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Large time evolution of concentration profiles is studied analytically for reaction-diffusion systems where
the reactants A and B are each initially separately contained in two immiscible solutions and react upon contact
and transfer across the interface according to a general nA+mB→C reaction scheme. This study generalizes to
immiscible two-layer systems the large time analytical asymptotic limits of concentrations derived by Koza �J.
Stat. Phys. 85, 179 �1996�� for miscible fluids and for reaction rates of the form AnBm with arbitrary diffusion
coefficients and homogeneous initial concentrations. In addition to a dependence on the parameters already
characterizing the miscible case, the asymptotic concentration profiles in immiscible systems depend now also
on the partition coefficients of the chemical species between the two solution layers and on the ratio of
diffusion coefficients of a given species in the two fluids. The miscible time scalings are found to remain valid
for the immiscible fluids case. However, for immiscible systems, the reaction front speed is enhanced by
increasing the stoichiometry of the invading species over that of the species being invaded. The direction of the
front propagation is found to depend on the diffusion coefficient of the invading species in its initial fluid but
not on its value in the invading fluid. Hence, a reaction front in immiscible fluids can travel in the opposite
direction to the reaction front formed in miscible fluids for a range of parameter values. The value of the
invading species partition coefficient affects the magnitude of the front speed but it cannot alter the direction
of the front. For sufficiently large times, the total amount of product produced in time is independent of the rate
of the reaction. The centre of mass of the product can move in the opposite direction to the center of mass of
the reaction rate.
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I. INTRODUCTION

Simple A+B→C chemical reactions are able to generate
reaction fronts when two solutions each containing one of
the reactants are put in contact. From a chemical engineering
perspective, such a reaction is especially useful for extraction
purposes because the reaction can help increase the transfer
from one phase to the other of a given chemical. In this
regard, an evaluation of the efficiency of the extraction tech-
nique relies on a good estimate of the temporal evolution of
the underlying concentration profiles and of the transfer rate
across the interface between the two immiscible solvents.

In this context, recent experiments analyzing the dynam-
ics of concentration profiles in immiscible two-layer systems
each containing initially separated reactants have revived in-
terest into the theoretical analysis of the corresponding ana-
lytical asymptotic reaction-diffusion profiles. The experi-
ments consist of Hele-Shaw cells �two glass plates separated
by a thin gap width� in which two immiscible fluids are put
into contact �1–5�. Each layer contains one reactant of a
simple A+B→C type of reaction. Upon transfer across the
interface of one of the reactants �the other one being, in these
specific experiments, immiscible in the other layer�, a reac-
tion front is formed that invades one of the two layers. Hy-
drodynamic instabilities driven by buoyancy �1,2,5� and Ma-
rangoni effects �3,5� deform the front giving rise to

chemohydrodynamic patterns. From a theoretical point of
view, an understanding of the underlying reaction-diffusion
base state of the system, where hydrodynamic forces are ab-
sent, is of major importance. Indeed such a situation is the
starting point for the identification and evaluation of the on-
set of the instabilities that are present in the full chemohy-
drodynamic system �6,7�.

When analyzing such reaction-diffusion fronts, one of the
most important physical quantities is the rate of production
Rc�X ,T� of the product, with X the dimensional spatial coor-
dinate and T the dimensional time. The position of the reac-
tion front Xf�T� is usually defined as the position where the
production rate Rc reaches its maximum �8�, however, as
pointed out by Cornell et al. �9� and Magnin �10� this defi-
nition of Xf does not coincide with the asymptotic location
where the reactant concentrations vanish when n�m. Hence,
in general it is better to use the definition by Chopard et al.
�11� in which Xf is the first moment of the production rate,
namely,

Xf =

�
−�

�

RcXdX

�
−�

�

RcdX

, �1�

which is found to coincide with the asymptotic location
where the reactant concentrations vanish. A useful measure
of the width of the reaction front Wf�T� comes from the
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second moment of the production rate Rc expressed by
�9,11,12�

Wf
2 =

�
−�

�

Rc�X − Xf�2dX

�
−�

�

RcdX

. �2�

Such position and width of the reaction front are typical
quantities measurable in experiments.

