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Chaotic mixing in a closed vessel is studied experimentally and numerically in different two-dimensional
�2D� flow configurations. For a purely hyperbolic phase space, it is well known that concentration fluctuations
converge to an eigenmode of the advection-diffusion operator and decay exponentially with time. We illustrate
how the unstable manifold of hyperbolic periodic points dominates the resulting persistent pattern. We show
for different physical viscous flows that, in the case of a fully chaotic Poincaré section, parabolic periodic
points at the walls lead to slower �algebraic� decay. A persistent pattern, the backbone of which is the unstable
manifold of parabolic points, can be observed. However, slow stretching at the wall forbids the rapid propa-
gation of stretched filaments throughout the whole domain, and hence delays the formation of an eigenmode
until it is no longer experimentally observable. Inspired by the baker’s map, we introduce a 1D model with a
parabolic point that gives a good account of the slow decay observed in experiments. We derive a universal
decay law for such systems parametrized by the rate at which a particle approaches the no-slip wall.
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I. INTRODUCTION

Many industrial applications involve the mixing of vis-
cous fluids. Fields as diverse as chemical engineering, the
pharmaceutical and cosmetics industries, and food process-
ing depend on the stirring of initially heterogeneous sub-
stances to obtain a product with a sufficient degree of homo-
geneity. Viscous, confined, or fragile fluids are best mixed by
nonturbulent flows, which tend to be less effective at mixing
than their turbulent counterparts. However, some laminar
flows exhibit chaotic advection, meaning that they have cha-
otic Lagrangian trajectories �1,2�, allowing them to rival tur-
bulent flows in their ability to mix. The framework of chaotic
advection and dynamical systems provides a useful charac-
terization of mixers that relies on the nature of the phase
space, or the stretching statistics of Lagrangian trajectories.
However, an essential issue for the mixing of a diffusive
passive scalar is to predict the rate at which the scalar con-
centration is homogenized by a given stirring protocol, such
as the stirring-rod protocol in Fig. 1.

Various approaches including an eigenmode analysis
�3–12�, a large-deviation description of the stretching distri-
bution �13,14�, and multifractal formalism �15,16� have pro-
vided insights into the structure of the mixing pattern and its
decay rate. Of particular importance in some of these studies
is the idea that for time-periodic flows the spatial mixing
pattern becomes persistent, in the sense that it repeats itself
in time but with a decreasing overall amplitude of fluctua-
tions. Time-persistent spatial patterns have been observed in
numerical simulations �3,6,7�, as well as in dye homogeniza-
tion experiments in cellular flows �17–19�, and have been
related to the most slowly decaying eigenmode of the
advection-diffusion operator. The term strange eigenmode,
originally coined by Pierrehumbert �3�, is used to describe
these patterns. The eigenmode amplitude decays exponen-
tially with time at a rate determined by its associated eigen-

value, and an exponential decay of concentration variance
has indeed been observed in various systems
�3,5–7,11,17–19�.

However, such results were obtained either in idealized
systems �3,6–9,11,20�, or in cellular flows �17–19�. It has
been suggested �21–24� that mixing might be slower in
large-scale bounded flows, because of slow stretching dy-
namics in the vicinity of a no-slip wall. The specific form of
the velocity field at a no-slip wall was first noticed and ex-
ploited by Chertkov and Lebedev �21�. The authors calcu-
lated concentration statistics by ensemble averaging over dif-
ferent realizations of a flow in a bounded domain with
random time dependence. They obtained a transient algebraic
decay of the scalar variance attributed to the influence of the
wall, followed by an asymptotic exponential phase. Shortly
thereafter, experiments of elastic turbulence in a microchan-
nel �25� showed an anomalous scaling of mixing dynamics
with the Péclet number, which the authors related to the pre-
dictions of Chertkov and Lebedev �21�. Detailed numerical
simulations of scalar advection by a short-time-correlated
flow in a bounded domain were recently performed by Sal-
man and Haynes �24�, who characterized the scalar decay
with a multistage scenario that includes a transient algebraic
decay. All theoretical and numerical studies �21,23,24� as-
sumed that, in bounded flows, scalar fluctuations are rapidly
completely exhausted in the bulk because of efficient stretch-
ing therein, while scalar inhomogeneity subsists only in a
decreasing pool at the boundary.

In a previous letter �26�, we have reported on the experi-
mental observation of “slow” algebraic mixing dynamics im-
posed by a no-slip wall in a deterministic two-dimensional
�2D� chaotic advection protocol. In the present paper, we
explore in more detail the successive stages of mixing of a
passive scalar in experiments and simulations of Stokes flow.
For several chaotic advection protocols, a blob of dye is
released in a closed vessel and homogenized. In contrast
with all studies mentioned above, we focus here on the in-
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fluence of the wall on the concentration field far from the
boundary, which we show is contaminated by the algebraic
dynamics near the wall. Our approach is based on a Lagrang-
ian description of stretched filaments slowly fed from the
wall into the bulk. A simplified one-dimensional model—a
generalization of the baker’s map—allows us to describe
the various mechanisms at play and to reproduce the main
features of the evolution of the concentration probability
distribution.

The paper is organized as follows. In Sec. II we review
the main ingredients of chaotic mixing. We discuss the suc-
cessive stages of mixing and the associated length scales,
which are then illustrated on the pedagogical example of the
well-studied hyperbolic baker’s map. For this idealized sys-
tem, we propose an original description of the structure of
the strange eigenmode, which we relate to the unstable mani-
fold of the least unstable periodic point. Section III is the
core of the paper. We first report on homogenization experi-
ments with a figure-8 protocol, first described briefly in �26�,
which we complement here by numerical simulations of a
viscous version of the blinking vortex flow �1�, and a modi-
fied version of the baker’s map with a parabolic point at the
wall. In all cases, we observe anomalously slow mixing, that

is, an algebraic—rather than exponential—decay of concen-
tration variance. We argue that this behavior is generic for
two-dimensional mixers where the chaotic region extends to
fixed no-slip walls. In such systems, poorly stretched fluid
escapes the wall at a slow rate �controlled by no-slip hydro-
dynamics� through the unstable manifold of parabolic points
on the wall. These poorly mixed blobs contaminate the
whole mixing pattern, including the core of the domain
where stretching is larger. We show that the modified baker’s
map describes the experiments qualitatively and allows an
analytic derivation of the observed scalings for the concen-
tration distribution. To complete our description of the dif-
ferent stages of mixing, a discussion on very long times,
general initial conditions, and hydrodynamical optimization
is finally presented in Sec. V.

II. HOMOGENIZATION MECHANISMS

A. Stages and length scales of mixing

In this section, we describe briefly how the concentration
field of a passive scalar evolves from an initially segregated
state toward homogeneity, under the combined action of cha-
otic advection and molecular diffusion. The concentration C
follows the advection-diffusion equation

�C

�t
+ v · �C = ��2C , �1�

with � the diffusivity and v the velocity of the stirring flow.
For illustrative purposes, we will consider the example
shown in Fig. 1 of a blob of dye of initial scale �blob smaller
than the velocity field scale �v, which is of the same order as
the domain size L. Very viscous fluids typically support only
laminar flows, but such flows may still lead to chaotic La-
grangian trajectories �1,2�. For example, in Fig. 1 the stirring
rod repeatedly stretches and folds dye filaments, leading to
an exponential separation of neighboring particles at a typi-
cal rate � �2�. The dynamics of Lagrangian particles are thus
chaotic in at least some part of the fluid domain.

