—x']) given by Eq. (2). The derivation is given in
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FIG. 1. Nonlocal kernel in Fourier space vs wave number ¢ for
the values of 3 indicated in the graph. Inset: H ﬁ(|x—x’\) calculated
from Eq. (2) for L=20.

the Appendix for completeness. Through this approach the
migration coupling does not depend on ¢(x,z) and therefore
Eq. (3) is mathematically closed in terms of ¢p;(x). This is
the nonlocal kernel for 1D electrochemical systems. A cru-
cial quantity in deriving the NCGLE is the Fourier transform
of Eq. (2) given by

1
Hg]) =— g coth(gB) + [—3, (10)
where g= 2Lﬂ This expression is plotted in Fig. 1 for several
B values. In the limit 83— 0 the NLC becomes local (diffu-
sionlike, ~¢?) with “diffusion coefficient” o8/3. In physical
space the kernel becomes

iy By
Hﬁﬂ0(|x_x |)=§é(2)(x —X), (11)
where 82 (x’ —x) denotes the second derivative of the Dirac
delta function. The nth order derivative of the latter has the
following property:

jm S = x)f(x)dx" = (= 1) f(x), (12)

where f(x) is a suitable test function. Therefore, in physical
space and in the limit 83— 0 the NLC Eq. (9) takes the form

imig. coupling = %ga)zc(ﬁDL(x) . (1 3)

If, on the contrary, we consider the infinite coupling range
limit B— o0, Eq. (10) now gives Hl(glw=—|q| and in physical
space we have

1

Hg o(x—x'|)=—3.
B (|x X |) ’7T|)C—)C/|2

(14)
Distant points are now coupled to each other and the cou-
pling can have a global contribution as shown in the inset in
Fig. 1.

A system close to a supercritical Hopf bifurcation is in a
situation in which two conjugate eigenvalues become criti-
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cal, crossing the imaginary axis in the N-u plane, where u is
a control parameter that controls the onset of the oscillations
(at u=0). In a spatially extended system, the NLC provides
indeed a branch of eigenvalues A\, that can be infinitesimally
close to the critical one for infinite systems. The shift in the
position of the eigenvalues caused by the NLC in the A-u
plane with respect to the critical one (dictated by the homo-
geneous dynamics) is given by H;?) which is of order ~1/L
and ~1/8[14] for n~1. It is clear then that if we make an
expansion around w=0 for finite although vanishingly small
M, the eigenvalues that are relevant to the critical dynamics
fall in a circle of radius |u|=e&? to which B8 and L must
compare. Then, it is reasonable to introduce scaled variables

%=|ulx and 7=|u|z (and consequently L=|u|L and B=|u|p).
This contrasts with the diffusion coupling in which the scal-
ing has the form %=|u|"?x [1] coming from the dispersion
relationship of the diffusion coupling which goes as ~1/L.
Working with these scaled variables we have

J Hg(lx—x'|)(...)dx" = szf Hy(x-5|)(...)dx",

(15)

i.e., the integral operator for the NLC contributes at second
order in the perturbation expansion: The nonlocal coupling is
small and can be balanced at third order when the full ex-
pansion is considered [14]. This, indeed, makes applicable
the center-manifold reduction method [11] while preserving
at the same time nonlocal effects, absent in the CGLE [1].
When performing a perturbation expansion up to third order
and rescaling all the quantities we arrive at the standard form
of the NCGLE, Eq. (1).

When B—0 the NCGLE becomes the CGLE through a
“diffusion coefficient” B/3,

AaW=W+(1+ icl)gafv'v— (1 +ic,)|W)*W.

The factor B/3 is nonessential in this limit (i.e., 8 and x are
no longer independent) and can be absorbed in the spatial
scaling by making the transformation x— \3/3x. Since B
— 0, this is equivalent to considering an infinitely large sys-
tem. We obtain in this case the CGLE

OW=W+ (1 +ic)d W= (1 +ic,)|W>W. (16)

In the limit of large coupling range 8— %, the coupling can
have a <global contribution. However, it is to be noted that
since H ;Lx:O the spatial average of the amplitude (W) does
not contribute to the coupling and, hence, the NLC in this
limit is mathematically different than the one in the globally
coupled CGLE [7].