The simplest reaction mechanism between two reactants
is A+B→C in which the production rate Rc=kAB where k
denotes the kinetic constant and A and B denote concentra-
tions. The classical large time asymptotic scalings for this
second order reaction with equal diffusivities in miscible flu-
ids were found by Venzl �13� and Gálfi and Rácz �12�. Venzl
found that the front position Xf �T1/2 and further, Gálfi and
Rácz determined that the reaction zone width Wf �T1/6 and
that the rate of production at the front Rc�T−2/3. The scal-
ings for the position of the front and width of the reaction
zone were found to be in good agreement with experiments
conducted in gels �14,15�. The short time and intermediate
behaviors of this reaction for unequal diffusion coefficients
was examined by Taitelbaum et al. �16� who found that the
reaction front could change direction under certain condi-
tions.

Another common mechanism is A+2B→C, where now A
is consumed at the rate kAB2 and B is consumed at the rate
2kAB2. Cornell et al. �8,9,17� considered, for miscible fluids
with equal diffusion coefficients, the family of nonlinear re-
actions nA+mB→C with a rate of reaction Ra=nkAnBm and
Rb=mkAnBm for species A and B, respectively. This altered
the large time asymptotic scalings for the reaction zone
width to Wf �T1/2−� and the rate of production at the front to
Rc�T�−1, where �=1 / �n+m+1�. These results were then
generalized by Koza �18� for arbitrary diffusion coefficients
still for miscible fluids, with the large time scalings found to
be unaffected. Sinder and Pelleg �19� obtained the solution
for the product in miscible fluids for both a reversible and
irreversible reaction.

In practice, complex reactions can also involve several
intermediate steps such that the overall experimental kinetics
yield reaction rates with fractional orders. This is the case for
instance in complex reaction schemes in chain reactions, ca-
talysis, or autocatalytic systems �20�. In this case the reaction
rates Ra=kaAnBm and Rb=kbAnBm with n and m nonintegers
and where ka and kb are not necessarily equal to nk and mk,
respectively. This complex case has to our knowledge not
been addressed theoretically yet, probably because of the
lack of experimental studies of such complex kinetics in the
case of initially separated species. From a theoretical point of
view, analysis of such a general case is, however, interesting
in the sense that it encompasses all other simpler cases at
once.

The case for immiscible solvents has not been studied as
extensively as the miscible fluids case. All the works that
consider constant diffusion coefficients throughout the sys-
tem analyze effectively miscible diluted solutions where the

solvent of the solute species A and B is the same as, for
instance, in two aqueous solutions of reactants A and B put in
contact. If A and B are contained in miscible yet different
solvents, then the diffusion coefficient of the solutes are spa-
tially dependent when the two solvents start to mix. This
situation is very difficult to analyze and will not be addressed
here. Let us only mention a first step into such a direction
which is the work by Polanowski and Koza �21� who re-
cently examined the reaction A+B→2C where the diffusion
coefficients are taken as linear functions of the spatially de-
pendent concentrations to extend the validity of the equa-
tions to more concentrated solutions. They found that the
time scalings were affected by the diffusion coefficient of the
product.

The presence of a physical interface in the problem has
recently also attracted attention. In that regard, Chopard et
al. �11� theoretically examined the presence of a semiperme-
able wall upon the reaction A+B→C in which one species
was unaffected by the wall whilst the other was not permitted
to pass through the wall. Park et al. �22� experimentally stud-
ied dynamics in a system with a semipermeable membrane
and found that the large time scalings were unaffected by the
membrane.