Three different stages of the mixing process are apparent
in Fig. 1. An initial blob �Fig. 1�a�� is deformed by the stir-
ring velocity field. At early times �first stage, Fig. 1�b��, finer
scales in the concentration pattern are created, yet the vari-
ance �the spatially integrated squared fluctuations from the
mean� is almost unchanged, because the spatial scales are
still too large for diffusion to be efficient. After several
stretching and folding events, the width of a filament of dye
stretched at a typical rate � stabilizes at the Batchelor length,

wB ª
��/� , �2�

where the effects of compression and diffusion balance. Ob-
viously, in a realistic flow, stretching is not constant, but the
width of a filament quickly adapts to the local stretching rate
��x�. The length scale wB is the smallest that can be observed
inside the concentration pattern: an initial blob with a scale
greater than wB is stretched and folded into many filaments
that are compressed up to the diffusive scale wB. In the pat-
terns of Fig. 1, we measure for example a Batchelor scale of
the order of 300 �m. During a second stage �Fig. 1�c��, after

FIG. 1. Successive stages of homogenization for a blob of dye
stirred by the figure-8 protocol �see Sec. III for details�. �a� An
initial blob is stretched by gradients in the velocity field. At early
times, stretched filaments are still too broad for diffusion to be
noticeable, and the concentration variance is constant. �b� As time
increases, filaments are stretched and folded repeatedly, while a
strip of white fluid coming from the boundary is inserted periodi-
cally at the core of the mixing pattern. As a result of this mass
injection, the filamentary pattern grows slowly toward the boundary
with time, while filaments become thin enough �c� for diffusion to
become effective and cause the strips of dye to become more gray.
Different gray levels correspond to different stretching histories. �d�
Later, different filaments start interpenetrating, and the concentra-
tion field results from the averaging of concentration values coming
from neighboring strips.
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a strip has stabilized at the width wB, the amplitude of the
concentration profile decreases according to the stretching
experienced by the strip, to ensure conservation of dye
�27,28�. Different gray levels correspond to different stretch-
ing histories along the elongated image of the initial blob.
Finally, since filaments are not only stretched but also folded,
they are eventually pressed against each other, and their dif-
fusive boundaries interpenetrate �third stage, Fig. 1�d��. Ul-
timately, homogenization takes place inside a “box” of size
wB through the averaging of many strips that have experi-
enced different stretching histories and have therefore differ-
ent amplitudes �29�.

So far, the most satisfying explanation for the decay of
inhomogeneity in chaotic mixing has been the strange eigen-
mode theory, initially proposed by Pierrehumbert in a 1994
paper �3�. The strange eigenmode is the second most slowly
decaying eigenmode of the advection-diffusion operator �the
first trivial mode corresponds to a nondecaying uniform con-
centration�. We consider in the following the case of periodic
velocity fields, where the periodically strobed strange eigen-
mode is an eigenvector of the time-independent Floquet op-
erator. It decays at an exponential rate fixed by the real part
of the corresponding eigenvalue. The projection of the initial
concentration field on this eigenmode decays slower than the
contributions from other eigenmodes, so that one expects the
concentration field to converge rapidly to a permanent spatial
pattern determined by the strange eigenmode, whose contrast
decays exponentially.

A simple physical motivation for the strange eigenmode is
as follows. The asymptotic concentration is governed by fila-
ments that are pressed against each other in a box of width
wB. But these filaments have explored the whole domain, and
hence may possess different stretching histories �30�. The
decay rate can thus depend on global properties of the flow
�5,6�. In particular, it is sensitive to spatial correlations,
and cannot be expressed simply in terms of the stretching
statistics.

Since the seminal paper of Pierrehumbert, strange eigen-
modes have been observed in many numerical studies
�6–10�. The proposed evidence for the strange eigenmodes
were �i� the onset of permanent spatial concentration patterns
and �ii� an exponential decay for the concentration variance,
whose rate depended only weakly on the diffusion. Recurrent
spatial patterns have also been observed in experiments
where a viscous fluid is stirred by an array of magnets
�17–19�, yet the concentration decay seemed slower than ex-
ponential. In the following section, we briefly show how a
strange eigenmode arises in a one-dimensional baker’s map,
and relate the spatial structure of the eigenmode to the re-
gions of lowest stretching.

B. Tracing out the strange eigenmode in a uniformly
hyperbolic model

In this section, we examine briefly the decay of concen-
tration fluctuations in a uniformly hyperbolic map. For peda-
gogical reasons, we use one of the most studied models of
chaotic mixing, the inhomogeneous area-preserving baker’s
map �8,15,16,31�. Compared to previous work on chaotic

mixing in the baker’s map, we put the emphasis on periodic
points of the map and their influence on the spatial structure
of the concentration eigenmode. We show that the concen-
tration pattern obtained from an initial blob after successive
iterations of the map is determined by the least unstable
periodic point of the map, and its multifractal unstable
manifold.

The area-preserving baker’s map is defined on a two-
dimensional square region by dividing the region in two
strips, stretching, and restacking them. It has the property of
mapping a y-independent distribution to another such distri-
bution �8�. We thus take our initial blob to be a strip uniform
in the y direction, and the baker’s map stretches and folds
this strip to create more strips, leaving the concentration in-
dependent of y. We can thus focus on one-dimensional dis-
tributions that depend only on the x coordinate: they repre-
sent a “cut” across a striated pattern of strips like the pattern
in Fig. 1. Hence, we limit ourselves to a one-dimensional
version of the baker’s map which captures the essence of
dynamics.

The baker’s map f reads

f:x � f1�x� � f2�x� , �3a�

where

f1�x� = �x, f2�x� = 1 − �1 − ��x , �3b�

and the union ��� symbol in �3a� means that f is 1:2: every
point x has two images given by f1�x� and f2�x�. The param-
eter � satisfies 0���1 and controls the homogeneity of
stretching, with �=1 /2 being the perfectly homogeneous
case �which we will not consider here, as it leads to non-
physical superexponential mixing dynamics �8��. The baker’s
map is represented in Fig. 2.

Under the action of the baker’s map, the concentration
profile evolves as

C�x,t + 1� = C„f−1�x�,t… . �4�

f therefore transform the concentration profile C�x , t� at time
t into two images “compressed” by respective factors � and
1−�.

First, we compute numerically the evolution of an initial
blob under the action of f . The initial concentration

C�x,0� = C0�x� = �1, xa � x � xb,

0 otherwise
� �5�

is a strip of constant concentration between xa and xb. Diffu-
sion is mimicked by letting the concentration evolve diffu-
sively during a unit time interval �8,30�. During that interval,
C evolves according to the heat equation with diffusivity �.
We use periodic boundary conditions.

Figure 2 shows the concentration profile for a typical
simulation with �=0.4, after 17 iterations of f alternated
with diffusive steps. We see that the system is well mixed,
insofar as fluctuations of C around its spatial mean �C	
�which is conserved by the map� are very weak compared to
the initial blob. Angular brackets denote a spatial average. A
closer inspection reveals that fluctuations of C have more
important values at some points, so that the concentration

SLOW DECAY OF CONCENTRATION VARIANCE DUE TO… PHYSICAL REVIEW E 78, 026211 �2008�

026211-3



pattern has distinctive spikes. Remarkably, the spatial pattern
visible in Fig. 2�b� is permanent, as can be seen on the two
rightmost profiles in Fig. 3: further iteration of the map does
not change the form of C, only its amplitude. This shows that
the concentration field converges very rapidly to an eigen-
function of the advection-diffusion operator, dubbed the
strange eigenmode. We measure an exponential decay of the
concentration variance, consistent with convergence to an
eigenmode. Strange eigenmodes in the baker’s map, and
their decay rate, have been studied in detail in Refs. �8,9,20�.
Here we provide a simple way to characterize the spatial
structure of the strange eigenmode. More explicitly, we de-
scribe below how the strange eigenmode pattern traces out
the unstable manifold of the periodic point of the map with

weakest stretching. This echoes the description of invariant
sets in open flows in terms of the chaotic saddle �32�.

As can be seen in Fig. 2, the map f has two period-1
�fixed� points, one at x=0 and another at x=xfª1 / �2−��.
Of course, since the 1D baker’s map is 1:2, both fixed points
map to an additional point, so that the fixed points have
iterates other than themselves. For ��1 /2 ��=0.4 in Fig. 2�,
the second fixed point is less unstable than the first one, as
the compression factor at xf is smaller. We notice in Fig. 2
that the highest spike in the concentration pattern is located
at x=xf, whereas spikes of decreasing height are located at
iterates of xf: f1�xf�, f2(f1�xf�) , . . .; the unstable manifold of
xf forms the backbone of the concentration pattern.

Let us examine more closely the iteration of the
concentration pattern. After t iterations of f , the initial blob
has been transformed into 2t strips compressed by factors
�t ,�t−1�1−�� , . . . , �1−��t. However, diffusion imposes that
the width of an elementary strip saturates at the Batchelor
width wB where diffusion balances stretching. Using the
range of possible stretchings in the map, we have

� �

1 − �2 � wB �� �

1 − �1 − ��2 ,

where the diffusivity � has been rescaled by the size of the
domain L=1 and the time period T=1. We therefore approxi-
mate wB
�� / �1−	2�, where

ln 	 = � ln��� + �1 − ��ln�1 − ��

is the Lyapunov exponent. The concentration profile of Fig. 2
has a typical variation scale of wB. Under repeated compres-
sion and diffusion steps, each elementary strip converges to a
Gaussian peak of width wB �see the second picture from left
in Fig. 3�, centered on iterates of the initial blob centroid
xcª �xa+xb� /2. The amplitude of each Gaussian strip is pro-
portional to 
 /wB to conserve total concentration, where 

is the multiplicative compression experienced by the strip.