The latter asymptotic behavior of the NCGLE helps in
understanding the role of nonlocality in the observed spa-
tiotemporal patterns and its relationship to their characteristic
length /,. In general, from the dimensional argument in-
volved in the derivation of the NCGLE, ,=0O(ry/|u|), where
ro is the effective coupling radius. In the limit S small r,
~\oB/3 and, as the Hopf bifurcation is approached
(|| —0), I, grows as |u|™" and r, falls well within the scale
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of [,. Consequently, in this limiting situation the local cou-
pling arises. When S is, however, intermediate or large, the
coupling radius scales as ry~ ofu| and L, becomes indepen-
dent of |u|. In this more general case nonlocal effects are
preserved close to criticality and, at the same time, make
possible the extended center manifold reduction on which
the NCGLE is built. Most remarkably, the behavior of the
coupling radius is entirely dictated by 8 and no assumptions
on weak coupling need to be made as in [11], since the
weakness of the coupling is automatically warranted by the
property in Eq. (15) that the nonlocal kernel of electrochemi-
cal systems satisfy, as first pointed out in [14].

III. STABILITY ANALYSIS OF PLANE WAVES

The NCGLE, Eq. (1), admits as solution the oscillation

WQ = aQei(Qx_‘”Q’), (17)
with
1
lagl=1 —Qcoth(,BQ)+l[—3= 1+HE, (18)
wo=cy(1+HE) - c;HE, (19)

where Hng):—Q coth(,BQ)+é. As done with the CGLE [1],
we study the stability of plane waves of Fourier number Q by
perturbing the NCGLE. By putting W=[a,
+u(x,n]e@-20) in Eq. (1) and neglecting terms in the per-
turbation ~uu, ~uu, ~uu (the bar denotes complex conju-
gation) from second order on, we obtain

gu=—(1+ic)HPu~ (1 +icy)(1+HE)
X[u+u]+(1+ icl)f HB(|x—x'|)
WE

X[u(x")e' 2" — y(x)]dx’ .
The complex conjugate of this equation takes the form

gii=~(1-ic)HPT~ (1 -icy)(1+HE)

X[u+ul+(1-icy) HB(|X—X'|)
WE

X[it(x")e ) — i(x)]dx’ .

If we do the Fourier transform of the latter equation and
apply the convolution theorem, we obtain for the mode with

wave number g,
u Ly, L u
ofo)-Ge i) e
u L2| L22 I/tq

q

where

Liy==(1+ic)(1+ HE) + (1 +ic))(HY? - HE),

Lip=~(1+icy)(1 +H(5Q)), Ly =Ly,
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L=~ (1-icy)(1+ HP) + (1 —ic))(HY 2 - HP),

and ug and i, are the Fourier transforms of u and u, respec-
tively. The diagonalization of the matrix on the right-hand
side of Eq. (20) yields a characteristic equation of the form

N+ (rp+iry)N+(p; +ipy) =0, (21)
where

r=2+4Hg - HYO - HY?),
ry=- Cl(H%HQ) - H%I_Q)),

pr==(+cic)(1 + HP)HY D + HYO - 2H)
+(1+ NHY? - HY)(HY? - HY),

pr=(ci-c)(1 + HPYHY O -HY?).  (22)

An important quantity determining the stability of wave
number Q against fluctuations of a given wave number ¢ is

KB(Q,CI)=P§—71’2P2—V%P1- (23)

Negative K45(Q,q) implies stability and positive K4(Q,¢) in-
stability. For the homogeneous wave number O=0 we have

K5(0.q) == 4(1 = H[(1 + DHY = 2(1 + ¢ ;e HY.
(24)

Since H'Y <0 for q # 0, the homogeneous wave number can
only be unstable if

a=1+cc; <0. (25)

Therefore, the same condition as in the CGLE for the insta-
bility of the homogeneous wave number holds, =0 giving
the BF line in the ¢;-c¢, plane. When a <0 there exists a band
of Fourier modes that destabilize the homogeneous oscilla-
tion as discussed in [14] since in that case K4(0,g)>0 for
sufficiently small g below a critical value g,, that can be
calculated from [14]

1 2|
g coth(g,,B) — — = 3 (26)
1+¢

iy

We can still ask whether there exist other plane waves which
are stable to long-wavelength fluctuations, i.e., we study the
stability for a plane wave Q to fluctuations in which |g| is
small. We can expand the dispersion relationship Eq. (10) in
series around Q,

! 1 14
H (Q + C]) ~ H(Q) <+ qH(Q) _q2H(Q) , (27)
with

o _dHE inh™
HB = dQ :—COth(Q:B)"'QBSIHh (QB)’
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FIG. 2. (Color online) Curves separating regions of stable and
unstable wave numbers (as sketched in the inset) calculated from
Eq. (31) for ¢;=-3.0 (dashed lines) and —1.5 (continuous lines) and
for the values of B indicated besides each curve.

