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We numerically investigate quantum dynamics in a one-dimensional double-well system emphasizing influ-
ence of a parametrically polychromatic perturbation on the dynamics. It is found that time dependence of
transition probability for an initially localized wave packet between the wells shows two types of motion,
coherent and incoherent motion, depending on the perturbation parameters. As the strength and/or the number
of frequency components of the perturbation increase, coherent motion changes into incoherent one. The
former is related to coherent tunneling of the wave packet due to coherence; the latter is related to a delocalized
state caused by decoherence. In coherent motion, by virtue of coherence of the dynamics, the expectation value
and the standard deviation of a dynamical variable such as the energy of the system show oscillatory time
dependence around the initial values. On the contrary in incoherent motion, because of the decoherence, the
time dependence fluctuates irregularly around a certain value after a rapid increase due to the resonance. We
find that negativity of the Wigner function also show similar time dependence in each type of motion. We
compare the classification of the quantum dynamics based on regularity of the time dependence with the one
of corresponding classical dynamics based on the Lyapunov exponent. The classifications of the quantum and
classical dynamics overlap well in the parameter space. Furthermore, we confirm decoherence of quantum
dynamics in a kicked double-well system.
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I. INTRODUCTION

Quantum dynamics in classically chaotic systems has at-
tracted much attention during several decades. In particular it
has been of great interest to investigate influence of classical
chaos on quantum-mechanical phenomena related to quan-
tum coherence, such as tunneling, dynamical localization of
a wave packet, and decoherence.

Recent studies have revealed that classical chaos affects
quantum tunneling drastically. When classical dynamics
shows chaos, the corresponding quantum system exhibits re-
markable enhancement of coherent tunneling, so-called
chaos assisted tunneling �1–4�. The chaos assisted tunneling
is triggered by an intermediate state which resides in a cha-
otic region of the corresponding classical phase space. More-
over influence of weak chaos on quantum tunneling is inves-
tigated in terms of nonlinear resonance �5,6�. In the
connection with the present paper, we here refer to two fa-
mous quantum tunneling phenomena in a time-dependent
one-dimensional double-well potential. Lin and Ballentine
studied wave packet tunneling in a Duffing system without
dissipation which shows strong chaotic dynamics in the clas-
sical limit �1�. They found that coherent tunneling occurs
between symmetry-related Kolmogorov-Arnold-Moser tori
which emerge in the phase space owing to strong nonlinear
resonance. Because of the classical chaos, the tunneling fre-
quency is enhanced by several order of magnitude compared
to the unperturbed one. Chaos assisted tunneling is experi-
mentally observed recently in various systems, for instance,

a cold cesium atom in an amplitude-modulated standing
wave of light �7�; transfer of light power between the two
optical waveguides �8�. On the other hand, the second ex-
ample is quite opposite to the first one. Grossmann et al.
studied coherent destruction of tunneling in a Duffing system
as well as Lin et al. did but with different perturbation pa-
rameters �9�. They found a one-dimensional manifold in the
parameter space spanned by the amplitude and the frequency
of the perturbation where the tunneling between the wells is
completely suppressed. This suppression is attributed to the
fact that the time scale of the tunneling diverges because the
two states of the ground state doublet, which is responsible
for the tunneling, intersect each other on the manifold. The
suppression of tunneling is also experimentally observed in
an optical double-well system �10�.

On the other hand, localization of a wave packet in a
classically chaotic system has also been studied from the
point of view of quantum coherence �11–15�. For instance, in
a kicked rotor system, quantum dynamics mimics the corre-
sponding classical dynamics for only a short time scale
which is proportional to the squared value of the kicking
strength divided by that of Planck constant. After the time
scale, the wave function starts to localize because of the
quantum coherence, whereas the corresponding classical dy-
namics continues to diffuse in the momentum space. The
destruction of the localization in the kicked rotor system has
been investigated by applying another external field in Ref.
�11� or by introducing a noise to the system in Ref. �15�.
Especially noise-induced delocalization in the kicked system
is experimentally confirmed recently for cesium atoms in a
modulated one-dimensional optical lattice �16�. Effect of a
classical accelerator mode on the delocalization of a wave*igara4.akira@gs.niigata-u.ac.jp
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packet and the momentum diffusion is also discussed in Ref.
�17�.

Moreover, it is well known that a quantum system loses
coherence when it is coupled to another system which con-
sists of many degrees of freedom, i.e., environment �18�. The
coupling to the environment changes the quantum system
into the classical system because of decoherence �19�. For
instance, Habib et al. showed that decoherence brings a
smooth quantum-to-classical transition in a classically cha-
otic system which is coupled to environment �20�. It has also
reported that chaotic degrees of freedom which are coupled
to a quantum system of interest plays an equivalent role to
decoherence of the system �21�.

As far as the present authors know, it is less well known
that how parametric instability affect the quantum dynamics
in a one-dimensional time-dependent double-well system, in
spite of the classical significance �22,23�, whereas the effect
of instability induced by forced oscillation on the dynamics
is well investigated. �See, for instance, Ref. �24�.� Therefore
we consider quantum dynamics as well as classical dynamics
in a parametrically driven one-dimensional double-well sys-
tem. In a previous paper �25�, we have investigated quantum
dynamics in a one-dimensional double-well system which is
parametrically driven by a monochromatic external field. It
has been found that quantum tunneling between the wells is
broken by the perturbation with relatively large perturbation
strength when the driving frequency is close to resonance,
while the quantum tunneling is enhanced when the frequency
is off-resonant to the intrinsic frequency in the unperturbed
system.

In the following, we use the term decoherence in the
sense of irregularity of quantum dynamics which brings de-
localization phenomena of a wave packet. Contrary to this,
regular dynamics has coherence, i.e., constructive interfer-
ence, which gives localization property to a wave function.
In other words, decoherence causes the destruction of the
constructive interference as observed for some perturbed
cases by external noise. Indeed, once decoherence occurs, a
wave packet cannot localize again within a realistic time
scale after the delocalization caused by the perturbation in
the system we here deal with.

We investigate how the polychromatic perturbation influ-
ences the dynamics, on the basis of numerical results of
quantum and classical dynamics in a parametrically driven
one-dimensional double-well system. We find that the quali-
tative change of the wave packet dynamics occurs as the
strength and/or the number of frequency components of the
perturbation increase. The polychromatic perturbation can
enhance coherent tunneling between the wells as the pertur-
bation strength increases. On the other hand, the perturbation
can also induce decoherence of the quantum dynamics when
the perturbation strength increases further. This implies exis-
tence of a critical perturbation strength depending on the
number of frequency components. Exceeding the critical per-
turbation strength changes the coherent quantum motion to
an incoherent one which is related to a delocalized wave
function due to destruction of coherence.

In Ref. �26�, we have reported some preliminary results
concerning the enhancement of the tunneling and decoher-
ence in the polychromatically perturbed double-well system.

In the present paper, we give the extended results as well as
aspects by the Wigner function. Comparing with the previous
paper, the present one has the following characteristics: �i�
The quantum dynamics is considered in detail through the
time evolution of the wave function and the validity of the
two-level approximation. �ii� Comparison between the
classical-quantum dynamics is directly shown. �iii� The uni-
versality of the phenomenon is discussed by giving numeri-
cal results for another system, the kicked double-well sys-
tem. �iv� The quantum dynamics under a stochastic
perturbation is dealt with in more detail than the previous
one. �v� Numerical results on the resonance of transition
probability and fidelity are also given.

The organization of this paper is as follows. In Sec. II we
introduce the model and the basic feature. In particular, we
emphasize the essential difference between our model and a
familiar one which is used in many other works.

In Sec. III we classify the classical dynamics with particu-
lar emphasis on the perturbation parameter dependence of
the numerically obtained Lyapunov exponent.

In Sec. IV we show numerical results on the transition
probability between the potential wells for an initially local-
ized wave packet. We introduce a quantity which measures
regularity of time dependence of the transition probability.
We classify type of quantum motion on the basis of the pa-
rameter dependence of the quantity. Through this classifica-
tion, we show that the qualitative change occurs in the quan-
tum dynamics.

In Secs. V and VI, we give properties of the wave packet
dynamics in detail for each case which is classified in Sec.
IV, focusing on time dependence of the expectation value
and the standard deviation of the energy, the uncertainty
product, and the Hushimi representation of a wave function.
There is quantitative change in the time dependence of such
quantities from oscillation to irregular fluctuation. We dis-
cuss the types of the corresponding quantum dynamics on
the basis of validity of a two-level approximation and influ-
ence of the underlying classical chaos.

In Sec. VII, we discuss quantum-classical correspondence
comparing the time evolution of the Wigner function with
that of classical phase space density. Moreover, we give nu-
merical results of negativity of the Wigner function in order
to make the difference between coherent and incoherent mo-
tion clear.

In Sec. VIII, we show coherent tunneling and decoher-
ence in a kicked double-well system. We confirm that kick-
ing impulse brings not only enhancement of coherent tunnel-
ing but also decoherence of the quantum dynamics as well as
the polychromatic perturbation does.

Section IX is devoted to the summary of the present
paper.