The strange eigenmode regime is reached when the initial
blob has been stretched enough so that its centroid has an
iterate in every box of size wB—that is, each box contains at
least one image of the initial domain. In this regime, the
concentration C�x , t� measured at a point x results from the
addition of slightly shifted strips, whose centers are all iter-
ates of xc that fit into a “box” of size wB centered on x. The
random averaging of such strips has been proposed as the
mechanism controlling the homogenization rate �29,33�.
However, due to the strong time correlations of stretching,
this averaging is not a random uncorrelated process here.
Fluctuations of C�x� around �C	 are typically inversely pro-
portional to the number of iterates in the box centered on x
�29�. High spikes in the pattern therefore correspond to
“boxes” with relatively few contributing iterates—i.e., im-
ages of the initial domain that have experienced relatively
low compression.

Iterates of the initial profile located around xf have expe-
rienced successive 1−� factors during the last steps of the
process while converging to the attracting periodic point xf,
since they have been transformed by the second branch f2
during all recent iterations. On average, these iterates have

(a)

(b)

FIG. 2. �a� One-dimensional baker’s map f , with two fixed
points at x=0 and x=1 / �2−��. For ��1 /2 the most stable fixed
point is xf =1 / �2−��. �b� Concentration profile obtained for an ini-
tial blob transformed by 17 iterations of f ��=0.4, �=10−5�. Domi-
nant “spikes” are located at xf and �with decreasing amplitude�
around its iterates �of decreasing stability�.

FIG. 3. Main stages in the evolution of the concentration profile,
from left to right. An initial blob is stretched into many filaments by
the map. Once filaments reach the diffusive scale wB, intermediate
concentration levels appear. The concentration profile takes the
form of a persistent pattern—the strange eigenmode—when all
boxes of size wB contain an image of the initial unit interval.
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experienced compressions smaller than the mean compres-
sion 	t. This explains why the sharpest fluctuations are vis-
ible around xf, and with decreasing amplitude around iterates
of xf of decreasing stability. For example, all iterates around
f1�xf� have experienced a large number of successive 1−�
compressions, and an additional � compression during the
latest iteration. In contrast, iterates around xf have experi-
enced only �1−�� compression steps in the last iterations,
and fluctuations are greater.

We conclude that regions of low stretching control the
structure of the concentration pattern. This behavior has al-
ready been illustrated for the case of mixed phase space
�with elliptical islands or weakly connected chaotic domains�
�10,34�, but also holds for purely hyperbolic domains with
uneven stretching.

In addition, our description of the coherent structure of
the strange eigenmode sheds light on why it is so difficult to
predict the decay rate of the eigenmode �9,11,12,20�. Fluc-
tuations decrease at a rate determined by the subtle interplay
of peaks corresponding to the successive iterates of xf, there-
fore spatial correlations of stretching histories play an impor-
tant role in the decay rate, which cannot be related easily to
the distribution of stretching in the map. We have provided
here an example of concentration patterns dominated by the
periodic structures with least stretching.

We now turn to the experimental study of mixing by fully
chaotic flows in bounded domains. In such mixers, the domi-
nant periodic structures are parabolic points on a no-slip
boundary, and we show that such points impose slower alge-
braic dynamics.

III. PARABOLIC POINTS AT THE WALLS

In this section, we report on dye homogenization experi-
ments conducted in a closed vessel where a single rod stirs
fluid with a figure-8 motion. In this physical system, the
phase portrait is not purely hyperbolic as it was in the bak-
er’s map: we describe how separatrices �parabolic points�
appear on the wall as a consequence of no-slip hydrodynam-
ics. We show that these regions of low stretching slow down
mixing and contaminate the whole mixing pattern up to its
core, far from the wall. These experimental results were
briefly presented in �26�. Here, results from a numerical
simulation of a counter-rotating viscous blinking vortex pro-
tocol �1,35� are also presented. The dye pattern bears a
strong resemblance to that of the figure-8 protocol, and we
show that parabolic points at the walls are again responsible
for algebraic decay. Inspired by the baker’s map studied in
Sec. II B, we introduce a simplified 1D model that produces
comparable algebraic mixing dynamics for this broad class
of mixers.

A. Algebraic decay in experiments and numerical simulations

We first describe the essential features of the experimental
setup �26�. A cylindrical rod periodically driven on a figure-8
path gently stirs viscous sugar syrup inside a closed vessel of
inner diameter 20 cm �Fig. 4�a��. The fluid viscosity �=5
�10−4 m2 s−1 together with rod diameter �=16 mm and stir-

ring velocity U=2 cm s−1 yield a Reynolds number Re
=U� /�
0.6, consistent with a Stokes flow regime. A spot of
low-diffusivity dye �Indian ink diluted in sugar syrup� is in-
jected at the surface of the fluid �Fig. 1�a��, and we follow
the evolution of the dye concentration field during the mix-
ing process �Fig. 1�. The concentration field is measured
through the transparent bottom of the vessel using a 12-bit
charge-coupled device camera at resolution 2000�2000.
This protocol is a good candidate for efficient mixing: we
can observe on a Poincaré section �Fig. 4�b��—computed
numerically for the corresponding Stokes flow �36�—a large
chaotic region spanning the entire domain, including the vi-
cinity of the wall.

We also perform numerical simulations of “dye homog-
enization” for a different stirring protocol. We consider a
viscous version of the blinking vortex flow �1,35�, that is,
two counter-rotating vortices alternatively switched on and
off. Following Jana et al. �35�, we study a realistic version of
this protocol consisting of two large fixed rods placed on a
diameter of a circular domain �see Fig. 4�c��. To mimic the
blinking vortex, the two rods are rotated one after the other
through angles  and −, in a counter-rotating fashion. This
stirring protocol resembles the figure-8, as the counter-
rotating movement of the vortices draws fluid from the
boundary in some part of the domain �the radial velocity v�

is positive�, whereas it is pushed toward the boundary in the
other part �v��0�. The flow parameters are =270� �angular
displacement of one rod at each half period�, r=0.7 �distance
between the rods�, rinner=0.2 �radius of the rods�. Length
scale units are irrelevant here, and all distances are scaled by
the radius of the cylindrical vessel router=1. In the same way,
all times are rescaled by the stirring period T, so that we can
work only with dimensionless quantities in the following. A
Poincaré section shows �Fig. 4�d�� that the chaotic region
spans the entire domain for this protocol as well. The evolu-
tion of a “blob of dye” is mimicked by computing the posi-
tions of 106 particles—initialized inside a small square in the
center of the domain—during 75 periods.

In the experiments, we measure the concentration field
inside a large rectangle �see Fig. 4�a�� far from the wall. We
plot the resulting variance and probability distributions func-
tions �PDFs� of the concentration in Fig. 5. We observe a
decay of the concentration variance �2�C� that is much
closer to algebraic than exponential �see Fig. 5�a��. In fact, as
we will see in Sec. IV, the decay is well approximated by
ln��W / t� / t2. This behavior persists until the end of the experi-
ment �35 periods�, by which time the variance has decayed
by more than three orders of magnitude. This evolution is
independent of the choice of the measurement box, as long
as the box is far enough from the walls to be filled rapidly
with dark filaments. We also note that PDFs of concentration
have a wide shape, with power-law tails on both sides of the
maximum �see Fig. 5�c��. Moreover, the PDFs of concentra-
tion are highly asymmetrical. A persistent white peak at zero
concentration values slowly transforms into a large shoulder
at weak concentration values. This implies that the light-gray
wing of the peak, corresponding to concentration values
smaller than the most probable value, is more important than
the dark-gray wing on the other side of the peak. Finally, the
most probable value shifts slowly with time toward lower
values.
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For the simulations, we compute a coarse-grained concen-
tration field in a large area far from the boundary �rectangle
in Fig. 4�c��. The coarse-graining �0.01 here� scale plays the
role of the diffusive cutoff scale wB. Again, we observe an
algebraic evolution of the concentration variance �shown in
Fig. 5�b�� that is well fitted by the same decay law as in
experiments.