dZH(Q)
HY" = =5 0= =261 - 0B coth( Q) kinh (0B

(28)
If we replace these expressions in Egs. (22) and (23) and
retain only terms to ¢> we obtain

KgQ.q=~0)=(1+cDHP"? + (1 +cic)(1 + HEHP",

(29)
since H(BQ)”<O for Q>0 (as shown in Fig. 1 H(BQ) is con-
cave) only for >0 can plane waves exist with Q # 0 which
are stable to long-wavelength fluctuations. Quite interest-
ingly, for Q#0, when B—o we have H'(BQ)=—|Q
HgQ)' =-0/|0|, H%Q)"=O and therefore

>

Kg (0.q=~0)=1+c7>0, (30)

which implies that every plane wave with Q # 0 is unstable.
This contrasts with the CGLE behavior for which there al-
ways exists a band of stable Fourier modes provided that «
>0. In fact, as is clear from Fig. 2, the effect of increasing 8
is, for given c¢; and c,, compressing the band of stable wave
numbers. We plot in Fig. 2 the curves separating regions of
stable and unstable wave numbers (below and above each
curve, respectively, as sketched in the inset) as a function of
¢, and for different ¢, and B values (indicated in the figure).
The point at which each curve intersects the ¢, axis with
|Q|=0 is dictated by the BF stability criterion a=0. The
curves are calculated from the transcendent equation

(1+DHEP? + (1 +c10)(1+ HEP)HZP" =0, (31)

which provides the critical wave number Q below which all
Fourier modes are stable. This is the generalized Eckhaus
criterion for stability of plane waves in the NCGLE.

In the limit 8— 0, our NCGLE reproduces the CGLE and
we obtain analogous expressions for the coefficients, Eqs.
(22), to the ones provided by Kuramoto for that specific case
(see Appendix A in [1]).
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FIG. 3. (Color online) Spatiotemporal evolution of the modulus
of the amplitude |W| for ¢;=-2, ¢,=2, L=20, and the values of 3
indicated in the figure.

IV. COHERENT STRUCTURES IN THE NCGLE

An important feature of the NCGLE is that along with the
coupling range also the characteristic lengths of the spa-
tiotemporal structures increase [14]. This agrees with experi-
mental findings [16]: In the defect turbulent region (a<<0)
larger structures and a lower density of spatiotemporal de-
fects are observed for a larger coupling range. In Fig. 3 the
spatiotemporal evolutions of the absolute value of the ampli-
tude |W| for three different B values in the BF unstable re-
gime (<0, ¢;=-2, ¢,=2) are shown. For all spatiotemporal
patterns considered in this paper, the NCGLE was simulated
by using a pseudospectral method with 700 Fourier modes, a
system length L=20, periodic boundary conditions, and an
exponential time stepping algorithm [20]. It is observed that
as B is increased, the characteristic length of the spatiotem-
poral structures also increase. Through the linear stability
analysis of the homogeneous solution, it was found [14] that
the band of Fourier numbers that destabilize the uniform
oscillation is both compressed and displaced to longer wave-
lengths. For sufficiently large coupling range, turbulence can
even be suppressed beyond the BF stable regime in the
NCGLE giving rise to spatially coherent structures.

A. Standing waves

An example of coherent structures that we found in the
NCGLE are the standing waves shown in Fig. 4(a). The pat-
tern possesses dihedral D, symmetry [21] at all times: it has
two spatial reflection symmetry axes separated by L/4 (i.e.,
rotated 77/2), and spatial frequency g=41r/L. This symmetry
is sketched in Fig. 5(a). The pattern is found for =2 and
parameter values in the BF unstable regime
(c;=-4, ¢,=0.9). The solution shifts periodically L/4 in
space. We can gain insight in this and other patterns if we
make the projection

oo

Wx,) = > W,()e?™ " (32)

n=-%

onto the NCGLE, Eq. (1). Then, for the Fourier number n we
obtain
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FIG. 4. (Color online) (a) Spatiotemporal evolution of the
modulus of the amplitude |W| for ¢;=—4, ¢,=0.9, =2, and L=20.
(b) Temporal evolution of |K,,|, computed from Eq. (34) for differ-
ent wave numbers n.

