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Narrow-band oscillations in probabilistic cellular automata
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Dynamical properties of neural populations are studied using probabilistic cellular automata. Previous work
demonstrated the emergence of critical behavior as the function of system noise and density of long-range
axonal connections. Finite-size scaling theory identified critical properties, which were consistent with prop-
erties of a weak Ising universality class. The present work extends the studies to neural populations with
excitatory and inhibitory interactions. It is shown that the populations can exhibit narrow-band oscillations
when confined to a range of inhibition levels, with clear boundaries marking the parameter region of prominent
oscillations. Phase diagrams have been constructed to characterize unimodal, bimodal, and quadromodal os-
cillatory states. The significance of these findings is discussed in the context of large-scale narrow-band
oscillations in neural tissues, as observed in electroencephalographic and magnetoencephalographic

measurements.
DOI: 10.1103/PhysRevE.78.026214
I. INTRODUCTION

In neural tissues, populations of neurons send electric cur-
rents to each other and produce activation potentials. While
single unit activations have large variability and do not seem
synchronous, the activations of neural assemblies often ex-
hibit synchrony [1-4]. Ordinary and partial differential equa-
tions are widely used for modeling complex dynamics, in-
cluding chaos and chaotic itinerancy [5,6]. The neural
dynamics of spatially extended systems with small-world
properties has been studied extensively [7—15]. The function-
follow-form concept [16,17] is crucial for assessing the rela-
tion between the network structure and functioning of the
neural tissue; for comprehensive models using differential
equations, see [18-20]. Hierarchical models of the central
nervous system based on ordinary differential equations with
distributed parameters have been successfully applied to de-
scribe sensory processing and cognitive functions [1,21-23].

In this work we pursue an alternative approach, which
uses probabilistic cellular automata to model cortical neural
populations. Probabilistic cellular automata (PCA) are lattice
models of spatially extended systems with probabilistic local
dynamical rules of evolution [24]. PCA generalize determin-
istic cellular automata, such as Conway’s game of life and
cellular nonlinear networks (CNNs) [25], and bootstrap per-
colation where the update rule is deterministic but the initial
configuration is random [26-31]. PCA often display very
complex behaviors which are difficult to analyze rigorously
[32]. Computational simulations provide an alternative tool
of the analysis of the behavior of PCA in situations, which
do not allow an analytical approach at present. In particular,
critical behaviors in various PCA have been successfully
analyzed using finite size scaling theory [33-35]. This is the
route followed in the present work.

PCA often define a local neighborhood in their evolution
rule, although this does not have to be the case in general
[32,36]. Biological neurons have long-range connections via
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long axons which go far beyond their immediate dendritic
arbors [37]. To describe such neural effects, we have devel-
oped PCA models incorporating mixed local and global
(long-range) interactions. Binder’s finite size scaling theory
has shown that local-global PCA demonstrate behavior con-
sistent with a weak Ising universality class [38—40]. The role
of nonlocal interactions has been extensively studied in de-
terministic models, such as coupled map lattices (CMLs)
[41,42]. CMLs with local-global coupling show critical be-
havior similar to PCA during transitions to synchronous
chaos [9].

The present work extends PCA studies to more realistic
systems with inhibitory effects. The cortical tissue contains
two basic types of interactions: excitatory and inhibitory
ones. Increased activities of excitatory populations influence
positively (excite) their neighbors, while highly active in-
hibitory populations contribute negatively to (inhibit) the
neurons they interact with. Inhibitory effects lead to the
emergence of sustained narrow-band oscillations in the neu-
ral tissue, which are preconditions of the emergence of more
complex, multicomponent brain rhythms [1,43-45]. Here we
study families of PCAs with narrow-band oscillations, which
serve as building blocks of large-scale random network mod-
els of brains [46].

This paper is organized as follows. First, basic concepts of
probabilistic cellular automata are introduced, and critical
behavior is characterized using Binder’s finite-size scaling
theory. Next, we extend the model to a two-layer PCA with
excitatory and inhibitory populations. It is shown that PCA
with inhibition can exhibit narrow-band oscillations, depend-
ing on the strength of inhibition. We analyze the conditions
of the emergence of narrow-band oscillations, with bimodal
probability distribution functions, as well as conditions of
multimodal oscillations. Finally, we interpret these findings
in the context of neural dynamics.