B. Hydrodynamics near the wall

These experimental and numerical results differ from
those of previous experiments on mixing dynamics �17–19�
obtained in cellular flows, and are not consistent with the
exponential evolution of a single eigenmode of the
advection-diffusion operator. In order to understand these
scalings, we first consider the various mechanisms at play.
We will show that the observed slow mixing arises from a
subtle combination of hydrodynamics and the nature of the
phase portrait at the wall.

As can be observed on the Poincaré section in Fig. 4�b�,
the chaotic region of the figure-8 protocol spans the whole
domain, and no transport barriers are visible. �Elliptical is-
lands can appear inside both loops of the figure-8 for a
smaller rod, but for a large enough rod we did not detect
such islands.� In particular, trajectories initialized close to the
wall boundary also belong to the chaotic region. They even-

FIG. 4. �Color online� Homogenization in closed flows for the
experimental realization of the figure-8 protocol �a�,�b� and the nu-
merical simulation of the contrarotating blinking vortex �c�,�d�. The
heart-shaped mixing patterns are very similar: the upper cusp cor-
responds to a parabolic injection point on the boundary, while in the
lower part of the pattern filaments are nicely packed in a parallel
fashion. Although an annular unmixed region remains in the vicin-
ity of the boundary, the partly mixed pattern grows toward the
boundary with time. This purely chaotic phase portrait is confirmed
by the Poincaré sections in �b� and �d�, where a single trajectory
fills the entire domain. In both cases two parabolic points can be
inferred from the cusps in the upper and lower parts of the bound-
ary. They correspond to separation points along whose unstable
manifold fluid gets injected into the bulk, and to the corresponding
reattachment at the opposite boundary. The frames in �a� and �c�
indicate where measurements are taken.

(a) (b)

(c)

FIG. 5. �Color online� Statistical properties of the concentration
field measured in a central region �see frames in Figs. 4�a� and
4�c��. The concentration variance �black circles� is consistent with
the evolution law of Eq. �22� �gray solid line�—which is close to a
power law—in both �a� the figure-8 protocol and �b� the blinking
vortex. The asymptotic decay of variance is much slower than an
exponential, which would be the signature of a strange eigenmode.
�The increasing variance at early times in �b� is due to the finite size
of the measurement region.� �c� Concentration PDFs after 13, 17,
and 31 stirring periods in the figure-8 protocol. Both sides of the
peak can be fitted by power laws �Cmax−C�−2 �see solid line fits,
and inset�. Inset: left �light gray� tail of the peak P�C� against
�Cmax�t�−C�. Also note the persistence of a white peak at C=0,
which transforms into a large shoulder for longer times.
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tually escape from this peripheral region to visit the remain-
der of the phase space, but only after a long time, as trajec-
tories stick to the no-slip wall. This escape process takes
place along the white cusp of the heart-shaped mixing re-
gion, as can be seen in Fig. 4. This white cusp is bisected by
the unstable manifold of a separation point at the wall �upper
red dot in Figs. 4�b� and 4�d��. The manifold divides trajec-
tories reinjected from the left and right of the separation
point. Since stretching is very weak close to the wall, fluid
drawn into the heart of the chaotic region from the wall is
poorly mixed at the moment when it is injected, as opposed
to fluid that has spent some time there already. Because we
inject the initial blob of dye far from the boundary, poorly
stretched fluid injected from the boundary into the heart of
the chaotic region consists of zero-concentration white strips
that are interweaved into the mixing pattern �see Figs.
1�b�–1�d��.

We can better characterize such white strips in terms of
hydrodynamics near the no-slip wall. Consider the velocity
field v near the vessel boundary. The wall can be treated as
locally flat, and we define local coordinates x� and x� that
denote, respectively, the distance along and perpendicular to
the wall. No-slip boundary conditions impose v� =0 for x�

=0 �on the wall� and the corresponding first-order linear scal-
ing for small x�,

v� = A�x��x� + O�x�
2 � near the wall. �6�

Note that we are modeling the net velocity field, as evident
in the Poincaré sections in Figs. 4�b� and 4�d�, so we ignore
the periodic time dependence. Incompressibility implies

�v�

�x�

+
�v�

�x�

= 0, �7�

which combined with �6� yields

v� = −
1

2
A��x��x�

2 + O�x�
3 � . �8�

Now from the Poincaré sections Figs. 4�b� and 4�d� we can
see that the only trajectories that consistently approach the
wall do so along a separatrix connected to the wall in the
lower part of the vessel �the lower dot in each figure�. All
other trajectories recirculate into the bulk. The separatrix cor-
responds to a flow reattachment point on the boundary
�35,37,38�, which we refer to as parabolic points. �All points
on the boundary are parabolic fixed points, but the important
ones for us have separatrices emanating from them. We mean
only those distinguished points when we refer to parabolic
fixed points.�

If we choose x� =0 to be the position of the lower separa-
trix, then the velocity on the separatrix is

v� 
 0, v� 
 −
1

2
ax�

2 , a ª A��0� , �9�

since A�0�=0 in order that the separatrix and the wall be on
the same streamline. Note that the linear part of the flow
around the reattachment point vanishes, hence the name
parabolic. The requirement that particles approach the wall

along the separatrix implies a�0. Integrating ẋ�=v� using
Eq. �9�, we find

x��t� =
x0

1 + atx0
, �10�

where x0 is the initial x� coordinate of the particle. Equation
�10� predicts that the distance d�t� between the wall and a
particle on the lower separatrix shrinks as

d�t� 
 1/at, t � 1/ax0. �11�

This scaling was already derived in �21�, from the same di-
mensional reasoning. The rate of approach along the separa-
trix constrains the approach to the wall of the entire mixing
pattern. We verified both in the experiment and in the simu-
lation that d�t� is indeed well approximated by a power-law
scaling d�t�1 / t. Note also that Eq. �11� implies that par-
ticles along the separatrix “forget” their initial condition for
long times. This can be seen in Figs. 4�a� and 4�c�: material
lines bunch up against each other in the lower part of the
domain faster than they approach the wall.

To ensure mass conservation, a quantity of unmixed white

fluid scaling as ḋ�t�� t−2 is injected periodically in the mix-
ing pattern. As each newly injected white strip has approxi-
mately the same length �determined by the extent of the rod
path�, the width ��t� of a strip injected at time t must also
scale as

��t� ª �ḋ�t�� = 1/at2, �12�

where time t has been rescaled by the period T=1.
The origin of our slow scaling now emerges. Clearly, the

mixing pattern is chaotically stretched and folded by the rod
at each half cycle, in the same manner as in a baker’s map.
Yet the folds are not stacked directly onto each other but are
interweaved with the most recently injected white strip.
Since each new white strip has a large width that decreases
only algebraically with time, the decay of concentration is
slowed down by this injection of unmixed material.

The dominant mechanism for mixing can be summed up
as follows: �i� chaotic stretching imposes that the typical
width of a filament of dye in the bulk �i.e., far from the wall�
shrinks exponentially down to the diffusion or measurement
scale; yet �ii� wide strips of unmixed fluid of width ��t�
� t−2 are periodically interweaved with these fine structures.
Both protocols have in common a chaotic region that spans
the entire domain, which imposes the presence of parabolic
separation points on the boundary �35,37,38�. In the next
section, we generalize the baker’s map model to include such
a parabolic point at the boundary, and reproduce the domi-
nant features observed experimentally and numerically.

C. A modified baker’s map model

We now wish to derive quantitative predictions to explain
the observed algebraic scaling for the concentration variance.
In the same spirit as in Sec. II B, we simplify the two-
dimensional problem by characterizing only one-dimensional
concentration profiles C�x , t� perpendicular to the stretching
direction along which dye filaments align. The effect of the
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mixer during a half period boils down to the action of a
one-dimensional map that transforms concentration profiles
by interweaving an unmixed strip of fluid with two com-
pressed images of the profile. The width of each decays in
time as ��t�� t−2, owing to the parabolic point on the bound-
ary �Sec. III A�. We therefore mimic the behavior of our
mixer with a one-dimensional map g, in the spirit of the
baker’s map. The map g is intended to provide the simplest
description of chaotic mixing in a domain with fixed walls. It
was briefly introduced in our previous work �26�.