In Appendix A, we give a brief comment on resonance in
time dependence of the transition probability. In Appendix B,
we show numerical results on wave packet dynamics under a
stochastic perturbation, in order to compare with that under
the polychromatic perturbation. Then we also briefly refer to
the relationship of our treatment of the stochastic perturba-
tion and the stochastic Schrödinger equation. In Appendix C
we give numerical results on fidelity in the system which is
commonly used as a measure of coherence of quantum dy-
namics.
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II. MODEL

We consider dynamics in a driven one-dimensional
double-well system which has the following Hamiltonian:

H�p,q,t� =
p2

2
+ V�q,t� , �1�

V�q,t� = V0�q� + V1�q,t� , �2�

V0�q� =
q4

4
−

a

2
q2. �3�

Here p and q represent the canonically conjugate momentum
and coordinate, respectively. We set Planck constant �=1 for
quantum-mechanical calculation throughout the present pa-
per. The potential V�q , t� consists of two parts; V0�q� repre-
sents the unperturbed double-well potential and V1�q , t� the
time-dependent perturbation. The parameter a in V0�q� ad-
justs the depths of and the distance between the wells. We
take a=5 throughout the present paper. Then the frequency
�cl

0 of the classical harmonic oscillator around an unper-
turbed potential well is given by �cl

0 =�2a=�10�3.16. The
time-dependent perturbation takes the form

V1�q,t� =
A�t�

2
q2, �4�

where

A�t� =
1

�M
�
i=1

M

�i sin��it + �i0� �5�

is the external field which parametrically drives the unper-
turbed system. The external field A�t� consists of M sinu-
soidal modes which are coupled to the system with strength
�i. For the sake of simplicity, we set �i=� for all i and �
=0.1,0.2, . . . ,1.0. Then under the setting �=1, the perturbed
quantum system has several energy doublet for each value of
�. The frequency of ith sinusoidal mode in A�t� is repre-
sented by �i. We set the frequencies �i’s of the perturbation
as mutually incommensurate. The incommensurate relation-
ship breaks the periodic time dependence of the Hamiltonian
and disables it from an approach based on the Floquet theory.
Moreover, we take �i’s to be around unity. Then �i’s are off
resonant in the unperturbed system both classical and quan-
tum mechanically,

�i � �cl
0 and �i � �E02

0 �i = 1,2, ¯ ,M� , �6�

where �E02
0 is the energy difference between the ground state

doublet and the first excited one in the unperturbed system
�see Table I�. The initial phases of the modes of A�t� is rep-
resented by �i0 which are uniform random number in the
range �0, 2��. For a different combination of the frequencies
	�i
 and the initial phases 	�i0
, we confirmed that the fol-
lowing results in the present paper are almost similar if �i’s
are off resonant. We refer to quantum dynamics under the
perturbation with resonant frequencies in Appendix A.

Snapshots of the potential and some lowest energy levels
of the unperturbed system are illustrated in Fig. 1. Several
eigenvalues and energy differences between them of the un-
perturbed system are given in Table I.

During the time evolution, the system remains symmetric
with respect to reflection of q, H�p ,−q , t�=H�p ,q , t�, and the
energy of the separatrix is always zero in this model. These
two properties give some essential difference from other
works using a Duffing-type system. Note that we use the
term a “Duffing-type system” in the sense of a dissipation-
less double-well system whose unperturbed potential is given
by V0�q�, which is similar to our system but whose time-
dependent perturbation is proportional to q �V1�q , t�	q� un-
like our system. First, whenever there exists an eigenstate of
the Hamiltonian with a negative eigenvalue, the symmetry
always gives the ground state doublet. This doublet is re-
sponsible for wave packet tunneling when the wave packet
fully populates in the doublet. Secondly, an adiabatic transi-
tion between instantaneous eigenstates is concerned. The in-
stantaneous eigenstates are obtained by H�t��n�t��
=En�t��n�t��. Then the time-dependent Schrödinger equation
can be expressed in the following form:

TABLE I. Eigenenergy and energy difference in the unperturbed
system. Here n denotes the quantum number, En

0 eigenenergy, �Enm
0

the energy difference between the nth and mth eigenenergy in the
unperturbed system.

n En
0 �En,n−1

0

0 −4.723

1 −4.722 6.747
10−4

2 −1.960 2.762

3 −1.910 5.033
10−2

4 −6.723
10−3 1.954

5 6.349
10−1 6.416
10−1

6 2.018

-8
-6
-4
-2
0
2
4
6
8

-3 -2 -1 0 1 2 3

V
(q

,t)

q

t=0
t=π/2Ω1

t=3π/2Ω1

FIG. 1. �Color online� Snapshots of the driven double-well po-
tential, energy eigenvalues, and the initial wave packet �Eq. �9��.
The potential curves are described for the case M =1 with �=1.0 at
t=0,� /2�1, and 3� /2�1. The horizontal lines represent the seven
lowest energy eigenvalues of the unperturbed system. There are two
doublets under the top of the potential barrier. The initial packet is
enlarged by 10 times in the vertical direction.
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dan�t�
dt

= − ian�t�En�t� + �
m��n�=0

�

am�t�

n�t���H�t�/�t�m�t��

En�t� − Em�t�
,

�7�

where an�t�’s are the expanding coefficients of the wave
function, i.e., ���t��=�n=0

� an�t��n�t��. The second term of the
right-hand side in Eq. �7� represents an adiabatic transition
between instantaneous eigenstates of H�t�. Because
�H�t� /�t	q2 and each eigenstate �n�t�� is an even or odd
function of q, an adiabatic transition occurs between the
same parity only, unlike a Duffing-type system �27�. Note
that, when such a system is perturbed polychromatically, an
instantaneous eigenstate has no parity symmetry even includ-
ing generalized parity. This indicates that the transition am-
plitude described by 
n�t���H�t� /�t�m�t�� in the second term
of Eq. �7� survives for substantially all m in a Duffing-type
system. Therefore an adiabatic transition occurs less fre-
quently in our system than a Duffing-type one. Moreover
when the driving A�t� /2 is replaced by a noise in the corre-
sponding classical Newton equation of motion, the noise is
included as a multiplicative noise in our system �see Eq. �8��,
not as an additive one.

III. CORRESPONDING CLASSICAL DYNAMICS

Before showing numerical results on the quantum dynam-
ics, we consider the corresponding classical dynamics focus-
ing especially on perturbation parameter dependence of the
maximum Lyapunov exponent. The equation of motion of
the classical dynamics is given as

d2q

dt2 = − �q3 + A�t�q� . �8�

The time-dependent perturbation is included parametrically.
Figure 2 shows the classical phase space structure for

some combinations of the perturbation parameters, i.e., the
perturbation strength � and the number M of the frequency
components of the perturbation. In order to obtain clear
quantum-classical correspondence, we set the initial points
uniformly around the center of the right well according to the
initial wave packet of Eq. �9� in the quantum dynamics.

In Figs. 2�a� and 2�b�, the classical trajectories are fully
confined in the initially prepared potential well with a regular
structure and do not extend over the wells. When M =1 with
�=0.1 shown in Fig. 2�a�, the trajectories form Kolmogorov-
Arnold-Moser tori. On the contrary, when M =2 with �=0.1
shown in Fig. 2�b�, the trajectories have the width originating
from the polychromatic time dependence of the Hamiltonian.
The width of a trajectory grows with the increase of M
and/or �. The regular structure mentioned above dominates
the phase space structure even for a relatively large pertur-
bation strength because of the off-resonant frequencies of the
perturbation. In these cases a chaotic region in the phase
space is restricted only around the unperturbed separatrix.

We see global chaotic behavior in Figs. 2�c� and 2�d�. As
M and/or � increase further, the regular structures are gradu-
ally destroyed and replaced by a global chaotic sea because
of the overlapping resonance �28,29�. In the case shown in

Fig. 2�c�, some trajectories escape from the right well which
seem to be chaotic, while most of the trajectories still local-
ize in the right well against the perturbation. In Fig. 2�d�, we
find that almost all trajectories show global chaotic behavior
not being confined in the right well.

In order to numerically estimate the stability of a trajec-
tory, we calculate the maximum Lyapunov exponent 
cl

max

within finite time interval t� �0,T�, where the definition of T
is given in Sec. IV. We give the perturbation parameter de-
pendence of 
cl

max in Fig. 3. From Fig. 3�a� we see strong
chaotic motion occurs when M �3 in the present system. We
also see that 
cl

max increases rapidly as the perturbation
strength increases once the trajectory becomes chaotic.

Figure 4 represents the roughly estimated phase diagram
of 
cl

max in the parameter space spanned by M and �. In this
phase diagram we classify degree of chaos of the classical
dynamics depending on the value of 
cl

max in the following
way: �i� When 0�
cl

max�0.04, almost all trajectories are
confined in the initially prepared well with regular motion.
�ii� When 0.08�
cl

max, almost all trajectories show global
chaotic motion. �iii� When 0.04�
cl

max�0.08, the motion is
weakly chaotic, i.e., neither globally chaotic nor fully regu-
lar. This corresponds to the intermediate motion between the
regular and the globally chaotic motion. We see two types of
typical motion, i.e., regular and chaotic motion, are divided
by weak chaotic motion. We refer to the region of the phase
diagram in which the classical motion is regular �chaotic� as
the regular (chaotic) motion regime in the present paper. We
see a similar structure of the phase diagram for quantum
dynamics in the next section.

From the classical dynamics shown above, we may na-
ively expect that the quantum tunneling is enhanced by the
classical chaos as seen in the chaos assisted tunneling men-
tioned in the Introduction �1–4�. In the next section we see
that this is not always true.
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(a) M=1, � =0.1
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(c) M=10, � =0.6

-8
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0

4

8

-4 -3 -2 -1 0 1 2 3 4

p

q

(d) M=2, � =1.0

FIG. 2. �Color online� Classical phase space structures for some
combinations of the perturbation parameters � and M. The initial
points are distributed uniformly around the center of the right well
for the sake of quantum-classical correspondence. The combina-
tions of the perturbation parameters are �a� M =1, �=0.1; �b� M
=2, �=0.1; �c� M =10, �=0.6; �d� M =10, �=1.0. Stroboscopic plots
are taken at times t=2�n /�1 �n=0,1 ,2 ,…�. Note that the plots are
not exact Poincaré surface of the section because of the polychro-
matic time dependence of the Hamiltonian. In panel �c� a global
chaotic trajectory is denoted by a large point �cross�.
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IV. TRANSITION PROBABILITY AND DEGREE
OF COHERENCE

In this section we show numerical results on wave packet
dynamics in the system. On the basis of time dependence of
transition probability between the potential wells, we classify
quantum-dynamical behavior.