II. OVERVIEW OF CRITICALITY IN SINGLE-LAYER
EXCITATORY PCA

A. Preliminaries on PCA with local neighborhoods

Here we summarize the terminology and previous results
relevant to the present work [39]. Two-dimensional square
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FIG. 1. Critical behavior for a single-layer PCA with local
neighborhood. Left: activity distributions. Right: U* values.

lattices are considered. The activation of the ith node at time
t is denoted as (1), r=1,2,3,...,T. A; is the neighborhood
of node i. Values of a,(¢=0) are randomly initialized as O or
1, i.e., active or inactive. After =0, an update rule is applied
simultaneously over all sites at discrete time steps. We apply
the probabilistic majority rule, according to which the ith site
next value a;(r+1) is equal to the majority of its neighbors
with probability 1—¢, and to the value of the minority with
probability €. In the case of finite lattices, periodic boundary
conditions are used, so the layer is folded into a torus.

PCA with various update rules and neighborhoods have
been studied extensively using renormalization group tech-
niques [34,35,47] and Binder’s method [33]. Example of the
size invariance of quantity U* is illustrated in Fig. 1 in the
case of a local PCA. Quantity U* is related to the kurtosis
and it is defined as follows:

o _(d-@l)
(@ = @)PP

Here d*=|d-0.5| and d==]a;/T. At the critical point &,
U* is the same for all layer sizes of the same topology [35].
This is the point where the activation densities randomly
hover around 0.5 and activation density distributions are uni-
modal. For e <eg, the sites are either mostly active or mostly
inactive and the activation distributions are bimodal, as illus-
trated in the gray shaded histogram on the left panel of Fig.
1.

(1)

B. Critical behavior in PCA with mixed topology

In a lattice with mixed local and nonlocal topology, some
connections are rewired, so nodes may acquire nonlocal
neighbors. Various rewiring schemes exist in the literature,
including quenched random replacement, annealed random-
ness, and edge swap [48,49]. Different rewiring schemes re-
sult in different dynamics over the lattice. We use so-called
regular rewiring schemes [50], when each node has the same
number of connections and maintains this property after re-
wiring. In a simple regular two-dimensional square lattice,
we consider the case when every node has five connections,
i.e., four links to its direct neighbors and one to itself. In the
present work we use edge swap rewiring as illustrated in
Fig. 2. First, a link between the two randomly chosen local

PHYSICAL REVIEW E 78, 026214 (2008)

FIG. 2. Illustration of local and nonlocal links over a square
lattice of size 4 X4, ny;=25%.

neighbors, i and j, is removed. One of them, let us say
i, is rewired to a randomly chosen site m. Next, one of m’s
local links is eliminated, i.e., the one going to n, to make sure
that m has four neighbors. Now 7 has three neighbors, which
is also true for the site j. To keep the number of neighbors
per site constant, we connect n and j. This process is
repeated until the desired number of nonlocal connections
is reached. Based on biological motivation, a node can
have at most one long-range connection. The relative
importance of nonlocal links is defined as ny
={No. nodes with nonlocal links}/{No. all nodes} X 100%.
RCA with mixed local and global neighborhoods show
critical behavior and follow finite-size scaling laws [38,39].
Accordingly, magnetization d* satisfies the relationship

d* < (gc—8)P fore— gc. (2)

Similar scaling laws are valid for susceptibility y and cor-
relation length &

X~le—sc[7 &~le—ec[" fore—ec.  (3)

Critical exponents 3, vy, and v satisfy the hyperscaling
identity 28+ y=2v with good accuracy, indicating a behavior
consistent with weak Ising universality class [39,40]. The
critical exponents and the error of the identity /.,,,=28+7y
—2v are reproduced in Table T; for details, see [39]. Note that
results in Table I correspond to a bidirectional rewiring
method used in [39], which is different from the edge swap
technique adopted in this paper.