W, = (1 +(1+ icl){— 2Lﬂ coth(zqzlﬁ) + é])

XWn—(l +iC2) E WjWle (33)

J—k+l=n

In this representation, the NLC term reads

. 1 2mn 27
K,=(1+ic;)| —=——coth w,
B L L

=(1+ic)H;™"W,. (34)

It vanishes for any homogeneous state and is maximum for
the relevant Fourier modes causing the inhomogeneity. The
absolute value of this quantity as a function of n and time is,
therefore, a useful means to characterize a spatiotemporal
pattern in the NCGLE. We show in Fig. 4(b) the time evo-
lution of |K,| for the standing wave pattern on the left. No
odd Fourier modes contribute to the pattern, therefore the
latter is invariant upon a L/2 translation even in the switch-
ing regions in which the L/4 spatial shifts occurs. A spatial

FIG. 5. (Color online) Sketch of the symmetries observed in the
standing wave pattern [Fig. 4, (a)] and in the heteroclinic orbit
between fixed points [Fig. 7, (b)]. D, is the dihedral group with two

orthogonal reflection axes as indicated in the figure. Z, and Zz each
have one reflection axis which is rotated 7/2 with respect to each
other. The D, symmetry (isomorphic to ZZXZZ) is broken during
the transitions between the equilibria in the pattern on the right.
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translation of d, T, acting on Fourier mode W, is formally
defined as the operation

T;:W, — exp(i2and/L)W,,. (35)

As it is the case with the CGLE [22], the NCGLE is
invariant under the action of the S' phase symmetry 1y:
W(x,t) — W(x,t)e’” and the O(2) symmetry generated by in-
variances to translation T; W(x,r)— W(x—d,t) and reflec-
tion Ry W(x,r)— W(-x,1). This also means that nontrivial
solutions of the NCGLE exist on a two-torus with S!
X 0(2) symmetry [22,23]. We can decouple the phase sym-
metry of the system [22,24] by writing W,=w,e'?"). Then,
by using the fact that wy is real, we have from Eq. (33),

W+ iw, =[1+ (1 +ic)HG ™ w,

—(L+icy) 2 wimwy, (36)

Jj—k+l=n
where

l+iC2

Jj—k+l=n

b= Im(—
wo
To describe the pattern in Fig. 4, and because of its mani-
fest T, invariance and reflection symmetries, we can con-
fine our study to the dynamics in the D, subspace. The domi-
nant contributions to the pattern come from the
homogeneous oscillation and the first even Fourier mode n
=2 (w;=w_;=0 because of the overall D, symmetry). We
can thus truncate the NCGLE to these three relevant modes
Wwgs Wo, and w_,. Since in D, we further have wy,=w_,, if we
write wy=a, and w,=w_,=a,+ib,, we obtain the following
coupled set of real-valued differential equations:

do =day— (18 - 2a0b§ - 6(1%{10 + 4C2a2bzao,

(4m/L
B

dz =a,+ H )(a2 - Clb2) - 3a2a(2) - 7a2b§ - 3613 + Czbg

2
- 3C202b2,

by=by+ Hg”/L)(bz +C1a) + 30,03 — 3b3 — 2¢5a,a8 — bdl
+ bza% - Czazbg. (38)

By this technique the uniform oscillation is reduced to the
fixed point (1, 0, 0) in the phase space spanned by the vari-
ables (ay,a,,b,). Equations (38) are invariant under a spatial
shift of L/4 [ie., Ty (ag,ay,by)— (ay,—a,,—b,)]. There-
fore, any linearization must also be invariant under this op-
eration [23] and we expect steady bifurcations to be pitch-
forks that break this symmetry. If we linearize Egs. (38)
around the fixed point corresponding to the uniform oscilla-
tion (ay,a,,b,)=(1,0,0), we find the eigenvalues \y=-2,
Ne=—(1-H§™) = 1+, HY ™ (e, + HY ™ e)). One  of
these eigenvalues becomes positive at a critical value By,
which obeys the equation
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FIG. 6. (Color online) Bifurcation diagram of Egs. (38) with 8
as the continuation parameter. Other parameter values are as in Fig.
4. At B4, a supercritical pitchfork bifurcation of the uniform oscil-
lation ® occurs and two states & and & emerge with the same
stability. Shown also are the limit cycles found at lower S values.
The thick dashed curve is a typical periodic trajectory found in the
vicinity of the double saddle-loop point where both limit cycles
meet.