A. Initial state and numerical setting

In order to trace the wave packet dynamics in the system,
we use the following Gaussian wave packet as the initial
state which is localized in the right well of the potential,

��q,t = 0� = ����1/4 exp�−
�q − q0�2

2�
� , �9�

where q0=�a�2.236 is the right bottom of the unperturbed
potential well and �=1 /3.4�0.3 is the initial spread of the
wave packet. This wave packet describes accurately an
equal-weight linear combination of the ground state doublet
in the unperturbed system,

���t = 0�� �
1
�2

��0�t = 0�� + �1�t = 0��� , �10�

with an appropriate choice of the relative phase. In the un-
perturbed system, this wave packet shows coherent tunneling
between the wells because of interference between the two
states of the ground state doublet �30�. The recurrence time T
of this tunneling is given by T�2�� /�E01

0 �9.4
103,
where �E01

0 is the energy split in the ground state doublet in
the unperturbed system as given in Table I. Therefore, the
time scale T can be used for a reference time when we con-
sider influence of the polychromatic perturbation described
by Eqs. �4� and �5� on the wave packet dynamics. We hence
consider the wave packet dynamics in the time interval t
� �0,T� in the following.

For numerical integration of the time-dependent
Schrödinger equation, we use the second-order symplectic
integrator �31�,

���t + �t�� = exp�−
i

�

K�t

2
�exp�−

i

�
�V�q,t + �t/2���t�


exp�−
i

�

K�t

2
����t�� + O��t3� , �11�

where K= p2 /2 is the kinetic energy operator. We set the time
mesh �t=2� /500�1.26
10−2, and the spatial one �q
�4.72
10−2.

Under setting �=1, effective Planck constant �eff
�� /Schar is estimated as �eff�1 /40, where Schar is a charac-
teristic value of a classical action that is the area enclosed by
the unperturbed classical separatrix. Therefore, all the fol-
lowing consideration is in a purely quantum-mechanical
realm.

B. Transition probability

We define transition probability PL�t� which gives the
probability that the wave packet is found in the left half side
q�0,

PL�t� � �
−�

0

���q,t��2dq , �12�

where ��q , t� represents the solution of the time-dependent
Schrödinger equation with the initial condition of Eq. �9�.
When the perturbation strength is relatively small, the quan-
tity PL�t� can be interpreted as tunneling probability; the ini-
tially localized wave packet passes through the central en-
ergy barrier and reaches the left well by tunneling.

Figures 5 and 6 show time dependence of PL�t� for vari-
ous combinations of the perturbation parameters, i.e., the
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FIG. 3. �Color online� Perturbation parameter dependence of the
maximum Lyapunov exponent 
cl

max. The upper panel �a� describes
the � dependence for various M’s; the lower panel �b� the M depen-
dence for various �’s.
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FIG. 4. �Color online� Phase diagram of Lyapunov exponent.
Circle ��� denotes regular motion �0.0�
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max�0.04�; triangle ���
weak chaotic one �0.04�
cl

max�0.08�; cross �
� strong chaotic one
�0.08�
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max�.
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strength � and the number M of the frequency component of
the perturbation.

The curve labeled by “M =0” in Fig. 5�a� represents the
time dependence of the tunneling probability in the unper-
turbed case. In the case, the coherent tunneling occurs which
is mentioned in Sec. IV A and show regular oscillation with
time t. We also find similar regular oscillations of PL�t� with
enhanced frequency when M =1 and M =5. The regularity
suggests that quantum dynamics still has coherence and
hence that PL�t� still represents tunneling probability be-
tween the potential wells. In the present paper, we call this
kind of motion coherent motion, whose definition is given in
Sec. IV C. We observe small amplitude oscillation around
the dominant oscillation of PL�t� representing the tunneling
in coherent motion. The small amplitude oscillation origi-
nates from higher excited states involved in the initial wave
packet of Eq. �9�. In coherent motion, the frequency of PL�t�
becomes larger as M increases. On the contrary, we see dif-
ferent types of time dependence of PL�t�, i.e., irregular fluc-
tuation when M =10, and intermediate oscillation which is
neither coherent nor irregular when M =7. In any cases
shown above, in relatively short time scale t�1000, we find
enhancement of PL�t� by the perturbation Eq. �4� compared
to the unperturbed case. The increase of M gives larger en-
hancement which may be attributed to the increase of sto-
chasticity in the corresponding classical dynamics as seen in
chaos assisted tunneling.

Figure 5�b� shows the time dependence of PL�t� for rela-
tively large perturbation strength �=0.8. When M =1, we still
find coherent oscillation of PL�t� with the enhanced fre-
quency due to the strong perturbation strength compared to

the previous case �=0.4. On the other hand, when M =10,
PL�t� fluctuates irregularly compared to the case �=0.4.

Next we give the � dependence of PL�t� for various M’s in
Fig. 6. When M =2 shown in Fig. 6�a�, PL�t�’s show coherent
motion even for a large perturbation strength. It is clearly
shown that the frequency of coherent motion becomes large
as the perturbation strength increases. When M =5, shown in
Fig. 6�b�, a significant change does not occur for small per-
turbation strength ��=0.1�, compared to the case M =2 with
the same perturbation strength. However, the perturbation
distorts coherent motion for relatively large perturbation
strength, ��0.6, although the time dependence is not fully
irregular when �=0.7. When M =10, shown in Fig. 6�c�, co-
herent oscillation is not seen even for relatively small �; even
when �=0.2, we see slight but clearly different time depen-
dence from that with �=0.1.

The above numerical results show that the polychromatic
perturbation brings not only the enhancement but also the
breakdown of coherent tunneling, depending on the pertur-
bation parameters. Coherent tunneling is replaced by irregu-
lar fluctuation after some enhancement. Once coherent mo-
tion is broken by the perturbation Eq. �4�, with increase of �
and/or M, the transition probability rapidly fluctuates around
PL�t��0.5 and the amplitude of PL�t� becomes smaller.
These facts suggest that the wave function cannot localize in
either of the potential wells. In the present system, we do not
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upper panel �a� represents PL�t� for the unperturbed case. The cal-
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observe a situation that a wave function settles down in both
of the potential wells clearly splitting into the two parts,
different from a situation discussed in Ref. �32�. If this situ-
ation would occur, the ground state doublet were still popu-
lated. However, when a wave function cannot localize, it is
spread over the potential barrier, as we see in the following
sections. This indicates that the ground state doublet is not
occupied, and that, therefore, coherent tunneling breaks
down.

We also observe that coherent motion breaks down for
relatively small � as M increases. We therefore expect that
the quantum dynamics under a polychromatic perturbation
approaches to that under a stochastic perturbation, as the
number of frequency components of the polychromatic per-
turbation increases. Numerical results on quantum dynamics
under a stochastic perturbation is given in Appendix B. On
the other hand, when PL�t� fluctuates irregularly, the time
dependence is similar to that under a case driven by resonant
frequencies which is given in Appendix A.

We next consider Fourier transform I��� of transition
probability, in order to obtain a relevant time scale in PL�t�,

I��� = ��
0

T

PL�t�exp�− i�t�dt�2

. �13�

Figure 7 gives � dependence of I��� for several combina-
tions of the perturbation parameters.

As shown in Figs. 7�a� and 7�b�, there is only a single
peak corresponding to the energy difference on the � axis, if
the ground state doublet effectively describes the dynamics
on the basis of the two-level approximation. In this case we
expect that the second term of the right-hand side of Eq. �7�
is negligible. Then the wave function takes the form

���t�� =
1
�2

�e−i�0
t E0�s�ds�0�t�� + e−i�0

t E1�s�ds�1�t��� . �14�

We have confirmed the validity of the two-level approxima-
tion in a monochromatic perturbation �M =1� in Ref. �26�. In

this case, the oscillation period Tosc of PL�t� is proportional
to the averaged energy split in the ground state doublet with
respect to the period of the time-dependent perturbation, i.e.,
Tosc	

�1

2��0
2�/�1�E1�t�−E0�t��dt. In other words, the averaged

energy split in the ground state doublet is effectively en-
hanced by the perturbation. In Fig. 7�a�, the effective en-
hancement is found for the case M =2 with �=1.0, compared
to the one M =1 with �=0.1. We see that the enhancement
appears in terms of the period of PL�t� in Fig. 6�a�. The
enhancement of the energy split in the ground state doublet
brings the enhanced frequency of coherent tunneling as dis-
cussed in Ref. �33�.

When M =7 with �=0.5 shown in Fig. 7�b�, in spite of the
weak irregular time dependence of PL�t�, I��� does not show
prominent difference from those shown in Fig. 7�a�. On the
other hand, when M =10 with �=0.5 shown in Fig. 7�c� in
which PL�t� fluctuates irregularly, we clearly see different �
dependence of I���. When PL�t� fluctuates irregularly, the
number of peaks of I��� increases. Moreover the width
around a peak broadens with the increase of � as shown in
Fig. 7�d�. As a result, from Fig. 7, we clearly see the break-
down of the two-level approximation as M and/or � increase,
which causes decoherence of the dynamics.