III. CRITICALITY IN THE PRESENCE OF INHIBITION

A. Structure of two-layer PCA

The two-layer PCA is illustrated in Fig. 3 with two bidi-
rectional links from one layer to the other. Inhibition can be

TABLE 1. Critical exponents in mixed models®

SL’ B 7 v ISIT(J[’
Local 0.1342 0.1308 1.8055 1.0429 0.02
25%(1) 0.1702 0.3071 1.1920 0.9504 0.09
100%(1) 0.2032 0.4217 0.9873 0.9246 0.02
100%(4) 0.2227 0.4434 0.9371 0.9026 0.02

*Reproduced from [39].
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layer 0 a node from layer 0
sends 0 if 0 else 1
layer a node from layer 1

sends 1if 0 else 0

FIG. 3. PCA with two coupled local layers and ny=12.5%.

modeled in various ways; here we introduce inhibition in the
form of inverse influence, where one of the two layers is
inversely influential (inhibitory). The excitatory layer oper-
ates as before and its nodes influence others with 1 when
active and with 0 when inactive. A node from the inhibitory
layer influences the node of the opposite layer in a reversed
manner, i.e., with 1 when inactive, and with 0 when active. A
constant size of neighborhood for all lattice points is main-
tained after rewiring in the two-layer configuration as well.
Therefore a node loses a connection (its self-connection)
when it is selected to receive a connection from the opposite
layer. Parameter ny defines the cross-layer coupling strength:
ny = {No. nodes with cross connection} / {No. all nodes}
X 100%.

Typical behavior of a two-layer PCA in response to an
excitatory impulse perturbation is illustrated in Fig. 4. A
damped oscillation is observed as the result of excitatory-
inhibitory interaction. Such a behavior is a basic building
block of the dynamics of neural populations [1,23]. In re-
sponse to the stimulus impulse, the excitatory cells reach a
peak activation. The excitatory cells excite inhibitory cells,
which reach a peak excitation a quarter of a cycle after the
excitatory cells’ peak activity (a). At this time, the excitatory
cells are already inhibited to their basal, resting level. They
reach maximum inhibition as the inhibitory cells return to
their basal level (b). During this phase, the inhibitory cells
receive diminishing excitation from the excitatory cells, so
they undergo inhibition (c). When the excitatory cells are
released from inhibition, they again respond to background
activity, and start another cycle (d). A detailed quantitative
analysis of critical properties of narrow-band oscillations in
PCA is given in the next section.

1 . .

excitatory population
\»_ inhibitory population

0.8

0.6
kel
0.4f
0.2f
stimuli
o0 200 400 600
abcd time

FIG. 4. Impulse response function of a PCA with excitatory and
inhibitory layers. The phases of the damped oscillations are labeled
as a, b, ¢, and d, and described in the text.
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FIG. 5. Illustration of the onset of narrow-band oscillations at
nn;=25%. (a): U* curves are displayed for system sizes 80X 80
and 112X 112, with ny=3.125% (right) and 12.5% (left). (b): Ac-
tivation distributions with ny=3.125% (shade) and ny=12.5%
(dots).

B. Onset of narrow-band oscillations

The dynamical behavior of PCA changes drastically with
the introduction of inhibitory connections, which can gener-
ate narrow-band oscillations, as well as more complex mul-
timodal oscillations. When the noise level ¢ is varied while
all other parameters are fixed, two critical points have been
identified: &, and e.. &o marks the onset of prominent
narrow-band oscillations, while &, describes the transition
point where narrow-band oscillations disappear. These two
critical points are described in this section and in the follow-
ing section, respectively.

First the behavior at critical point e is studied. Measure-
ments are based on computer simulations of lattice sizes be-
tween 64 X 64 and 128 X 128. Experiments have been con-
ducted with a range of noise levels, for various coupled
lattice topologies in terms of nonlocal connections ny; and
cross-layer connections ny. To achieve proper statistical ac-
curacy, experiments were run at least for 1X 10° steps or
until {|0.5-d|)<0.001.

Figure 5 illustrates the onset of prominent oscillations in
systems with ny;=25%. Activation distributions are dis-
played for £=0.1425 on the lower panel of Fig. 5. It is seen
that for ny=12.5% (dotted line) the PCA has a bimodal dis-
tribution and produces prominent narrow-band oscillations.
The value £=0.1425 describes criticality for the given topol-
ogy with ny=12.5%. At the same time, £=0.1425 is far be-
low criticality at ny=3.125% (shade), in which case the PCA
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FIG. 6. Critical transitions from bimodal to unimodal states at
ny.=25%. (a): U* curves are displayed for system sizes 64 X 64
and 92X 92, with ny=3.125% (right) and 12.5% (left). (b): Activa-
tion distributions with ny=3.125% (shade) and ny=12.5% (dots).

has a more complex quadromodal distribution without
narrow-band oscillations.