The map g is defined on �0,1� for simplicity. It evolves
concentration profiles as in Eq. �4� and satisfies the follow-
ing: �i� it is a continuous 1:2 function, to account for the
stretching and folding processes; �ii� the “wall” at x=0 is a
marginally unstable �i.e., parabolic� point of g−1, so that the
correct dynamics are reproduced by expanding g−1�x�
x
+ax2+¯ �a�0�, for small x; �iii� because of mass conser-
vation, at each x the local slopes of the two branches g1 and
g2 of g add up to 1.

Other details of g are inessential for our discussion. The
map g is comparable to the action of the figure-8 flow, when
the flow is averaged over circular rings and integrated over
one stirring period. As in Sec. III A, diffusion is mimicked
by letting the concentration profile diffuse between succes-
sive iterations of the map �with no-flux boundary condi-
tions�. This model is a modified baker’s map, with a para-
bolic point at x=0, as opposed to the baker’s map in Sec.
III A, where the dynamics are purely hyperbolic. The expres-
sion of g1 close to x=0 assures that the distance between the
origin and successive iterates of a point by g1 shrinks as
d�t�
1 /at, which is the same as Eq. �11� obtained in the
experiments with no-slip hydrodynamics.

We numerically evolve concentration profiles for the spe-
cific choice for g,

g1�x� = x − ax2 + �� − 1 + a�x3,

g2�x� = 1 − ax2 + �� − 1 + a�x3, �13�

with �=0.55 and a=0.9. We fix �=10−7. In our map g1�1�
=g2�1�=�, and as for the baker’s map we approximate by �
the mean stretching realized by g1, and by �1−�� the mean
stretching realized by g2—although stretching is not constant
along the two branches. We choose ��0.5 for an uneven
stretching in the bulk, as in the experiments where fluid par-
ticles that stay close to the rod for long times experience
more stretching than particles left behind. Our initial condi-
tion is of the form �5�, with xa= �1−�� /2 and xb= �1+�� /2,
i.e., a strip of width � centered on xc=1 /2.

Figure 6 shows concentration profiles obtained after sev-
eral iterations of the map. Strong similarities are observable
between concentration profiles obtained in the experiment
�Fig. 6�a�� and in the map �Figs. 6�b� and 6�c��. In both cases
a thin layer of “white fluid” �C=0� is present near x=0. Its
width decreases as 1 /at due to the parabolic point on the
boundary. In the experiment, the concentration pattern in the
bulk �far from the wall� is characterized by sharp spikes at
zero or low concentration values, whereas fluctuations are
quite weak elsewhere. The sharp spikes correspond to white
strips recently injected from the boundary into the bulk. For

the map, the bulk pattern �far from x=0� is clearly dominated
by a set of thin spikes, which are recently injected white
strips. These white strips are images of the boundary region
at x=0 by g2, which are successively iterated by g1 or g2
after their injection in the bulk.

The suitability of our model is also strengthened by sta-
tistical properties of the concentration field, which closely
resemble the experiment. Figure 7�a� shows the concentra-
tion variance for the map �measured in a central region� su-
perimposed with experimental data: again we find an alge-
braic evolution. Moreover, there is a strong similarity
between the concentration PDFs depicted in Fig. 7�b� and the
experimental ones shown in Fig. 5�c�. In particular, they both
exhibit power-law tails. We will see in Sec. IV that our modi-
fied baker’s map is simple enough for the concentration sta-
tistics to be calculated explicitly.

IV. CONCENTRATION STATISTICS FOR THE MODIFIED
BAKER’S MAP

The simplicity of the model introduced in Sec. III C al-
lows us to calculate the statistical properties of the concen-

0.0 0.1 0.2 0.3 0.4
x

0.00

0.01

0.02

0.03

0.04

0.05

C

(a)

FIG. 6. Concentration profiles from �a� the figure-8 experiment
after 13 stirring periods, and from the 1D model after �b� 25 and �c�
50 iterations of the map. Note the presence of “white fluid” �C
=0� near x=0 in all cases.
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tration field. In this section, we derive two analytical expres-
sions that account for the decay of the concentration variance
�i� in a first phase where white strips reinjected in the bulk
are wider than the Batchelor scale wB, and �ii� in the next
phase where reinjected white strips are narrower than wB.
The reader interested primarily by a description of the differ-
ent mixing regimes may wish to skip this section at a first
reading, and go directly to the discussion about longer times
or different initial conditions in Sec. V.

In this section, our interpretation is based mostly on our
simplified model, although comparisons with the experiment
are also made. We first consider the simple case of an ini-
tially uniform blob, for which we characterize the concentra-
tion pattern by counting iterates of injected white strips,
since these dominate the concentration pattern. We will treat
more general initial conditions in Sec. V. We focus here on a
central region where the concentration profile is at least
partly mixed—that is, away from x=0, where x is the map
coordinate. The concentration PDFs and variance presented
above have for example been measured in the range x
� �0.2,0.9� in the map. We have checked that the variance
measured in the whole domain evolves trivially as 1 / t, as it
is dominated by the remaining white pool at the wall. �The

variance in the numerical simulations of Salman and Haynes
is measured in the whole domain and displays a t−1 evolution
during the algebraic phase �24�.� Here we are interested in
the more complex evolution in the bulk, where stretching is
high and the pattern seems “well mixed” after a few periods.

The modified baker’s map of Sec. III C transforms an
initial blob of dye of width s0 into an increasing number of
strips with widths s0
1¯
t, resulting from different stretch-
ing histories inside the mixed region, where 
t is the com-
pression experienced at time t. White strips also experience
this multiplicative compression starting from their injection
time. Because of diffusion, a strip of dye or white fluid is
only compressed down to the local diffusive Batchelor scale
wB, which we approximate by wB=�� / �1−	2�, where

ln 	 = − �ln� �g−1�x�
�x

�� �14�

is the Lyapunov exponent and �¯	 is the spatial mean taken
over the region of measurement. For a moderate stretching
inhomogeneity in the bulk, we expect 	 to be close to 1 /2. In
experiments as in simulations, we probe the concentration
field on a pixel size, or box size, which is smaller than wB.

As in the baker’s map, different values of C correspond to
a different combination of superimposed strips in a box of
size wB. We characterize P�C� by considering the different
widths of reinjected white strips that one can find in a such a
box. We will distinguish between three generic cases corre-
sponding to a partition of the histogram P�C� into three dif-
ferent regions �see Figs. 5�c� and 7�b��: a white �W� peak at
C=0 corresponding to recently injected white strips that are
still wider than wB, and light-gray �LG� and dark-gray �DG�
tails corresponding to respectively smaller and larger con-
centrations than the peak �mean� concentration. Once we
have quantified the proportion of boxes contributing to these
different values of C, the variance is readily obtained as

�2�C� =� �C − �C	�2P�C�dC = �W
2 + �LG

2 + �DG
2 . �15�

We treat each region of the histogram in turn in Secs.
IV A–IV C, and combine the results in Sec. IV D.

A. White pixels

Let us start with white �zero� concentration values that
come from the stretched images of white strips injected be-
fore time t. White strips injected at an early time have been
stretched and wiped out by diffusion, that is, their width has
become smaller than wB. A white strip injected at time t0 has
been compressed to a width ��t0�
t0+1¯
t at time t. We
neglect the spatial variation of 
�x� in the bulk and approxi-
mate 
t0+1¯
t
	t−t0. The oldest white strips that can be
observed have been injected at time t=�i�t�, where �i�t� is
defined by

���i�	t−�i = wB. �16�

Note that t−�i�t�, that is, the number of periods needed to
compress an injected strip to wB, is a decreasing function of
time. After a time t=�W defined by

(a)

(b)

FIG. 7. Variance and PDFs of the concentration field measured
in a central region for a blob of dye transformed by the modified
baker’s map �13�. �a� The concentration variance �circles� shows an
evolution close to a power law, comparable to the figure-8 experi-
ment �square symbols�. The solid line fit and the t−4 slope corre-
spond, respectively, to the evolution dictated by Eqs. �22� and �29�.
�b� The concentration PDFs have wide power-law tails on both
sides of the peak. The dark-gray tail corresponding to high concen-
tration values decays much faster than the light-gray one �weak
concentration values�, since the latter is continuously fed by the
injection of white fluid from the boundary.
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���W� = wB, �17�

the injected white strip is smaller than wB and no white pix-
els can be observed. For t��W, we can observe all white
strips that are images of strips injected between �i�t� and t,
since the area of white strips is conserved before they are
affected by diffusion. The fraction of white pixels is propor-
tional to

nW = �
n=�i�t�

t−1

��n� = d„�i�t�… − d�t� , �18�

where ��t�=d�t�−d�t+1�.
We now use the expression for d�t� imposed by dynamics

close to the parabolic point, d�t�
1 /at, which yields for
large t

nW 
 �t − �i�/�a�it� . �19�

From the definition �16� of the injection time �i�t�,

t − �i 
 ln�at2wB�/ln 	 , �20�

where on the right-hand side we have replaced �i�t� by t,
since their ratio approaches unity for large t. Therefore

nW 
 ln�at2wB�/�at2 ln 	� . �21�

The fraction of white pixels nW is plotted versus time in Fig.
8�a� for the modified baker’s map. �There are no free param-
eters.� For later times, we find an excellent agreement be-
tween the data and the expression �21� for nW. Note that
during the first few iterations nW is constant: this corresponds
to the initial phase when dye strips are still wider than wB
and diffusion is ineffective. The concentration variance is
also almost constant during this initial phase. We deduce the
contribution of the white pixels to the concentration variance
for t��W,

�W
2 = nW�C	2 
 �2 ln�at2wB�

at2 ln 	
, �22�

where � is the width of the initial strip. Of course, �W
2 =0 for

t��W, since by then there are no purely white strips left.