C. Degree of coherence

In order to make clear the difference between coherent
motion, irregular fluctuation, and intermediate motion ob-
served above, we deal with a histogram of transition prob-
ability. In Fig. 8, the histograms are shown by projecting the
time dependence of PL�t� onto the PL axis for several com-
binations of the perturbation parameters.

In the case of coherent motion shown in Fig. 8�a�, the two
prominent peaks appear at the edges PL=0 and PL=1, as
expected from the fact that the tunneling probability in the
unperturbed system has sinusoidal time dependence �30�.
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The existence of the two peaks at the edges indicates the
occurrence of coherent motion because the wave packet can
localize in either of the potential wells by tunneling. On the
other hand, as shown in Fig. 8�b�, the peaks become smaller
owing to the increase of irregularity in the quantum dynam-
ics as � and/or M increase. In this case, the wave function
cannot localize in either well. As quantum dynamics be-
comes irregular, the form of the corresponding histogram
finally approaches to a bell-like shape as shown in Figs. 8�c�
and 8�d�. The behavior means that the motion of the wave
packet cannot be associated with tunneling.

We next define degree of coherence �PL based on the
fluctuation of transition probability in order to obtain the
quantitative difference between coherent motion, irregular
fluctuation, and intermediate motion,

�PL � 	�PL�t� − PL�2
1/2, �15�

where PL� 1
T�0

TPL�t�dt represents the time average of PL�t�
over the time interval �0,T�.

Figure 9 shows perturbation parameter dependence of
�PL. From Fig. 9�a�, when M �2, �PL’s maintain an almost
constant value against the perturbation. On the contrary,
when M �3, we find that coherent motion breaks down
where �PL’s converge to a certain value after the decrease
around a certain perturbation strength. Figure 9�b� gives the
dependence of �PL on the number M of frequency compo-
nents. We confirm that irregular time dependence of PL�t�
appears even for a smaller perturbation strength as M in-
creases.

On the basis of the value of �PL for each combination of
the perturbation parameters, we roughly divide the type of
motion into three types as follows: �i� Coherent motion: In

this case �PL’s take almost similar value to the unperturbed
one, i.e., �PL�0.3. A wave packet can localize in either of
the potential wells by coherent tunneling, because coherence
of the dynamics fully survives. �ii� Incoherent motion: In this
case the value of �PL’s becomes much smaller than ones of
coherent motion, i.e., �PL�0.2. The small value of �PL
represents that the wave function cannot localize in either
well. The delocalized wave function is brought by decoher-
ence of the dynamics. �iii� Quasicoherent motion: This cor-
responds to intermediate motion between the above ones. In
this case the values of �PL’s satisfy 0.2��PL�0.3. We
here emphasize that the existence of the qualitative change
from coherent motion to the incoherent one is much more
important than the exact value itself of �PL which is needed
to divide the type of motion into three types.

Figure 10 represents the phase diagram of the quantum
dynamics which states the classification of quantum motion,
based on the value of �PL in the parameter space. It seems
that the two kinds of motion, i.e., coherent and incoherent
motion, are divided by the thin layer corresponding to qua-
sicoherent motion. We refer to the region in which coherent
�incoherent� motion occurs as the coherent (incoherent) mo-
tion regime in this paper.

The above numerical estimation suggests the existence of
the critical values �c�M� of the perturbation strength depend-
ing on the number of the frequency component. When the
perturbation strength exceeds the critical value �c�M� for a
fixed M, the quantum dynamics loses the coherence and be-
comes irregular.

We next consider quantum-classical correspondence
through the relationship between the behavior of �PL and

cl

max of the corresponding classical dynamics. Comparing
Fig. 10 with Fig. 4, we observe that the chaotic motion re-
gime of the classical dynamics corresponds to the incoherent
motion regime of the quantum dynamics in the phase dia-
grams. Similarly the coherent motion regime corresponds to
the regular motion regime. Therefore we find rough coinci-
dence of classical regular �chaotic� motion and quantum co-
herent �incoherent� motion. However, note that quantum-
mechanical incoherent motion appears for the parameter
combinations which correspond to the regular motion regime
because the incoherent motion regime is wider than the cha-
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otic motion regime. We revisit the point later relating the
spread of a wave function to the chaotic property of the
corresponding classical dynamics.

Before closing the section, we give a comment on a mea-
sure of coherence. We use the degree of coherence �PL to
measure coherence instead of the widely used quantity such
as fidelity �34,35� because we are interested in the relation-
ship between transition probability and coherence of the dy-
namics. See Appendix C for the consistency between degree
of coherence and fidelity in the present system.

V. ENERGY ABSORPTION, ENERGY SPREAD,
AND COHERENCE OF THE DYNAMICS

In this and the next sections, we consider how the prop-
erty of quantum dynamics in a different regime manifests
itself in the corresponding wave function, emphasizing the
time dependence of the expectation value and the standard
deviation of the Hamiltonian, uncertainty product, and
Hushimi representation. Through this consideration, the clas-
sification of the dynamics based on the degree of the coher-
ence Eq. �15� is justified.

We first consider quantities about energy, in order to esti-
mate energy absorption and energy spread. We deal with the
expectation value 
H�t�� and the standard deviation �H�t� of
the Hamiltonian which are defined by


H�t�� � 
��t��H�t����t�� , �16�

�H�t� � �
�H�t� − 
H�t���2� , �17�

where 
¯� denotes quantum-mechanical average. Figures 11
and 12 show time dependence of 
H�t�� and �H�t� for vari-
ous combinations of the perturbation parameters.

It is worth making a comment on �H�t�. As shown in
Table I, the energy difference �E02

0 between the ground state
doublet and the first excited one is nearly equal to 2.5,
i.e., �E02

0 �2.5��Hc in the unperturbed system. We can see

that the two-level approximation, Eq. �14�, works well for
�H�t���Hc.

A. Behavior of ŠH(t)‹ and �H(t) in the coherent
motion regime

We give features of time dependence of 
H�t�� and �H�t�
in the coherent motion regime. For instance, when M =5 with
�=0.4 shown in Fig. 11�a� and when M =1 with �=0.8
shown in Fig. 11�b�, 
H�t�� oscillates around the initial value
not exceeding the energy of the top of the potential barrier. In
Fig. 12�a�, the time dependence of 
H�t�� is shown when
M =2 with several perturbation strengths. In this case, for
each perturbation strength, 
H�t�� shows similar time depen-
dence to the above cases M =5 with �=0.4 and M =1 with
�=0.8. As the perturbation strength increases, the oscillation
amplitude becomes larger because the potential well become
deeper. There is no substantial difference in the time depen-
dence of 
H�t�� even in case M =5 shown in Fig. 12�b�.

In the coherent motion regime, 
H�t�� shows the recurrent
time dependence to the initial value. This property is attrib-
uted to the coherence of the dynamics. When the two-level
approximation by the ground state doublet Eq. �14� works
well during the considered time interval t� �0,T�, the expec-
tation value of the Hamiltonian takes the form


H�t�� =
1

2
�E0�t� + E1�t�� . �18�
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H�t�� and the standard deviation �H�t� of the Hamiltonian as
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We find that �H�t�’s also show oscillatory time depen-
dence around the initial value as shown in Figs. 11�c� and
11�d�. We do not observe a significant difference between the
cases M =5 with �=0.4 and M =1 with �=0.8. In these cases,
the standard deviation of the Hamiltonian satisfies an in-
equality, �H�t���Hc. This is a supplemental evidence of
holding the two-level approximation in Eqs. �14� and �18�.
The oscillatory time dependence and the holding of the in-
equality are also found in the other cases, as long as they
belong to the coherent motion regime, for example, M =2,
M =5 with �=0.5, and M =10 with �=0.1, which are shown
in Figs. 12�d�–12�f�, respectively.

It is worth noting that, as shown in Fig. 12, the effect of
the polychromatic perturbation appears in 
H�t�� and �H�t�
even for relatively small � when M is large. Peak values of

H�t�� when M =5 with �=0.5 become irregular compared to
those when M =2 with �=1.0. In the former case, although
�H�t� does not show recurrence to the initial value, the in-
equality �H�t���Hc still holds. We expect that the irregular
peaks of 
H�t�� appear when �H�t���Hc without the recur-
rence to the initial value. Emergence of irregular peaks indi-
cates that the time dependence obtains another dominant
time scale which changes coherent into incoherent motion.

B. Behavior of ŠH(t)‹ and �H(t) in the incoherent
motion regime

We next consider the time dependence of 
H�t�� and
�H�t� in the incoherent motion regime, as well as quasico-
herent motion. These features are quite different from those
in the coherent motion regime.

When �=0.4 with M =10 shown in Fig. 11�a�, we see
energy absorption of the system from the external field. This
energy absorption occurs in short time t�1000 at which

H�t�1000���−2. This suggests that the adiabatic transi-
tion occurs from the ground state doublet to the first excited
one, because the first excited doublet of the unperturbed sys-
tem has almost the same value, i.e., E2

0�E3
0�−2 as shown in

Table I. After the energy absorption, for time t�1000, 
H�t��
fluctuates irregularly in the range −5� 
H�t���0. The lower
and upper bounds agree with the energy values of the ground
state doublet and the top of the potential barrier, respectively.
Therefore, after the energy absorption, the wave function
does not remains at an instantaneous eigenstate of H�t� in the
sense that the state cannot be described by a simple linear
combination of a few eigenstates such as Eq. �14�.