4t (477/34#)_# 2|af (39)

— coth = 7
L L B47T 1 +Cl

For B< B, the uniform oscillation is unstable to the first
even wave number g=4m/L. Note that Eq. (39) is the same
as Eq. (26) but solving there for B by taking g, =4m/L. At
B=L4, coming from higher values of S the uniform oscilla-
tion loses stability and two equilibria &; and &, related by a
L/4 spatial shift (i.e., T;4&,=§,) emerge from a supercritical
pitchfork bifurcation. In Fig. 6 we show the bifurcation dia-
gram in three dimensions calculated with AUTO [25] with the
real and imaginary parts of the first even wave number n
=2 and the control parameter 8. Other parameter values are
as in Fig. 4. At B,,=2.75 we observe the supercritical pitch-
fork bifurcation of the uniform oscillation and the two states
emerging with a phase difference of 7 radians, in consis-
tency with the phase shift of L/4 on the second Fourier
mode. Eventually, at 8=2.17, a supercritical Hopf bifurca-
tion occurs and both branches bifurcate to stable limit cycles.
Quite interestingly, the limit cycles meet in a double saddle-
loop point [27] at =2 together with the unstable fixed point
of the uniform oscillation. This explains the spatiotemporal
pattern observed in Fig. 4. It is known that vector fields in
the vicinity of a double saddle loop can have periodic orbits
that lie close to the figure eight [27]. This is the case here,
with each of the loops of the figure eight circling around the
branch of a different quasiequilibrium which is spatially
shifted by L/4. The spatiotemporal evolution of the full
NCGLE (Fig. 4) is thus qualitatively captured by the three-
mode truncation, the standing wave pattern being described
by a trajectory similar to the thick dashed curve in Fig. 6.

B. Heteroclinic orbits

In Fig. 7(a) we show another coherent structure that arises
in the NCGLE with a moderately large coupling range S
=3.5, and parameter values in the BF unstable regime
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FIG. 7. (Color online) (a) Spatiotemporal evolution of the
modulus of the amplitude |W| for ¢;=-3, ¢,=1, and $=3.5. (b)
Temporal evolution of |K,|, computed from Eq. (34), for different
wave numbers 7.

(c;==3, cy=1). Here, the system changes aperiodically in
time in an alternating manner between two states that repre-
sent stationary periodic structures. In Fig. 7(b), the time evo-
lution of |K,| is plotted for the pattern on the left. It is ob-
served that the odd Fourier wave numbers contribute here in
shifting aperiodically the system *L/4. This behavior is
characteristic of heteroclinic dynamics [26]. It was observed
in the Kuramoto-Sivashinsky equation [28] and, recently, in
the CGLE [22] although the patterns found in the latter work
have a period two orders of magnitude smaller than the ones
here. Furthermore, in Ref. [22], the CGLE is written in the
form

OGW=RW + (1 +ic))*W — (1 +ic)|W*W,  (40)

and the behavior found is discussed as a function of the
parameter R. This parameter can be absorbed ig the CGLE,
however, through the scalings t—t¢/R, s—s/VR, W— yRW
that bring Eq. (40) to the standard form, Eq. (16). No such
transformations are possible in our case for S, the latter be-
ing the new essential parameter peculiar to the NCGLE.
While resting at each one of the £L/4 spatially shifted
equilibria the patterns possess again D, symmetry. The latter
is broken, however, during the transitions between the equi-
libria. In Fig. 5(b) we sketch this symmetry breaking. In each
transition, either one of the reflection axes of the D, symme-
try is lost together with the L/2 translation invariance. The
remaining symmetry is characterized by the reflectional

groups Z, or Zz which each have only one reflection axis. For
simplicity, and without loss of generality, we consider in the
following that Z, makes reference to the spatial profile with

reflection symmetry axis at angle #=0 and 7, refers to a
symmetrical spatial profile with reflection axis at 6=m/2
(i.e., separated a distance L/4). We can gain better insight in
the heteroclinic cycles using the technique of phase decou-
pling considered above for the standing wave but introducing
also the contribution of the first Fourier mode W.; and,
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FIG. 8. (Color online) Bifurcation diagram of the five-mode
truncation of the CGLE in the Z, even subspace with 3 as continu-
ation parameter (other parameter values as in Fig. 7). ®: uniform
oscillation; & and &,: fixed points related by a L/4 spatial shift.
Thick lines denote stable fixed points and thin lines denote unstable
ones. 34, and S, denote the location of the two pitchfork bifurca-
tions where, respectively, L/4 symmetry is broken and &, gains
stability. Limit cycles shown are stable in the &, branch and un-
stable in the & one.

therefore, considering a five-mode truncation of the NCGLE.