B. Light-gray tail

We now focus on the distribution of light-gray values cor-
responding to white strips that have just been compressed
below the cutoff scale wB. A white strip is first injected be-
tween images of the mixing pattern where fluctuations are
lower �see Fig. 6�. Fluctuations measured in a pixel are there-
fore mostly due to a recently injected white strip that is su-
perimposed onto a homogeneous distribution. We approxi-
mate the measured value C as the average of the largest
white strip with width �W�wB, and mixed “gray” fluid
whose concentration is close to the most probable concentra-
tion Cg. A box containing a white strip of scale �W thus
carries a concentration

C = Cg�1 − �W/wB� , �23�

and we can relate the concentration PDF P�C� to the distri-
bution Q��W� of widths of images of the injected white strips
in the following way:

P�C� = Q��W�� d�W

dC
� =

wB

Cg
Q��W� . �24�

Q��W� is easily retrieved from standard combinatorial argu-
ments. A white strip injected at t0 is transformed into 2t−t0

images with scales ��t0�	t−t0 �once again we consider only
the mean stretching 	, which amounts to matching a given
concentration to a unique injection time�. In the “quasistatic”
approximation, we neglect the algebraic dependence of �W
�and hence of C as well� on t0 in the factor ��t0� compared to
the exponential dependence in 	t−t0. Therefore

Q��W� = ��W/��t0��ln�2�/ln�	��1/�W ln 	� , �25�

resulting in
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FIG. 8. �Color online� Simulations of dye homogenization by

the modified baker’s map. �a� Fraction of white pixels �where
C=0� nW as a function of iterate �full circles�. At early times diffu-
sion has not yet started to smear out strips of white dye, and nW

remains approximately constant. When nW begins to decay, it
closely follows Eq. �21� �solid line� obtained by counting the im-
ages of injected white strips that have not yet been compressed
down to the diffusion scale wB. Inset: the distance between the dye
pattern and the wall �measured by the position of the first peak in
Fig. 6� evolves as d�t�=1 /at �solid line�. �b� Probability of a light-
gray concentration level with a given distance to the peak, i.e.,
probability that �Cg−dC−C��� �Cg0.1, dC=3�10−2, �=10−3�
as a function of time. P�Cg−C� agrees well with the t−2 evolution
predicted by Eq. �27� with 	
1 /2 �solid curve�.
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P�C� = ���t��ln 2/ln�	−1� wB

Cg�t��wB�1 −
C

Cg
��ln 2/ln 	−1

= P̃�t��Cg − C��ln 2/ln 	�−1. �26�

P�C� thus has a power-law tail in the light-gray levels whose
exponent depends on the mean stretching 	. We observe sat-
isfactory agreement between this prediction and both experi-
mental data and numerical 1D simulations �see Figs. 5�c� and
7�b��. Indeed, for the tail in Figs. 5�c� and 7�b� we measure
P�C�� �C−Cg�−� with ��2, consistent with 	�1 /2, a
fairly homogeneous stretching, as expected for �=0.55. Also
note that the amplitude of the light-gray tail decreases with
time as a power law,

P̃�t� � ���t��ln 2/ln�1/	� � t−2�ln 2/ln�1/	��. �27�

We have plotted in Fig. 8�b� the probability of a concen-
tration value at fixed distance from the maximum. The ob-
served evolution scales as a power law t−2, as expected from
our calculation. We deduce the contribution of light-gray pix-
els to the concentration variance,

�LG
2 = P̃�t��

Cmin

Cg

�Cg − C�2−��	�dC , �28�

where ��	�=1−ln 2 / ln 	, and Cmin is the smallest concen-
tration observed �Cmin=0 for t��W and Cmin=Cg(1
−��t� /wB) for t��W�. For t��W the integral is constant and

�LG
2 � P̃�t����t�� t−2. On the other hand, for t��W,

�LG
2 =

P̃�t�
2 + ��	�

�Cg − Cmin�3−��	� � t−�6+2 ln 2/ln 	�. �29�

For ��	�2 as we observed, the exponent in the above
power law is about −4.

C. Dark-gray tail

Let us now turn to the dark-gray part of the PDF. In our
case, high concentration values correspond to black strips of
dye that have experienced little compression, so that they
have not been grayed-out by averaging with many other
strips. This time, it is not sufficient to consider only the mean
stretching 	 to characterize such strips as we did in Secs.
IV A and IV B, since stretching histories far from the mean
are involved. Looking at the concentration profiles in Fig. 6,
we observe that the highest concentration values come from
the reinjection of black strips pushed to the pattern boundary
where they have experienced lower stretching than inside the
pattern core. Such a positive concentration fluctuation is then
mixed with the remainder of the pattern as successive images
are compressed by a factor of order 	, in the same way as
injected white strips. Many images of the initial blob may
have aggregated inside a box of size wB. If the decay of this
highest-concentration “cliff” is slower than 	t—the decay of
an injected fluctuation inside the bulk—we can apply the
same method for computing the shape of the dark-gray tail as
we did for the white strips and the light-gray tail.

In the spirit of Eq. �23�, we write

C = Cg�1 − �black/wB� + �black/wB, �30�

and relate the width �black to the injection time t0 as in Sec.
IV B. This leads again to a power-law dependence �C
−Cg�−2, this time for the dark-gray tail. This is in good agree-
ment with the observed scalings for both experimental and
numerical PDFs �see Figs. 5�c� and 7�b��.

We now wish to estimate the time decay of the amplitude
of this tail. To do so, we evaluate the amplitude of the
highest-concentration fluctuation, located on the left bound-
ary of the pattern �see Figs. 6�b� and 6�c��. This will give us
the concentration value for which a number of boxes of order
1 contribute to the histogram, and hence provide an approxi-
mation of the amplitude of the tail. The contribution of the
dark-gray tail is tiny compared to the light-gray one, since,
after a few periods, only a few boxes of size wB on the
border of the pattern have an amplitude significantly greater
than the mean �see Figs. 6�b� and 6�c��, whereas the width of
the remaining white pool is much larger. Moreover, we show
below that this amplitude decays faster than the contribution
of white strips.

We have plotted in Fig. 9 the decaying amplitude of the
largest fluctuation in the pattern, that is, of the leftmost box
in the mixing pattern �Figs. 6�b� and 6�c��. The evolution
during 200 periods reveals first an exponential decay, whose
rate increases with the diffusivity, followed by a power-law
phase with an exponent of about −3. A simple analysis ex-
plains this evolution. The amplitude of this fluctuation can be
estimated as 
 /wB, where 

�i=1

t g1�(g1
i �1�) is the compres-

sion factor experienced after t periods at the boundary of the
pattern �i.e., by the leftmost blob image�. �This is true as long
as the distance between the pattern and the wall is less than
the diffusion scale at the boundary. We will discuss this final
phase in Sec. V A.� For early times dye strips do not yet feel
the effect of the wall, and the stretching factor can be ap-
proximated by �t �we use � instead of 	 for evaluating the
compression by repeated iterations of g1�, and we expect the
decay to be exponential with a rate ln �. This behavior is
indeed observed for large enough diffusivities �Fig. 9�a��.
For small diffusivities, few strips of dye are homogenized
before the boundary of the mixing pattern reaches the wall
region, where the effect of the parabolic point dominates, so
we do not observe the first exponential phase.