With the increase of the perturbation strength, as shown in
Figs. 11�b� and 12�c�, the time dependence of 
H�t�� be-
comes more irregular in the following senses: �i� energy ab-
sorption occurs in shorter time, �ii� the mean value of the
fluctuation after the energy absorption becomes larger, �iii�
the amplitude of the fluctuation becomes larger. These facts
suggests the breakdown of the two-level approximation of
Eq. �14� in the incoherent motion regime.

The time dependence of �H�t� in cases M =7 and M
=10 with �=0.4 is shown in Fig. 11�c�. We see that �H�t�’s
deviate from the initial values and increase with time. Simi-
lar time dependence is already seen in that of 
H�t�� for
incoherent motion. Especially when M =10 with �=0.4,

�H�t� fluctuates irregularly after the rapid increase in short
time, t�1000. This time agrees with the energy absorption
seen in 
H�t��. Moreover in Fig 11�c�, we find that larger M
brings more rapid increase of �H�t�, comparing the case
M =7 to that M =10. As seen in Fig. 11�d� and Fig. 12�f�,
when M =10 with somewhat large �, �H�t� also deviates
from the initial value with irregular fluctuation after the rapid
increase. As the perturbation strength increases, �H�t� varies
over a wider range and behaves more irregularly with respect
to time. After the increase of �H�t�, we confirm a clear
breakdown of the two-level approximation because the wave
function involves several higher energy eigenstates of H�t�
satisfying �H�t��2.5.

As a result, in the incoherent motion regime, because

H�t���0 and �H�t���Hc, the two-level approximation by
the ground state doublet Eq. �14� does not work any more.

C. Tunneling versus pseudoactivation

In the incoherent motion regime, a wave function delocal-
izes over the potential barrier because of the energy absorp-
tion as mentioned in Sec. V B. We refer to this type of trav-
eling of a wave function to pseudoactivation as opposed to
tunneling.

In order to see competition between tunneling and
pseudoactivation, we plot the expectation value of the
Hamiltonian 
H�t�� as a function of the expectation value of
the position operator 
q��
��t��q���t�� in Fig. 13.

In the coherent motion shown in Figs. 13�a� and 13�b�, the
points are distributed regularly under the potential barrier
with a certain width corresponding to the amplitude of oscil-
lation of 
H�t�� seen in Figs. 11 and 12. From the regular
distributions, we can confirm tunneling of the wave packet
between the wells.

On the contrary, in quasicoherent motion shown in Fig.
13�c�, the distribution of the points seems random compared
to the previous cases shown in Figs. 13�a� and 13�b�. Al-
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FIG. 13. �Color online� Plot of 
H� as a function of 
q� for
various combinations of the perturbation parameters. The plots are
taken at times t=2�n /�1 �n=1,2 ,3 ,…�. The parameter combina-
tions are �a� M =2, �=0.1; �b� M =2, �=1.0; �c� M =10, �=0.3; �d�
M =10, �=1.0. The unperturbed double-well potential is drawn by
the broken line as a guide to the eyes.
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though the points are not found above the potential barrier,
the adiabatic transition from the ground state doublet to the
first excited one is confirmed, because 
H� satisfies −5
� 
H��−2 whose lower and upper bounds correspond to the
energy of the ground state doublet and that of the first ex-
cited one, respectively. We expect that the adiabatic transi-
tion induces the observed randomness of the distribution. In
incoherent motion, as shown in Fig. 13�d�, the energy values
are frequently found over the top of the energy barrier. This
implies that pseudoactivation of the wave function is domi-
nant.

From the consideration of Secs. V A and V B, we can
relate the types of traveling of a wave function to those of
motion as follows. In the coherent motion regime, because
the energy satisfies 
H�t��+�H�t��0, tunneling is the domi-
nant process of wave packet traveling between the potential
wells. On the other hand, in the incoherent motion regime,
pseudoactivation is dominant to tunneling, because the en-
ergy satisfies 
H�t���0 with large �H�t�. The pseudoactiva-
tion is much more dominant as wave packet dynamics be-
comes irregular. In quasicoherent motion, we cannot clearly
assign the type of traveling to either tunneling or pseudoac-
tivation because 
H�t���0 or 
H�t��+�H�t��0. This is ad-
equate to describe the transitional character of the quasico-
herent motion.

D. Summary and discussion

Behavior of the time dependence of 
H�t�� and �H�t�
changes from oscillation around the initial values to irregular
fluctuation around a certain value, according to the transition
from coherent motion to the incoherent one.

In the coherent motion regime, the two-level approxima-
tion by the ground state doublet describes the time evolution
of a wave function, because 
H�t�� and �H�t� oscillate regu-
larly around the initial values with keeping 
H�t���0 and
�H�t���Hc. This indicates that the wave packet tunnels
between the potential wells owing to coherence of the dy-
namics. On the other hand, in the incoherent motion regime,

H�t�� and �H�t� show irregular fluctuation after the rapid
increases. A tendency of recurrence to the initial value is not
observed in 
H�t�� and �H�t�. In Table II we summarize
classification of the behavior of 
H�t�� and �H�t� which
characterize the types of motion.

In the incoherent motion regime, rapid absorption of the
energy comes from resonance. It is considered that the in-
crease of � and/or M makes a resonance structure compli-

cated and easy to happen resonances, even if we set the
perturbation frequencies �i’s as the off resonant. The reso-
nance appears at the small vicinity around the �primary� clas-
sical resonance, if the perturbation strength is small, as seen
in Appendix A. Note that in the corresponding classical dy-
namics, increase of � and/or M brings global chaotic behav-
ior due to overlapping resonance.

The increase of �H�t� makes mutual relationship between
the expanding coefficients in Eq. �7� complicated, and breaks
the two-level approximation by the ground state doublet for
the dynamics. In other words, difficulty of constructive inter-
ference leads to the transition in the quantum dynamics from
coherent motion to incoherent motion.

It should be mentioned that we have confirmed that the
growth of 
H�t�� and �H�t� are bounded even in the incoher-
ent motion regime. Therefore, the wave function is confined
in a small subspace spanned by several instantaneous eigen-
states of the Hamiltonian. The bounded-growth is a different
point from the dynamics under a stochastic perturbation �see
Appendix B�.

VI. UNCERTAINTY PRODUCT AND HUSHIMI
REPRESENTATION

In this section we consider the time dependence of the
uncertainty product as the spread of a wave packet in the
phase space, i.e.,

�q�t��p�t� � �
�q − 
q��2��
�p − 
p��2� , �19�

which can be used for a measure of quantum fluctuation. For
instance, enhancement of the uncertainty due to the classical
chaos is discussed in Ref. �36�. However, note that this quan-
tity is not always a good measure of the phase space volume
of a wave packet because this may give overestimation due
to the squeezing of the wave packet �37�.

Figure 14 shows the time dependence of the uncertainty
product for several combinations of the strength � and the
number M of frequency components of the perturbation. The
initial value is �q�t=0��p�t=0�=� /2=0.5 for a Gaussian
packet in each case.

We also consider the Hushimi representation of a wave
function ���t��,

�H�x,p,t� �
1

2�
�
�xp���t���2, �20�

where

TABLE II. Classification of 
H�t��, �H�t�, 
H�t��+�H�t�, �q�t��p�t�, and �H�x , p , t� for each type of motion. Here �q�t��p�t� and
�H�x , p , t� are discussed in Sec. VI. A blank indicates a situation that a clearcut criterion is not found.

Coherent motion Quasicoherent motion Incoherent motion


H�t�� 
H�t���−4 
H�t���0 
H�t���0

�H�t� �H�t���Hc �H�t���Hc


H�t��+�H�t� 
H�t��+�H�t��0 
H�t��+�H�t��0 
H�t��+�H�t��0

�q�t��p�t� �q�t��p�t�� ��q�p�c �q�t��p�t�� ��q�p�c

�H�x , p , t� localized in a potential well with symmetry delocalized over the potential barrier
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�xp�q� = � 1

2���x�2�1/4�ipq −
�q − x�2

4��x�2 � �21�

is a minimum uncertainty Gaussian wave packet centered at
�x , p� with the variance �x �38�. We set �x=1 for numerical
calculation. Figure 15 shows snapshots of the Hushimi rep-
resentation for typical cases of coherent, quasicoherent, and
incoherent motion.

We furthermore give plots of the expectation value of the
momentum operator 
p� as a function of the expectation
value of the position operator 
q� in Fig. 16. In the plots, the
combinations of the perturbation parameters are the same to
those in Fig. 13.

A. Behavior of �q(t)�p(t) and �H(x ,p , t) in the coherent
motion regime

When M =2 with �=0.1 as shown in Fig. 14�a�,
�q�t��p�t� shows oscillatory time dependence with recur-
rence to the initial value. For the initially localized state in
the right well of the potential, �q�t��p�t� grows with time
because a tail of the wave packet leaks out. At t�T /2
�4.5
103, the wave function localizes in the opposite well
by tunneling, then the uncertainty product becomes small
again, �q�T /2��p�T /2���q�0��p�0�. As shown in Fig.
14�b�, even for larger perturbation strength �=1.0,
�q�t��p�t� oscillates with recurrence to the initial value. In-
crease of the perturbation strength enhances the frequency of
oscillation of �q�t��p�t� as well as in PL�t�, 
H�t��, and
�H�t�.

In the coherent motion regime, a wave function has local-
ization property which brings the tunneling of the wave
packet. As confirmed in the Hushimi representation of a state
shown in Figs. 15�a� and 15�b�, contour lines are localized
around the center of a potential well with symmetry. Even at
the final time T, the wave function can localize with symme-
try in the opposite well.