In the “even” Z, and “odd” Zz subspaces, which are invariant
to the corresponding reflection symmetries, the Fourier
modes W, with n# 0 satisfy the following relationships:

Z2: W] = W—l? W2 = W_z, (41)

Zz: Wl =- W—l’ W2 = W_2. (42)

Although the system is no longer confined only to D,, as is
the case with the standing wave, within this five-mode trun-
cation we can understand the system dynamics as a switch-

ing between the equilibria in D, through either Z, or Zz. In
Fig. 8 we show the bifurcation diagram in the a,-b, plane as
a function of B in Z,. It has a rather similar structure to the
one found above for the standing wave (see Fig. 4), but there
are also some important differences: the uniform oscillation
is unstable for all 3; both stationary states that emerge at B,
are thus also unstable but then one of them gains stability
through a second pitchfork bifurcation at 3,,, while the other
remains unstable; in the stable branch, a stable limit cycle
emerges from a Hopf bifurcation, whereas an unstable one
emerges from the Hopf in the unstable branch. Restricting

the dynamics to the odd subspace 22 (not shown), where now
wi=—-w_; and w,=w_,, the stability of the two different
branches (and of the limit cycles) is the opposite. Thus, in
the combined space, both equilibria &, and &, are saddle

points, their unstable manifolds lying in Z, and Zz, respec-
tively, and the unstable ones in the respective orthogonal
subspace. A robust heteroclinic orbit exists when there is a
trajectory connecting the equilibria in both subspaces. With
simulations of the full NCGLE for the parameter values as in
Fig. 7 we show in Fig. 9 that this is indeed the case. In Fig.
9 the trajectory (with the decoupled phase) has been pro-
jected on the phase space spanned by the variables a;—a_;
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FIG. 9. (Color online) Heteroclinic orbits between the fixed

points &; and &, through the orthogonal subspaces Z, and Zz ob-
tained by simulating the full NCGLE. Parameter values as in Fig. 7.

—b,. We see that the orbit falls into two orthogonal planes
connecting &; and &,. These planes correspond each to the Z,

and Z, subspaces where the L/4 spatial shift operation is
implemented. Several initial conditions with noise were con-
sidered (a pulse, combinations of traveling waves with even
and odd Fourier numbers) and, after a transient, the hetero-
clinic cycle in Fig. 7 was always attained.

We can ask whether there exists a relationship between
the standing wave described in the previous section (see Fig.
4) and the heteroclinic orbits observed here for different val-
ues of ¢; and c¢,. In Fig. 10 we plot the bifurcation diagram
of the five-mode truncation in the Z, subspace in the ay-8
plane. As it is the case with the limit cycles in the standing
wave pattern (see Fig. 6), the stable limit cycles here are
connected to the unstable fixed point of the uniform oscilla-

AB] C
1.0 Bax ®
| B
€&,
0.8
aU 4
0.6
25 3 35 4 45 5 55 6
B

FIG. 10. (Color online) Projection of the bifurcation diagram
shown in Fig. 8 in the ay-B plane calculated with the five-mode
truncation in the Z, subspace. Parameter values are as in Fig. 7. A,
B, C, indicate the different regions in which the corresponding pat-
terns of Fig. 11 are observed.
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FIG. 11. (Color online) Spatiotemporal evolution of |W| corre-
sponding to the respective regions in the bifurcation diagram in Fig.
10. Other parameter values are as in Fig. 7.

tion at B8=~2.76. Two saddle limit cycles meet at this point,
which is again a double saddle-loop point. A trajectory, with
B lying in region A of the diagram, is closed and periodic,
resembling the figure eight; hence each loop is L/4 spatially
shifted. For the full NCGLE we again observe standing
waves as in Fig. 6 which are robust to initial conditions. The
heteroclinic orbits between fixed points of Figs. 7 and 9 ob-
tained through simulations on the full NCGLE correspond to
region C in Fig. 10. For B values in region B in Fig. 10 in the
full NCGLE we find robust heteroclinic orbits between limit
cycles, i.e., transitions between the limit cycles lying in D,

whose stability is dictated by each subspace Z, and Zz with
the phase symmetry decoupled. In Fig. 11 we plot the spa-
tiotemporal evolution of |W| with the full NCGLE for differ-
ent 8 values and the same c; and ¢, as in Figs. 7-10. Pattern
A corresponds to the standing wave and has overall D, sym-
metry [see Fig. 5(a)] as discussed above. When increasing 8
pattern B is found. It corresponds to the heteroclinic orbits
between saddle limit cycles and at the transitions between
the latter the random shifts of either +L/4 or —L/4 break the
otherwise, overall L/2 translation symmetry of the pattern.