For long times g1
i �1�
�ai�−1, g1�(g1

i �1�)
1−2 / i. The
compression 
 can be approximated by


 
 �n0 �
i=n0+1

t

�1 − 2/i� . �31�

The two factors in �31� account for �i� the exponential com-
pression by successive factors of order � inside the bulk, and
�ii� a weaker compression by factors converging slowly to 1
as the boundary of the pattern approaches the wall and ex-
periences a compression determined by the parabolic point at
x=0 �Sec. III B�. The product �i=n0+1

t �1−2 / i� converges to a
power law t−2 for long times. The observed exponent is
greater; this might come from a crossover between an expo-
nential phase and the predicted t−2 phase.
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From the above analysis, we see that positive concentra-
tion fluctuations decay fast with time, compared to the con-
tribution of the remaining white layer at x=0, which shrinks
much more slowly. The contribution of the dark-gray tail to
the concentration variance is very small compared to the
light-gray tail; therefore we neglect it in the following com-
putation of the variance.

It is important to note that the asymmetry of the concen-
tration PDF persists because our mixer “remembers” the ini-
tial condition—a small black spot and a big white pool—
even after very long times.

In our experiments, additional contributions to the dark-
gray tail come from dye particles trapped during some time
in folds of the pattern where stretching is weak �notice the
dark folds in Fig. 1�a��. This 2D effect is not present in our
map. The dark-gray tail therefore consists of contributions
from the border of the pattern, but also from these folds.
Nevertheless, we have checked that this contribution is small
compared to the light-gray tail, and decays rapidly with time.

D. Total concentration variance

We finally sum all contributions from different parts of
the PDF to obtain �2�C�, as in Eq. �15�. From the above

discussion, we distinguish two phases, t��W when the vari-
ance is dominated by the contribution of recently injected
white strips that have not yet reached wB, and t��W when
the most important fluctuations come from the mixing of
white strips and gray fluid.

In the experiment, the crossover time �W is estimated as
30 periods. However, 3D effects inside the fluid prevented us
from conducting experiments for more than 35 periods. For
this early regime, fitting �2�C� with �W

2 � �2 ln t+ln wB� / t2

�gray line on Fig. 5�a�� gives good results, except close to
�W, where the contribution of the light-gray tail starts to
dominate. On the other hand, in numerical simulations we
observe �Fig. 7�b�� both the �2 ln t+ln wB� / t2 behavior �black
line�, which can be interpreted as in the experiment, and the
t−4 decay after �W �100 periods for the case studied� given by
�LG

2 . For long times, the observed power law arises from the
specific way of incorporating white strips whose width scales
as t−2 inside the mixing pattern.

Having established the origin of the scalings observed for
the concentration variance and PDFs in our experiments, we
turn in the next section to the analysis of asymptotically long
times, different initial conditions, and optimization, and offer
some concluding remarks.

V. DISCUSSION

We have explained in the preceding sections the main
features of our experiment. In this section we tie up two
loose ends: we examine the long-time behavior of the con-
centration in Sec. V A, and look at the effect of initial con-
ditions in Sec. V B. Both aspects are more easily investi-
gated in our simple map than in experiments, and our
discussion is supported by numerical simulations of the 1D
map. In Sec. V C we address the issue of optimization of the
mixing device based on what we learned about the role of
walls. Finally, we close the paper with concluding remarks in
Sec. V D.

A. Recovering an eigenmode for long times

We now consider the asymptotic regime, when we can no
longer approximate the injected variance by the contribution
of a white strip of width 1 /at2. This is because the mixing
pattern is close enough to the wall that diffusion blurs the
white layer at the boundary. For such large times, the mixing
pattern can be described as an inverted half-Gaussian cen-
tered on x=0 �see Fig. 10�a�� that decays with time as fluid is
reinjected in the bulk. At this time, fluctuations are very
small in the rest of the pattern, and they are only controlled
by the amplitude of the half Gaussian. In this final regime,
where the concentration pattern keeps a self-similar form
with time, the concentration profile has eventually converged
to an eigenmode of the advection-diffusion operator. The
width of the half Gaussian, w0, is determined by the point
where stretching and diffusion balance,

w0 =� �

1 − g1��w0�
. �32�

Thus, with g1��w0�=1−2aw0, we obtain for a small
diffusivity

FIG. 9. Amplitude Cmax of the maximum positive concentration
fluctuation, in log-linear �a� and log-log �b� coordinates, for differ-
ent diffusivities. This corresponds to the amplitude of the leftmost
spike of the concentration pattern, which has experienced weaker
stretching than images of the initial blob in the core of the pattern.
An exponential decay followed by a power-law evolution are evi-
dent. A line of slope −2 corresponding to the asymptotic evolution
expected from Eq. �31� has been drawn for comparison.
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w0 = ��/4a�1/3. �33�

We note that for small diffusivities, w0, the Batchelor scale at
x=0, is much greater than the Batchelor scale in the bulk,
wB��1/2.

Once the concentration at x=0 starts rising, which occurs
for d�t�=1 /atw0 �i.e., 350 periods for a diffusivity �
=10−7�, the stabilized half Gaussian decays exponentially at
a rate −ln�g1��w0��=2aw0, which scales as �1/3. We have veri-
fied this scaling in numerical simulations of the model �see
Fig. 10�b��. Note that this is one of the very few examples
where one can predict analytically the decay of an eigen-
mode �another noteworthy situation is the torus map consid-
ered in Ref. �11��. However, this eigenmode regime is not
relevant in practice, as we only observe it when fluctuations
are completely negligible in the bulk. Its structure is also
quite trivial: it consists of the half Gaussian at x=0, and of
very small spikes centered on the iterates of x=0 in the bulk.

The convergence to the eigenmode can be interpreted as
follows. Once the mixing pattern reaches the diffusive layer
w0 at the boundary, every box with size equal to the local
diffusive scale contains an iterate of the initial blob of dye. A

global decay of the concentration variance is therefore pos-
sible from then on.

B. Other initial conditions

For the sake of completeness, we have performed numeri-
cal simulations for initial conditions other than a blob of dye.
In particular, we have simulated two different situations, a
cosine profile, corresponding to an initial condition

C�x,t = 0� = 1 + cos�4�x� , �34�

and a random profile, where we attribute to each pixel a
random value between 0 and 1. This rapidly varying profile
is quickly smoothed everywhere on the local Batchelor scale.
The main difference between the two initial conditions may
be assessed as follows. For the cosine profile, the initial scale
of variation for the scalar field is much greater than the
Batchelor scale at the boundary w0, whereas for the random
initial condition, the scalar field already varies on the small-
est possible scales.

In the first case, as for the blob of dye, the scale of varia-
tion of the profile close to the boundary is large, of order
g1

t �1�1 / �at� �see inset of Fig. 11�a��. This case is therefore
analogous to the blob of dye case. After a short time, most
important fluctuations are concentrated in the leftmost image
of the initial unit interval, which was iterated only by g1.
Other iterates have wandered into the bulk where stretching
is much more efficient, so that all fluctuations have died
out—except for newly reinjected iterates. The history of
newly reinjected iterates can be coded as a sequence G �g1
�g2 �g1

k where G stands for the last few iterations, which
corresponds to the reinjection inside the bulk of fluctuations
at the left boundary. Even the leftmost iterate feels the spatial
heterogeneity of stretching �see inset in Fig. 11�a��, as fluc-
tuations initially close to x=1 have been more compressed,
and they have been overlapped and averaged. After some
time, the profile at the boundary �inset in Fig. 11�a�� has a
value significantly different from the mean concentration
only at one or two “oscillations,” which is exactly what we
observe for the blob of dye case �see Fig. 6�. As in the latter
case, we observe a power-law decay for the variance evolu-
tion, which can be accounted for by the same reasoning.

For the random profile case, the concentration profile at
the boundary �inset in Fig. 11�b�� is much less coherent over
successive periods. Indeed, the scale of variation of the con-
centration profile saturates immediately at the local Batch-
elor scale in the whole domain. The strips reinjected in the
bulk result from the averaging of many strips at the bound-
ary, and their amplitude is more difficult to predict. We mea-
sured a nonmonotonic decay of variance inside the bulk in
this case, as the averaging of strips close to the wall depends
on the instantaneous height of many neighboring strips �Fig.
11�b��. Yet the strange eigenmode regime is only reached
once fluctuations have died out everywhere, except for the
leftmost box of size w0 and around the iterates of x=0, so
that there is a long transient phase also in this case.