We also confirm coherence of the dynamics in the �
q�,

p�� plot shown in Fig. 16. In Fig. 16�a� the points are dis-
tributed regularly in the range −2� 
q��2 with 
p��0 ow-
ing to tunneling. As � and/or M increase, the points form a
structure with diagonally right down because the centroid
motion of the wave packet becomes dominant.
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FIG. 14. �Color online� Time dependence of the uncertainty
product �q�t��p�t� for coherent and incoherent motion. The pertur-
bation parameters are �a� M =2, �=0.1; �b� M =2, �=1.0; �c� M
=10, �=0.3; �d� M =10, �=0.1, and 1.0.
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FIG. 15. �Color online� Snapshots of the Hushimi representation
for typical cases of the three types of motion. The curve of the
figure eight in �a� indicates the unperturbed separatrix. �a� and �b�
represent cases corresponding to coherent motion. Contour lines of
the Hushimi representation of the initial wave packet, Eq. �9�, are
shown in �a�. The time in �b� is the final time T. �c� and �d� repre-
sent cases of quasicoherent motion. The contour plots in �c� and �d�
are taken at the times which satisfy PL�t��0.5 and 0.7, respec-
tively. �e� and �f� represent cases corresponding to a typical inco-
herent motion. The times in �e� and �f� are those which satisfy
PL�t��0.7 in both cases.

1

0

-1

〈p
〉

(a)
1

0

-1
(b)

-3

-2

-1

0

1

2

3

20-2

〈p
〉

〈q〉

(c)

-3

-2

-1

0

1

2

3

20-2

〈q〉

(d)

FIG. 16. �Color online� Plot of 
p� as a function of 
q� for
various cases. The combination of the perturbation parameters are
the same in Fig. 13.

AKIRA IGARASHI AND HIROAKI YAMADA PHYSICAL REVIEW E 78, 026213 �2008�

026213-12



B. Behavior of �q(t)�p(t) and �H(x ,p , t) in the incoherent
motion regime

When M =10 with relatively large perturbation strength
��0.3 shown in Figs. 14�c� and 14�d�, the oscillatory time
dependence of �q�t��p�t� is not found any more. The time
dependence of �q�t��p�t� show irregular fluctuation around
a certain value after deviation from the initial value. The
time dependence is similar to those of 
H�t�� and �H�t�. In
the cases, a wave function cannot return to the initial shape
within the time interval T once the wave function delocalizes
over the potential barrier. This tendency becomes stronger
with the increase of the perturbation strength.

The delocalization of a wave function in the phase space
is clearly seen through the Hushimi representation in Figs.
15�e� and 15�f�. Moreover, even though PL�t�’s have almost
the same value, the Hushimi representations show quite dif-
ferent shapes with one another. We also confirm that the
wave function does not clearly split into two parts, each of
which localizes around centers of the potential wells.

In the quasicoherent motion shown in Figs. 15�c� and
15�d�, it is shown that a wave packet keeps the localization
property in the space without clear symmetry.

C. Summary and discussion

In the coherent motion regime, �q�t��p�t� shows regular
oscillatory time dependence with recurrence to the initial
value due to coherence of the dynamics. On the other hand,
in the incoherent motion regime �q�t��p�t� shows irregular
fluctuation after deviation from the initial value because of
decoherence.

From Fig. 14, a critical value ��q�p�c�3.5 exists above
which time dependence of �q�t��p�t� loses recurrent behav-
ior and begins to fluctuate around a certain value. This value
may corresponds to the height of the unperturbed separatrix
p�q=�a ,E=0��3.5. This suggests that quantum dynamics
loses coherence when the wave function leaks out onto the
classical separatrix, especially in the p direction. Indeed we
confirmed that the recurrent time dependence to the initial
value of the quantities such as �q�t��p�t�, 
H�t��, and �H�t�
is not broken against the increase of � and M in a single well
system, which is described by changing the sign of the pa-
rameter a in Eq. �3� as V0�q�=q4 /4+aq2 /2.

Finally, we here reconsider the disagreement between the
phase diagram of the quantum dynamics and that of the cor-
responding classical one, mentioned in the end of Sec. IV.
We take the following three factors into account: �i� the ini-
tial position of a wave packet for tunneling, �ii� the area of
regular region in the classical phase space, and �iii� the
spread of a wave function.

The initial position of a wave packet in the phase space is
a very important factor for tunneling �1�. If the initial posi-
tion is taken in the chaotic sea, the wave packet dissolves in
the sea as time evolves and does not show tunneling between
the Kolmogorov-Arnold-Moser tori.

Generally speaking, as the perturbation strength increases,
the stochastic layer becomes wider and finally the whole re-
gion of the phase space becomes chaotic. In our system, we
expect that the larger number of the frequency components

brings the stronger growth of the stochastic layer, when the
perturbation strength is fixed. Therefore, as M and/or � in-
crease, the area of the regular region supporting tori, which is
responsible for the tunneling, decreases, and finally a torus
disappears �26�.

Global phase space structure influences quantum-
mechanical behavior because a wave packet has the natural
tendency to spread over the space �19�. Therefore, even if an
initial wave packet is taken in a regular region of the phase
space, a tail of the wave function is likely to leak out into the
stochastic layer around the classically regular region as time
evolves.

Coexistence of the above three factors suggests that the
quantum motion can become irregular even when the corre-
sponding classical motion is regular. We expect that this co-
existence is the origin of the disagreement of the phase dia-
grams seen in Figs. 4 and 10.

VII. QUANTUM-CLASSICAL CORRESPONDENCE
IN TERMS OF THE WIGNER FUNCTION

In this section we consider quantum-classical correspon-
dence in terms of the Wigner function and its negativity. The
Wigner function of a system is defined by

�W�q,p,t� �
1

2�
�

−�

� �q −
x

2
���t��q +

x

2
�ei2�xdx , �22�

where ��t�����t��
��t�� is the density operator. The Wigner
function is often used to investigate quantum-classical corre-
spondence because the function gives the same form of an
expectation value to the corresponding classical one. How-
ever, the Wigner function cannot be directly considered as
probability density because it is not positive definite, differ-
ent from the Hushimi representation which is always positive
definite due to Gaussian coarse graining �38�.

In order to consider quantum-classical correspondence,
we introduce the classical phase space density �cl�q , p , t�
which obeys the Liouville equation. The formal solution is

�cl�q,p,t� =� dq0dp0��q − q�q0,p0;t��


��p − p�q0,p0;t���cl�q,p,t = 0� , �23�

where ��x� is Dirac delta function, �q�q0 , p0 ; t�, p�q0 , p0 ; t��
is the time-evolved classical phase space coordinate at time t
starting from the initial condition �q0 , p0�, and �cl�q , p , t=0�
is the initial phase space density �39�. For comparison of the
time evolution of the Wigner function with that of the clas-
sical phase space density, we set �cl�q , p , t=0� as the Wigner
representation of the quantum initial state of Eq. �9�,

�cl�q,p,t = 0� =
1

�
exp�−

�q − q0�2

�
− �p2� . �24�
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A. Quantum-classical correspondence in terms
of the Wigner function

We here consider dynamics of the Wigner function com-
paring it with the corresponding classical dynamics for typi-
cal coherent and incoherent motion.

Figure 17 shows the time evolution of the classical phase
space density of Eq. �23� and the Wigner function of Eq. �22�
in the case M =2 with �=0.2 that belongs to the regular mo-
tion regime in the classical dynamics and the coherent mo-
tion regime in the quantum dynamics, respectively. We first
consider the classical dynamics. In Fig. 17 the most outside
contour line of the classical phase space density exists at the
vicinity of the unperturbed separatrix at the initial time.
From the classical dynamics shown in Fig. 17, we see the
existence of somewhat large stable islands around the stable
fixed points of the unperturbed system. Inside of the right
stable island, the phase space density becomes wider as time
evolves because of the whorl structure �39,40�. On the other
hand, we see that the stochastic layer grows rather weakly in

the time evolution. In the quantum dynamics, we see that
coherent tunneling takes place between the classical stable
regions without leaking of a wave function into the outside
of the classical stochastic layer. We also confirm the property
that the wave function can localize inside of either potential
well. It is remarkable that the Wigner function takes negative
values around the unstable fixed point �q , p�= �0,0� because
of interference of the wave function. However, this negative-
value property of the Wigner function is washed away by
integrating with respect to p: ���q , t��2=�dp�W�q , p , t�,
which has a very small value around q=0 in the coherent
motion regime.

Figure 18 shows the time evolution of the classical phase
space density and the Wigner function in the case M =7 with
�=0.7 that belongs to the chaotic motion regime in the clas-
sical dynamics and the incoherent motion regime in the
quantum dynamics, respectively. From the left and middle
columns in Fig. 18, we observe that the classical dynamics
makes a fine structure in the phase space. The fine structure
is formed by fast growth of both of the whorl structure
around the right stable fixed point and the tendril one around
the unstable fixed point within relatively short time. On the
contrary, we confirm that in the quantum dynamics the wave
function delocalizes irregularly over the space by the Wigner
function given in the right column. The delocalization of the
wave function is already shown in the Hushimi representa-
tion in Fig. 15.

B. Negativity of the Wigner function

In incoherent motion, the Wigner function takes a nega-
tive value in wide regions compared to the coherent motion.
Especially at time t�4.7
103, when the classical chaos
fully developed, such regions exist on the classical stochastic
layer disconnectedly and globally. On the basis of this prop-
erty, we consider characterization of the difference between
coherent and incoherent motion in terms of negativity N− of
the Wigner function. The negativity of the Wigner function is
defined by

N−�t� � �
D

��W�q,p,t��dqdp , �25�

where D is a region in which the Wigner function takes a
negative value. The negativity of the Wigner function is also
considered in order to investigate quantum-classical transi-
tion for a chaotic system in Ref. �41�.