It is remarkable that U* still provides suitable character-
ization of these systems, although the oscillations are signifi-
cantly more complex than the single-layer homogeneous
case, where kurtosis-based identification methods have been
originally developed and applied [35]. The top two plots in
Fig. 5 show U* values for system size 80X 80 (crosses) and
112X 112 (squares). The curves intersect the first time when
activation density distributions transform from quadromodal
to bimodal distribution. This point is marked by &,. For
given ny;, €, decreases as ny increases. This effect is dis-
cussed in detail below.

C. Critical transition from bimodal to unimodal state

Conditions resulting in diminishing prominent oscillations
are studied here. &, denotes the critical & value at which the
distributions transit from bimodal to unimodal behavior; see
Fig. 6. When ¢ increases and crosses the threshold &, the
bimodal activation density distribution transits to unimodal
distribution. The distributions are obtained by simulating
over 5X 10° steps. This transition resembles critical phase
transitions in single PCA layers, as illustrated in the top pan-
els depicting the evolution of the kurtosis for systems of
different sizes, 64 X 64 (cross) and 96 X 96 (square).

Coupled layers with the same connectivity parameters ny
and ny; but with different system sizes display different U*
values if & # g; see Fig. 6, top left and right panels. For &
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FIG. 7. Overview of the two types of transitions in the PCA with
inhibition. The displayed U* vs noise curves correspond to lattice
sizes 80X 80 and 112X 112, respectively. The two curves intersect
at two points indicated as g, and g.

<egg, larger coupled layers have greater U*. Immediately
above g, smaller systems have greater U*. At g, the U*
values are the same for any system size, which is an indica-
tion of critical behavior. We also observe (not shown here)
that by increasing > ¢, the frequency of the oscillations
increases, while the distance between the peaks of the acti-
vation distribution decreases.

Figure 7 illustrates the quadromodal-to-bimodal and
bimodal-to-unimodal transitions as & varies over a wide
range, for lattices with ny;=25%. This figure shows
quadromodal-to-bimodal transition at g,=0.1538, and
bimodal-to-unimodal transition at &,=0.1596. Prominent,
narrow-band oscillations exist under the condition g,<e
<e&c.

Figure 8 shows the dependence of critical noise values on
the cross-layer connectivity ny. The critical noise values de-
crease as ny increases. The gap between g, and & is rather
small for local lattice neighborhoods ny; =0 (dotted lines),
while it widens as ny; increases, see ny;,=25% (dashed
lines).

IV. DISCUSSIONS ON NARROW-BAND OSCILLATIONS
IN PCA

PCA with excitatory and inhibitory connections exhibit
more complex dynamic behavior than PCA with pure exci-

.
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013 » y O
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0.12} Olx iy
0.3 X %
0.1} 8-
0 0.1 0.2 0.3
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FIG. 8. Illustration of critical noise levels for lattices without
rewiring (dotted lines at bottom) and with ny;=25% (dash, top).
Prominent bimodal oscillations exist between &, and e curves,
which are marked by circles and crosses, respectively.
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FIG. 9. Activation density of coupled layers with small &
=0.1425, ny=3.125%, and ny;=25%. This is a subcritical system
with € <eg, with quadromodal oscillations illustrated over four dif-
ferent time segments.

tatory connections. In particular, unimodal, bimodal, and
quadromodal oscillations can be observed at various param-
eters when inhibition is present. Quadromodal oscillations
are illustrated in Fig. 9, at various stages of the oscillatory
cycle.