However, many features are common to all initial condi-
tions that we checked. The spatial organization of the bulk
profile is dominated by the unstable manifold of the para-
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FIG. 10. �a� Structure of the eigenmode: an inverted half Gauss-

ian of width w0 decays exponentially at a rate −ln�g1��w0��=2aw0.
�b� Concentration variance measured in the whole unit interval �0,1�
for different diffusivities. �The thick solid, dashed, solid, dot-
dashed, and dotted lines correspond, respectively, to the following
values of �: 5.4�10−9, 1.3�10−8, 4.3�10−8, 1.2�10−7, and 3
�10−7.� For long times, the evolution of the variance is exponen-
tial, corresponding to the onset of an eigenmode: �2�C , t�
=�0

2 exp�−�t�. As expected from Eq. �33�, � scales as �1/3 �inset�.
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bolic point at x=0, where fluctuations persist longer. As
stretching is lower close to the boundary, the reinjected fluc-
tuations are similar over successive periods. The same rea-
soning as for the blob of dye yields concentration PDFs with
power-law tails of the form �C− �C	�−2, which are indeed ob-
served in all cases.

C. Hydrodynamical optimization

We have argued that for a wide class of mixing protocols
the decay of the concentration initially obeys a power law.
For industrial devices, it is of primary importance to opti-
mize the decay during this initial phase, that is, to tune the
prefactor in the power law. Our analysis in Sec. IV shows
that the prefactor is essentially determined by the parameter
a, which controls the evolution of the distance between the
mixing pattern and the wall in Eq. �11�. �The exponent of the
power law also depends weakly on the mean stretching 	.�

We check the validity of the parametrization of the vari-
ance by the rate a for the figure-8 protocol. As for the blink-

ing vortex protocol, we follow a large number of particles, in
order to record the evolution of a coarse-grained concentra-
tion field. We perform numerical simulations of a Stokes-
flow version of the figure-8 protocol, for different values of
the radius of the figure-8 loops r�. In all cases, the initial
condition is a small square of size 0.1�0.1 located close to
the rod and containing 2.25�106 particles. We calculate the
variance of the concentration on a large half disk of radius
0.8. We show results for the evolution of the variance in Fig.
12�a�. For r�=0.24, 0.3, and 0.38, we observe a power-law
evolution with an exponent close to 4, but slightly greater for
the smallest radius r�=0.24. Numerical simulations do not
permit the same spatial resolution as in experiments; we use
a coarse-graining scale wB=10−2. Measuring the distance of
the mixing pattern to the wall, we deduce the values of a and
�W. Using this coarse spatial resolution and for each value of
a, we compute �W5. The evolution of the variance in Fig.
12 is therefore in agreement with the −4 exponent of the
variance determined in Sec. IV for the regime t��W. The
larger exponent for the smallest radius could be attributed to
a weaker mean stretching 	 in this case, since the rod travels
in a smaller region.

FIG. 11. �Color online� Homogenization for two different initial
conditions: �a� C�x , t=0�=1+cos�4�x�, �b� random initial profile.
The scale of variation of the initial profile is much greater than w0

in the first case, whereas it is of order w0 close to the boundary in
the random case. Main axes: concentration profile after 30 iterations
of the map. Note that all variance is contained in the leftmost image
of the unit interval �always transformed by g1�, and around the
iterates of x=1. Inset: zoom on the border region for periods 30
�dark blue� to 180 �red�, represented every fifth period.

(a)

(b)

FIG. 12. �a� Evolution of the concentration variance in a large
central domain for three different versions of the figure-8 protocol,
corresponding to r�=0.24, 0.3, and 0.38, obtained by advecting
Lagrangian particles in Stokes-flow numerical simulations. �b� Evo-
lution of the concentration variance for the same protocols vs time
rescaled by the parameter �a �r�=0.24, 0.3, and 0.38 correspond,
respectively, to a=0.39, 0.72, and 1.39�. A satisfying collapse of all
curves is observed.
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In our model, the dependence of the variance on the de-
tails of the protocol comes from the factor �2�t�
��at�−4 in
the regime t��W. We have plotted in Fig. 12�b� the evolu-
tion of the variance against the rescaled time �at. We ob-
serve a very good collapse of all data on the same curve,
supporting the idea that the main ingredient in the evolution
of the variance is the parameter a.

Increasing the mixing speed therefore amounts to increas-
ing the rate a at which a particle approaches the wall. This
can be achieved in a number of ways, such as increasing the
rod diameter or by “scraping the bowl,” that is, taking the
stirrers closer to the wall as in Fig. 12. Determining the value
of a as a function of hydrodynamic parameters such as the
rod diameter or the size of the rod’s orbit is beyond the scope
of this paper. However, our results suggest that in comparing
different mixing protocols the rate a gives a simple estimate
of the variance decay rate and can replace more challenging
measurements, such as the concentration field itself.

D. Conclusions

The results of this paper can be summarized as follows.
Our observations of mixing dynamics in experiments, nu-
merical simulations of Stokes flows, and simulations of an
idealized model have shown a slow algebraic mixing rate for
a broad class of mixers where the chaotic region extends to
fixed no-slip walls. Our results differ from the exponential
rate of mixing found in previous work on cellular flows
where walls did not play such an important role �17–19�, or
in ideal flows with periodic boundary conditions and no
walls �3,7,8�.

To account for our observations, we have proposed a ge-
neric scenario for wall-dominated mixing dynamics. No-slip
hydrodynamics in the wall region force poorly mixed fluid to
be slowly reinjected in the bulk along the unstable manifold
of a parabolic point. �Note that phase portraits with many
injection points are also possible. This does not affect the
validity of our arguments.� Mixing dynamics are then con-
trolled by the slow stretching at the wall, which contaminates
the whole mixing pattern up to its core. We observed a slow
algebraic decay of the concentration variance in experiments
and numerical simulations, which we modeled using a 1D
baker’s map with a parabolic point on the boundary. An ex-
ponential decay corresponding to an eigenmode is recovered
in the model once iterates of the initial blob of dye are
present in all boxes of size of the local diffusive scale, that is,
for extremely long times at which the variance has been al-
most completely exhausted. Whereas previous theoretical
and numerical work �21,23,24� on the influence of no-slip
walls was centered on the shrinkage of an unmixed pool in
the wall region, we have shown in this work how unmixed

elements from the wall region make their way into the bulk
region and contaminate the mixing rate even in regions
where stretching is high. Note that we expect our generic
scenario for the mixing dynamics in the bulk to hold also for
the stochastic flow with a no-slip wall introduced by Salman
and Haynes �24�.

We characterize a mixing experiment by the following
parameters: the flow’s mean compression factor 	; the alge-
braic rate a at which a particle approaches the boundary; the
Batchelor scale wB obtained from the diffusivity � and com-
pression 	; and the width of the initial blob �. The succes-
sive stages of the mixing process inside the bulk can be
summarized as follows.

�1� For t� ln�wB /�� / ln 	, all filaments are larger than wB
and the variance is constant: �2�C�=�0

2.
�2� For ln�wB /�� / ln 	� t� �awB�−1/2, fluctuations in the

bulk start to decay as dye filaments are compressed below
wB, and the variance is dominated by large unmixed strips
recently injected from the near-wall region into the bulk:
�2��2 ln�at2wB� / �a ln 	� t2�, as derived in Sec. IV A.

�3� For �awB�−1/2� t� �� /4a�1/3, all reinjected strips are
smaller than wB, yet their contribution still dominates the
variance evolution �2�1 / �a2t4�. This scaling was derived in
Sec. IV B.

�4� For t� �� /4a�1/3, we are in the eigenmode regime �see
Sec. V A� and �2�exp�−�t�, where �� ��a2�1/3.

Our study has highlighted the role of periodic structures
with lowest stretching in the construction of a time-persistent
mixing pattern, dominated by their unstable manifold. This
applies to the least unstable periodic point in the baker’s map
�thus a hyperbolic point� and to the wall parabolic point for
the figure-8 case. The importance of the elliptic region for
limiting mixing dynamics has been emphasized in other
studies �10,34�.

In 2D flows, where Lagrangian dynamics are Hamil-
tonian, the wall region can belong either to a chaotic region,
or to an elliptical island. We have argued that algebraic mix-
ing dynamics are obtained in the first case. An experimental
study of mixing dynamics in the second case is in prepara-
tion and will be reported elsewhere.
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