We give time dependence of N−�t� for several perturbation
parameters in Fig. 19. In the coherent motion regime, N−�t�
increases because the wave function leaks out into the out-
side of the potential barrier, and decreases toward zero be-
cause the wave function localizes again inside of the oppo-
site potential well, as shown in Fig. 17. In the coherent
motion regime, such recurrent time dependence is similar to
that of PL�t�, 
H�t��, �H�t�, and �q�t��p�t�. On the other
hand, in the incoherent motion regime, N−�t� increases with-
out the recurrence and eventually fluctuates around a certain
value because of the delocalization of the wave function as
shown in Fig. 18. In the incoherent motion regime, such
property of the time dependence is similar to PL�t�, 
H�t��,
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FIG. 17. �Color online� Time evolution of the classical phase
space density �cl�q , p , t� �left column� and the Wigner function
�W�q , p , t� �right column� in the case M =2 with �=0.2. The classi-
cal phase space density is denoted by three contour lines
�cl�q , p , t��3.076
10−1, 1.360
10−1, and 2.026
10−2, from the
inside to the outside. The most outside contour line is set at the
vicinity of the unperturbed separatrix.
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�H�t�, and �q�t��p�t�. In other words, we can see that this
behavior observed in the N−�t� well corresponds to the
change of motion discussed in Secs. IV–VI.

Figure 20 shows the perturbation parameter dependence
of minimum of N− for the several numbers of the frequency
components, where the minimum of N− has been taken for
relatively large time. We clearly find that the minimum of N−
increases as � and/or M increase. Moreover it should be
noted that the minimum of N− in the polychromatically per-
turbed cases approaches to that in the stochastically per-
turbed one with increase of M.

VIII. DECOHERENCE IN A KICKED DOUBLE-WELL
SYSTEM

In this section we confirm whether the decoherence phe-
nomenon of the quantum dynamics can be observed in a
kicked double-well system,

Hkick�p,q,t� = H�p,q,t� − k cos q�
n

��t − n�� , �26�

where the Hamiltonian H�p ,q , t� is given by Eq. �1�. The
strength and the period of the kicking impulse are given by k
and �, respectively. Hamiltonian Hkick keeps the symmetry
mentioned in Sec. II even when the impulse exists. If the
potential term in H�p ,q , t� is a harmonic oscillator, i.e.,
V�q , t�	q2, the system becomes a kicked harmonic oscillator
whose quantum-classical correspondence is well investigated
�42�. We set the kicking frequency 2� /� as incommensurate
to �i’s. For simplicity we consider a case with M =1 and �
=2� /�10�4.08 in the following numerical calculations.

First we investigate the effect of a purely kicking impulse
by setting �=0. Figure 21 shows the time dependence of
PL�t� for several kicking strengths. When the kicking
strength is relatively small, k�3, increase of the kicking

FIG. 18. �Color online� Time evolution of the classical phase space density �cl�q , p , t� �left and middle columns� and the Wigner function
�W�q , p , t� �right column� in the case M =7 with �=0.7. The values of the contour lines in the left column are the same as Fig. 17. The middle
column represents the two inner contour lines shown in the left column.
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strength enhances the frequency of coherent tunneling be-
cause of chaos assisted tunneling. As shown in Figs. 21�c�
and 21�d�, the coherent tunneling is broken by a further in-
crease of the kicking strength. A critical kicking strength
exists for change from coherent oscillation to irregular fluc-
tuation.

Second we investigate influence of a sinusoidal perturba-
tion on the kicked double-well system. Note that the system
has polychromatic time dependence due to the two incom-
mensurate frequencies, �1 and 2� /�, in the time-dependent
potential. We show time-dependence of PL�t� when k=1
with several �’s in Fig. 22. Comparing Fig. 22�a� with Fig.
21�a�, we see that a significant change does not occur when
the strength of the sinusoidal perturbation is relatively small.
On the other hand, as shown in Fig. 22�b�, increase of the
sinusoidal perturbation strength distorts the coherent tunnel-
ing. As the strength of the sinusoidal perturbation increases
further, PL�t� is distorted toward decoherence. As shown in

Fig. 22�d�, we have confirmed occurrence of decoherence of
the quantum dynamics when the strength of the sinusoidal
perturbation is large, ��2.0.

IX. SUMMARY

In the present paper, we numerically studied quantum dy-
namics as well as the corresponding classical dynamics in a
one-dimensional double-well system which is parametrically
driven by a polychromatic perturbation. The time-dependent
perturbation consists of M sinusoidal modes with the
strength �. Each frequency of the modes is mutually incom-
mensurate and off resonant to the intrinsic time scale of the
unperturbed system. We summarize the results as follows:

�i� We have classified the type of motion in the quantum
dynamics into coherent and incoherent motion, on the pa-
rameter space. For the classification, we introduced a quan-
tity, i.e., degree of coherence, to measure regularity of time
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FIG. 21. �Color online� Time dependence of PL�t� for the kicked
double-well system, Eq. �26�, with �=0.
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FIG. 22. �Color online� Time dependence of PL�t� for the kicked
double-well system, Eq. �26�, with M =1. The kicking strength is
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dependence of transition probability between the wells. As
the strength and/or the number of the perturbation increase,
coherent motion changes into an incoherent one when M
�3. There exists the critical value �c�M� of the perturbation
strength, above which the transition from coherent motion to
incoherent one occurs. As the number of the frequency com-
ponents increases, the critical value �c�M� becomes smaller.
Therefore, the polychromatic perturbation can affect the
quantum dynamics even for relatively small perturbation
strength.

�ii� In the coherent motion regime, ���c�M�, a wave
packet still shows coherent tunneling and has the property to
localize in either of the potential wells, owing to coherence
of the dynamics. Two-level approximation by the ground
state doublet describes well the time evolution of a wave
function. Physical quantities such as the expectation value
and the standard deviation of the energy, and the uncertainty
product, show oscillatory time dependence with recurrence
to the initial values. The frequency of the time dependence is
enhanced as the perturbation strength and/or the number of
frequency components increase. Negativity of the Wigner
function in the regime also shows similar time dependence.

�iii� In the incoherent motion regime, ���c�M�, a wave
function spreads over the potential barrier and cannot local-
ize in either well because of decoherence caused by the per-
turbation. Time dependence of some physical quantities
shows irregular fluctuation around a certain value after the
rapid increase due to the resonance. The two-level approxi-
mation no longer holds in the regime. Moreover the energy
growth is bounded at a certain value.

�iv� The classical dynamics shows regular or chaotic mo-
tion depending on the perturbation parameters. In the phase
diagram of the quantum dynamics spanned by the perturba-
tion parameters, the coherent �incoherent� motion regime ap-
proximately overlaps the regular �chaotic� motion regime in
the phase diagram of the corresponding classical dynamics.

�v� Decoherence in a kicked double-well system has also
been observed as the strength of the kick increases. When a
sinusoidal perturbation with somewhat large strength is ap-
plied to the kicked system, the kicking strength for the doco-
herence becomes small compared to the purely kicked case.

�vi� We have confirmed the decoherence phenomena
caused by the perturbation with resonant frequencies even
when the perturbation strength is small. We also compared
quantum dynamics under the polychromatic perturbation
with that under a stochastic perturbation. The dynamics un-
der the stochastic perturbation with relatively large perturba-
tion strength also show incoherent motion as seen in the
polychromatically perturbed case. However, the energy
growth continues unboundedly, different from the polychro-
matically perturbed cases. Furthermore we have obtained a
rough consistency between the decoherence phenomena
based on the degree of coherence and on the decay of fidel-
ity.

In the incoherent motion regime, we have not observed a
sign that a wave function relocalizes once it delocalizes. We
can make the wave packet localized in the opposite well
using optimal control theory �43,44�. On the other hand, in a
double-well system, control of the dynamics within an ap-
propriate time scale can be applied to many physical and

chemical processes such as intramolecular hydrogen transfer
�45�, isomerization �46�, and so on. The detail of the rela-
tionship between decoherence in quantum dynamics and the
controllability of the wave packet dynamics will be given
elsewhere.
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APPENDIX A: TIME DEPENDENCE OF TRANSITION
PROBABILITY FOR RESONANT FREQUENCIES

We give the time dependence of transition probability
PL�t� under a polychromatic perturbation with resonant fre-
quencies. It has been shown that the coherent tunneling be-
tween the wells is broken by a monochromatic perturbation
�M =1� with the resonant frequency when the perturbation
strength is large �25�.

We show that a polychromatic perturbation even with a
small perturbation strength breaks the coherent tunneling.
For this reason, we calculate PL�t� for some frequency sets
	�i

�j�
, where the index j�=1,2 , . . . � represents such a set of
the perturbation frequencies. Numerical results are shown in
Fig. 23 for four sets of 	�i

�j�
, j=1, . . . ,4 when M =5 with
�=0.1.