Starting with a mostly inactive inhibitory layer, this layer
will mostly excite the opposite layer, and thus increases its
average activation. Increasing activity in the excitatory layer
excites the nodes linked in the inhibitory layer. The activa-
tion of the inhibitory layer increases, but it is less increased
than the activation of the excitatory layer (Fig. 9, bottom
right). The mostly active inhibitory layer inhibits the neigh-
boring nodes in the excitatory layer and thus decreases its
average activation. Decreased activity in the excitatory layer
leads to the suppression of the excitation of the inhibitory
layer. This time, the activation of the inhibitory layer is less
suppressed then the activation of the opposite layer. The av-
erage activation of mostly active excitatory and mostly inac-
tive inhibitory layers is higher than in the mostly active in-
hibitory and mostly inactive excitatory layers (Fig. 9 left and
middle panels).

Figure 10 displays the phase diagram in the space of ny;,
and e. The diagram is shown for ny=3.125%, and ny;,
=25%, as an example. The regions corresponding to unimo-
dal, bimodal, and quadromodal behaviors are labeled accord-
ingly. The region with prominent bimodal oscillations is lo-
cated between critical curves ec and g,. €, defines the
separation between unimodal and bimodal regimes, while g,
indicates bimodal-to-quadromodal transitions. Typical spatial
distributions of activities are displayed for unimodal, bimo-
dal, and quadromodal oscillations. The upper rows contain
snapshots of excitatory layers, while lower rows show inhibi-
tory layers.

Rigorous mathematical study of the observed phenom-
enon is very difficult and it is beyond the scope of this paper.
Only very limited single-layer configurations allow thorough
mathematical analysis at present, such as the mean field
model, and the local model with weak noise [31,32]. Isotro-
pic, mean field models in a single layer show that magneti-
zation satisfies d*=Ff,,(d*) [32], where
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FIG. 10. Phase diagram in the space of ny; and e. The regions
corresponding to unimodal, bimodal, and quadromodal behaviors
are labeled accordingly. Typical spatial distributions of activities are
displayed for excitatory (upper panel) and inhibitory (lower panel)
layers, respectively. The separation between unimodal and bimodal
regimes is defined by e, while the bimodal-to-quadromodal tran-
sitions are demarcated by the curve given by &c. The diagram is
evaluated for n,=3.125%, and ny;=25%.

A
ful) =2 (' . | )prx’(l — x)lAlr, (4)

For majority rule, p,=¢ if r<A/2 and p,=1-¢ if r
= A/2. For a neighborhood of size |A|=5, the problem is
analytically solvable and the critical exponent is $=0.5. The
subcritical system is bistable and it has two symmetric fixed
points between 0 and 1, due to the symmetry of the problem
relative to 0.5. Adding nonlocal connections in a single-layer
case changes the critical exponents and the critical points,
but the system still exhibits transition between subcritical
(paramagnetic) and supercritical (ferromagnetic) states, as
observed in Ising systems [39].

In the presence of inhibition, the symmetry of the problem
is broken and there can be multiple stable points and limit
cycle solutions. With inhibition we have an extended critical
region, not just a single critical point. The critical region is
demarcated by e, and g,. Narrow-band oscillations take
place under the condition e-<e&<g. For supercritical re-
gimes &>g,, paramagnetic behavior is observed, while
there are multimodal oscillations for subcritical parameters
ec>¢e. Mathematical analysis of these systems is the objec-
tive of ongoing efforts [51].

V. CONCLUSIONS

In this paper the presence of a two-step transition to criti-
cality is demonstrated in PCA with inhibition. Our analysis is
based on finite-scale scaling methodology applied to large-
scale simulations. In coupled layers with appropriately se-
lected topology and &, the negative feedback from an inhibi-
tory layer leads to the onset of narrow-band oscillations.
These oscillations are very different from the ones observed
in the case of pure excitation, when mutual excitation be-
tween the nodes maintains broadband oscillations, which are
self-stabilized by a nonzero point attractor.
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Noise values for the onset and termination of narrow-band
oscillations depend on the PCA connectivity, defined by the
density of nonlocal connections ny; and the strength of the
connection between excitatory and inhibitory layers ny. The
observed behavior has been analyzed here and illustrated us-
ing a phase diagram over the space of parameters & and ny;.

Future work aims at coupling several excitatory-inhibitory
layers oscillating at different frequencies. Such a complex
model can give rise to emergent spatiotemporal behaviors
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with multiple competing oscillations to simulate oscillations
in large-scale cortical structures.
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