During these transitions the symmetry is either Z, or Zz. The
overall solution is not periodic because the pattern shifts ran-
domly *L/4 as a consequence of the two paths connecting

&, and &, in each subspace Z, and Z, (see Fig. 9). Finally, in
pattern C, at higher S the limit cycles disappear and the
transitions are now between equilibria. “Limit cycles” and
“equilibria” here make reference to the dynamical structures
understood through the truncated NCGLE with the phase
symmetry decoupled. Patterns B and C possess the same
symmetries [see Fig. 5(b)].

While the pitchfork at (,, breaks the L/4 translation
symmetry of the underlying dynamics (giving rise to two
steady states that are L/4 spatially shifted but which are born
exactly with the same properties and stability) the pitchfork
at 3., changes the stability of one of the fixed points in each
respective subspace allowing for the existence of heteroclinic
orbits. The latter should exist in the full NCGLE for S
< B (see Fig. 10). In Fig. 12 we show the loci of both the
B4~ and B, pitchfork bifurcations in the c;-c, parameter
plane. The shadowed region enclosed in the loop of the B,
line is where we found robust heteroclinic connections be-

PHYSICAL REVIEW E 78, 026215 (2008)

FIG. 12. (Color online) Pitchfork bifurcations that break the L/4
space symmetry (B4, curve) and that mark the onset to possible
heteroclinic orbits (8, curve) in the c¢;-c, plane. The shadowed
region is where robust heteroclinic orbits are found in the simula-
tions with the full NCGLE. Shown also is the BF line (a=0).

tween fixed points in the simulations with the full NCGLE.
These heteroclinic orbits, standing waves, etc. are robust co-
herent structures that exist in a region in which there is only
defect turbulence under local coupling since their region of
existence falls deep beyond the BF line in the unstable re-
gime. Most remarkably, the coherent structures emerge be-
cause of the possibility of changing a physically meaningful
and experimentally accessible parameter, the coupling range
B at identical system length.

C. Other behaviors

The heteroclinic orbits in the previous section are only a
few examples of coherent structures that can be found in the
NCGLE. In this section we briefly mention other behaviors
that we observe in the simulations. Another example of a
coherent aperiodic structure is given in Fig. 13(b). The pat-

FIG. 13. (Color online) Spatiotemporal evolution of the modu-
lus of the amplitude |W| for ¢;=-6, c,=1.5, and =10 (a) and c,
=-3.0, ¢,=0.9, and B=5 (b).
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B=01

B =0.005

FIG. 14. (Color online) Spatiotemporal evolution of the modu-
lus of the amplitude |W| for ¢;=0, ¢,=1.5 and the values of 8
indicated in the figure. White lines are BNHs.

tern observed connects dynamical states that are this time
L/2 spatially shifted and for which the first wave number
provides the most important contribution. Another pattern
that it is also L/2 spatially shifted but for which now the
uniform oscillation has the most important contribution, is
shown in Fig. 13(a). In this pattern the L/2 spatial shift in-
volves one amplitude defect.

The CGLE is known to have localized solutions [5], the
Bekki-Nozaki holes (BNHs) [4,29] being a well known ex-
ample. The BNHs are localized dips in the amplitude W and
usually have an associated “shock” (a localized maximum in
the amplitude). These solutions connect two plane waves
with wave numbers ¢; and g, by a localized object moving at
velocity v=(c;—c,)(q;+¢q,) [2]. Besides the so-called ho-
moclons, these solutions are regarded as important building
blocks of spatiotemporal intermittency [6]. When a hole and
a shock collide, the shock can be either scattered or annihi-
lated. Hole-shock pairs can also be generated as the result of
annihilating shocks [30]. Since the NCGLE becomes the
CGLE in the limit 8— 0, BNH solutions are also solutions of
the NCGLE in at least that limiting case and for a range of
finite nonvanishing values of B. We have simulated the
NCGLE for parameter values lying in a region in which
BNHs are known to be stable from the linear stability analy-
sis carried on the CGLE [2,31]. The results are shown in Fig.
14 for ¢, =0, ¢,=1.5, and different values of 8. We find that
for very low B [Fig. 14(a)] we have stable BNHs that can
propagate at a finite nonvanishing velocity as it is observed
in the CGLE. As g is increased a grid of standing BNHs
(v=0 holes) arises [Fig. 14(b)]. For B even higher, no BNHs
exist and the uniform oscillation is stable. The behavior at 8
sufficiently high is similar to the one observed for the quintic
CGLE with a negative coefficient —8|W|*W (5> 0) [30], the
only stable BNHs being standing holes.