We take the frequency sets 	�i
�j�
 with keeping �5

�j�

−�1
�j�=const for the all sets, and take �1

�j=2�=2.5��E20
0 ; the

frequency value is very close to the energy difference be-
tween the ground state doublet and first excited one of the
unperturbed system �see Table I�. The others have the off-
resonant minimum frequency; �1

�j=1�=2.0, �1
�j=3�=3.0, and

�1
�j=4�=3.5, respectively. Because of the resonance between

the unperturbed system and the external field, the transition
probability for the j=2 case shows different time dependence
from the other cases, even when the perturbation strength is
small. In the j=1 and j=4 cases, PL�t�’s show regular oscil-
lation similar to the unperturbed one. Moreover in the j=3
case, the tunneling frequency is more enhanced than the j
=1 and j=4 cases. This indicates that the resonance width is
narrow for a small perturbation strength.
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The coherent tunneling breaks down even with a small
perturbation strength in the polychromatic perturbation com-
pared to the monochromatic one, because the resonance oc-
curs more easily as the number of frequency components
increases.

APPENDIX B: COMPARISON TO STOCHASTIC
PERTURBATION

In this appendix, we show numerical results of quantum
dynamics driven by a stochastic perturbation in order to
compare with that driven by a polychromatic one in the text.
First we explain the numerical method of our treatment for
the stochastic perturbation. In the method, the time evolution
of a wave function is described by Eq. �11�,

���t + �t�� = exp�−
i

�

K

2
�t�exp�−

i

�
�V0�q� + ��t�q2��t�


exp�−
i

�

K

2
�t����t�� + O��t3� . �B1�

Here we used a simple noise process replacing the time-
dependent part A�t� /2 of the potential, Eq. �4�, by a dis-
cretized time-series ��tn� obeying independently identical
distributed random numbers with the same power as the
ploychromatically perturbed case. The autocorrelation func-
tion of ��tn� is given by


��tn���tm�� 	 �mn. �B2�

We have also confirmed that the numerical results are almost
the same when we used Gaussian distribution instead of the
uniform distribution. The above treatment of a noise process
��t� is the same as those used in a noise-added kicked system
in the sense that the randomness is directly included in the
time evolution operator �15,47�.

It should be noted that an alternative method is used as
treatment of the Schrödinger equation with stochastic time-
fluctuation ��t�, i.e., the stochastic Schrödinger equation for
an open system �48�. Then the Itô-type stochastic
Schrödinger equation is given by

d���t�� = −
i

�
H0���t��dt −

i

�
V1��q����t��dW

−
1

2
V1��q�2���t��dt . �B3�

Here H0 denotes the noise-free part of the Hamiltonian,
V1��q� is given through an expression V1�q , t�=V1��q���t�, and
dW�t�=��t�dt is a Wiener process which satisfies 
dW�t��
=0 and 
dW�t�dW�s��=��t−s�, where 
¯� is the ensemble
average over all possible realizations of the noise. In the
stochastic Schrödinger equation, V1� represents the effect of a
environment coupled to the double-well system and the pa-
rameter � should rather be interpreted as a coupling constant
between the system and the environment. When the param-
eter is very small, ��O�10−3�, the quantum dynamics of the
system shows good agreement with our naive treatment men-
tioned above �not shown�. It is worth noting that the time

evolution equation of the Wigner function corresponding to
Eq. �B3� has a diffusive term which washes away a fine
structure of the Wigner function in the phase space �41�.

1. Transition probability

Figure 24 shows time dependence of transition probability
PL�t� under the stochastic perturbation for several perturba-
tion strength. As shown in Fig. 24�a�, until t�3000, PL�t�
shows similar behavior to the case M =10 with the same
perturbation strength ��=0.1�. However, after t�3000, fluc-
tuation takes place in the time dependence which is quite
different from the case M =10. The difference becomes
clearer when �=0.2 shown in Fig. 24�b�. When �=0.4 shown
in Fig. 24�c�, PL�t� shows almost linear growth with time
until t�2000, and irregular fluctuation in t�2000. The be-
havior is quite similar to the polychromatically perturbed
case M =10 with �=0.4. As a result, we expect that the quan-
tum dynamics under a polychromatic perturbation indeed ap-
proaches to that under a stochastic perturbation as the num-
ber of frequency components of the perturbation increases.

Fourier transform I��� of PL�t� is given in Fig. 25. Inter-
estingly, the peaks appears at almost same values on the �
axis independent of the perturbation strength. The height of
the peaks becomes closer to each other as the perturbation
strength increases.
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FIG. 24. �Color online� Time dependence of transition probabil-
ity PL�t� under the stochastic perturbation. The perturbation
strengths are �a� �=0.1; �b� �=0.2; �c� �=0.4.
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2. Energy absorption and energy spread

Figure 26 shows the time dependence of the expectation
value and the standard deviation of the Hamiltonian under
the stochastic perturbation for various perturbation strengths.
When the perturbation strength is small ��=0.1�, 
H�t�� and
�H�t� oscillate around the initial values, respectively. We do
not see substantial difference from those in the polychromati-
cally perturbed case M =10 with �=0.1. However, the cases
with �=0.3 and 0.4 show quite different time dependence
from those in the polychromatically perturbed case M =10
with �=0.3 and 0.4. In the stochastically perturbed cases,

H�t�� and �H�t� grow unboundedly and almost linearly in
time, while they are suppressed around a certain value in the
polychromatically perturbed cases. Under the stochastic per-
turbation, the system can continue energy absorption from
the external field unboundedly �49�.

3. Uncertainty product and Hushimi representation

Figure 27 shows time dependence of the uncertainty prod-
uct �q�t��p�t� under the stochastic perturbation for various
perturbation strengths. When � is small, �q�t��p�t� shows
recurrence to the initial value as seen in the time dependence
of 
H�t�� and �H�t�. On the other hand, for relatively large
perturbation strength, we can observe unbounded growth of
�q�t��p�t� attributed to the unbounded energy absorption.

Figure 28 gives snapshots of the Hushimi representation
of a wave function under the stochastic perturbation for vari-
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FIG. 25. �Color online� Fourier transform I��� of the transition
probability under the stochastic perturbation for some perturbation
strength �’s.
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ous perturbation strengths. In Fig. 28�a�, the snapshot is
taken when PL�t� begins to show a clear difference from the
unperturbed case. We still see localization with symmetry of
the wave function. However, as shown in Fig. 28�b�, the
symmetry is slightly distorted at the final time T. As shown
in Figs. 28�c�–28�f�, with an increase of the perturbation
strength, a wave function spreads over the space without
symmetry as time evolves.

Here we recall the difference for t�3000 between the
time dependence of PL�t� in the stochastically perturbed case
with �=0.1 and that in the unperturbed case. At first glance,
one may naively think that the classical separatrix has little
influence on the quantum dynamics since 
H�t��+�H�t��0
even in the stochastically perturbed case. However, as seen
from Fig. 28�a�, the tail of the Hushimi representation well
overlaps with the classical separatrix. We can expect that an
adiabatic transition occurs to an eigenstate with energy level
around En�0 �50�.

Under the stochastic perturbation with small perturbation
strength, we observe that H�t�, �H�t�, and �q�t��p�t� show
oscillatory time dependence with recurrence to the initial
values, as also observed in the polychromatic perturbation.
However, in the time interval we simulated, the time depen-
dence begins to show unbounded growth for the larger per-
turbation strength, different from the time dependence in the
incoherent motion regime under the polychromatic perturba-
tion.

APPENDIX C: FIDELITY

In this appendix we deal with fidelity f�t� which is widely
used to measure coherence of quantum dynamics �34,35�.
We confirm consistency of the results between fidelity and
degree of coherence defined by Eq. �15�.

Fidelity f�t� is defined by

f�t� = �
��t = 0��U0
†U����t = 0���2, �C1�

where U0 and U� denote the unperturbed and the perturbed
time evolution operator, respectively.

Time dependence of f�t� is shown in Fig. 29 for polychro-
matically and stochastically perturbed cases. In the former
cases, a combination of the perturbation parameters corre-
sponds to coherent, quasicoherent, or incoherent motion
which are defined in Sec. IV.

When M =1 with several �’s shown in Fig. 29�a�, each of
which belongs to the coherent motion regime, f�t�’s oscillate
with recurrence to the initial value. For small perturbation
strength, �=0.1, fidelity satisfies f�t��0.9. The amplitude of
oscillation of f�t� becomes larger with increase of the pertur-
bation strength.

The time dependence of f�t� when M =3 is given in Fig.
29�b�. In the case of coherent motion ��=0.1�, the behavior

is almost similar to that in the case M =1 with the same
perturbation strength. On the other hand, in the cases of qua-
sicoherent motion ��=0.7 and 1.0�, f�t�’s show quite differ-
ent time dependence from the weakly perturbed case. In the
cases, f�t� neither decays to zero nor return to the initial
value. This is adequate to the property of a quasicoherent
motion.

Time dependence of fidelity when M =10 is shown in Fig.
29�c�. When the perturbation strength is relatively small, �
=0.3, where quasicoherent motion occurs, we see similar
time dependence to the cases M =3 with �=0.5 or �=1.0 in
Fig. 29�b�. On the contrary, in the case with �=0.5 corre-
sponding to incoherent motion, f�t� remains at the small
value f�t��0.3 with irregular fluctuation after the rapid de-
crease.

Figure 29�d� shows time dependence of fidelity under the
stochastic perturbation for several perturbation strengths. Re-
currence of f�t� to the initial value is not observed, although
decay of f�t� is not so rapid as seen in incoherent motion
under the polychromatic perturbation.

As a result, time dependence of fidelity shows oscillation
with recurrence to the initial value in the coherent motion
regime. On the other hand, it fluctuates irregularly after the
rapid decay in the incoherent motion regime. In the case of
quasicoherent motion, it shows the intermediate behavior. In
this sense, both the degree of coherence �PL and fidelity f�t�
are effective as the measure of coherence in the quantum
dynamics.
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FIG. 29. �Color online� Time dependence of f�t� for various
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