V. CONCLUSIONS

In this paper we have studied several features of the
NCGLE. This equation has been derived recently [14] as a

PHYSICAL REVIEW E 78, 026215 (2008)

general model to describe the dynamics of electrochemical
systems close to a supercritical Hopf bifurcation. By means
of the linear stability analysis of plane waves of arbitrary
wave number to long-wavelength perturbations, we have de-
rived the generalized Eckhaus criterion that holds for the
NCGLE. The new essential physical parameter entering in
the NCGLE, the coupling range 3, allows one to tune the
width of the band of stable plane waves in the BF stable
regime. We find that in the limit S—c all plane waves are
unstable. Although the NLC does not fully stabilize the uni-
form oscillation in the BF unstable regime, we have shown
the existence of standing waves, heteroclinic connections be-
tween fixed points and between limit cycles, and some other
patterns having different translation symmetries. We have fo-
cused our study on the heteroclinic orbits between fixed
points or limit cycles which are spatially shifted by L/4. We
have carried out a bifurcation analysis on a truncated version
of the NCGLE restricted to the D, subspace to determine the
regions of possible existence of heteroclinic orbits. Robust
stability has been observed for the latter by means of simu-
lations of the full NCGLE employing different initial condi-
tions with noise. In brief, the main effects of increasing the
range of the nonlocal interactions are the compression of the
band of stable plane waves (a>0, BF stable regime) or the
creation of coherent structures out of turbulence that break
diverse symmetries («<<0, BF unstable regime) or turbulent
structures with larger characteristic wavelengths.
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APPENDIX: DERIVATION OF THE NONLOCAL KERNEL
FOR 1D ELECTROCHEMICAL SYSTEMS

Under static conditions, the electric potential in the elec-
trolyte, ¢(x,z) [15,17] obeys to a very good approximation
Laplace’s equation

V2h(x,z) =0.

If we introduce the scale transformation z— Lz, the boundary
conditions are specified as

$(x,0) = F(x) = U = ¢pr(x) = $(x),

(A1)

(A2)

¢(x.p) =0, (A3)

where F(x) is a periodic function that satisfies F(x+L)
=F(x). If we Fourier transform both sides of Eq. (Al) on
dimension X, we can define d(z)
==2=lim;_..J%, ¢(x,z)e ™ dx and the general solution of

2
the resultlng equation 1n Fourier space

a§¢(u) —u? ¢(u) =0 (A4)
is given by
P(2) = g1 (w)e + gy(u)e™, (A5)

where g,(u) and g,(u) are functions to be determined from
Egs. (A2) and (A3) in Fourier space. By applying the latter
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and defining F* = %TlimL_,mf L F(x)e"™Ldx we obtain

(1)
g1(u) = :Wg, (A6)
g(u) =—g,(u)e*P, (A7)
() =- F(M)M. (A8)

sinh[uB]
By transforming Eq. (A8) back to physical space, we obtain

© ©

Plx,2) = G(x-x",2)p(x")dx’,

—0

Gx—x",2)F(x")dx' = J

(A9)

where G(x—x',z) is the Green function for this geometry
given by [18]

) {W(z B)]
sin
Gx—x",7)=—— p .
28 |:7T(Z ,8):| lrr(x—x’)]
cos +cosh| —
B B
(A10)
As shown in [18]
fim 26— T (Al
SO 4 sinhz( e —x) )
2B
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* IG(x—x', 1
—J 1im Md}‘/zﬁ’ (A12)

o 70" Jz
if we use Eqgs. (A2) and (A9) we can rewrite Eq. (6) as

: o (22,9
Imig. coupling=—~ O oz + B

ee]
=—0 J lim
—0 z~>0+

5(x x")
B

WE

dG(x —x',2) S
74

st
“ G (x-x"2)

:_(,f im D0 - ol
—» 70t

= UJ H/o’(|x = x| ppr(x") = Ppr(x)]dx",

with

H/;(|x—x'|) =

(A13)
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