In this context, it is the goal of this paper to generalize
previous analytical studies of asymptotic concentration pro-
files in reaction-diffusion systems by considering the cases
with a general reaction rate AnBm in an immiscible two-layer
system. This corresponds to a reactor in which a physical
interface between two immiscible solvents is present and
both reactive species A, B or the product C can cross the
interface. We derive analytically large time asymptotic solu-
tions for both the reactants and the product concentrations
taking the partition coefficients as well as the diffusivity of
the various chemical species in each liquid into consider-
ation. The limit here deals with the class of moving boundary
problems of the Stefan type �see Crank �23��. The theoretical
scalings obtained are found to be unaltered by the fact that
the fluids are immiscible. Some interesting asymptotic re-
sults obtained yields the following main conclusions: the re-
action front in immiscible fluids can travel in the opposite
direction to the one in miscible fluids, the total amount of
product produced in time is independent of the rate of the
reaction and the center of mass of the product can move in
the opposite direction to the propagation of the front.

To explain these results, the paper is organized as follows.
In Sec. II, the model and relevant parameters are introduced.
The properties of the diffusive system in the absence of any
reaction are underlined in Sec. III before the reaction-
diffusion case is analyzed in detail in Sec. IV and V. The
analytical asymptotic concentration profiles for immiscible
systems are presented in Sec. IV. The properties of the front
such as the front position, speed, and width as well as the
amount of product produced in time are discussed in Sec. V
before conclusions are drawn. In Appendix A the concentra-
tion equations within the reaction zone are derived. In Ap-
pendix B the inner and outer solutions are matched, yielding
a single ODE. In Appendix C the position and width of the
reaction front are obtained.
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II. REACTION-DIFFUSION MODEL

Consider two immiscible solvents placed in contact along
a planar interface. The left solvent contains a reactant A
while the right one contains the reactant B. This study exam-
ines the family of chemical reactions whose reaction rate is
proportional to AnBm where n and m are positive constants.
The mean field approximation is assumed and the rate of
production is thus given by Rj

�i�=kj
�i�AnBm, where j=a ,b ,c so

that Rj
�i� depends on the chemical species considered and the

superscript i is used to distinguish between the two liquids
where i=1 denotes the left liquid �X�0� and i=2 denotes
the right liquid �X�0�—note that the interface is located at
X=0 for all T�0. The kinetic constants ka

�i�, kb
�i�, and kc

�i� are
constants that may depend on the solvent. If the solvents are
very different, the reaction mechanism can change leading to
different kinetic equations and rate constants. However, here
we assume that the reaction mechanism is the same in each
solvent. For an elementary nA+mB→C reaction step, n and
m are positive integers and the kinetic constants satisfy ka

�i�

=nkc
�i� and kb

�i�=mkc
�i�. However, for more complex reaction

schemes, the detailed succession of elementary steps might
be unknown while kinetic studies show that the global reac-
tion rate is proportional to AnBm. In this case, n and m are no
longer required to be integers and further, the constants ka

�i�,
kb

�i�, and kc
�i� can be independent of n and m.

In the interest of generality, we seek therefore analytical
solutions to the general system of one-dimensional reaction-
diffusion equations given by

AT = Da
�i�AXX − ka

�i�AnBm, �3a�

BT = Db
�i�BXX − kb

�i�AnBm, �3b�

CT = Dc
�i�CXX + kc

�i�AnBm. �3c�

The subscripts X and T denote partial derivatives with re-
spect to space and time. We note that this system is also valid
in both two- and three-dimensional space when transverse
instabilities of the front are absent.

The molecular diffusion coefficients Da
�i�, Db

�i�, and Dc
�i� are

constants that depend on the solvent. Thus for immiscible
liquids each species will diffuse at a different rate in each of
the solvents. In addition, the difference in solubility of the
chemical species in both liquids is characterized by a parti-
tion coefficient p constant at equilibrium. Absorption and
desorption rates are typically large so the interface shall be
assumed to be sufficiently close to equilibrium and we are
ignoring surfactants that can accumulate at the interface.
Hence, we assume that the interface is in equilibrium with its
surroundings so that we can introduce the partition coeffi-
cients pa, pb, and pc defined as

pa =
A�1�

A�2� , pb =
B�1�

B�2� , pc =
C�1�

C�2� , �3d�

where the concentration in each liquid is evaluated at the
interface X=0. At the interface we also require a flux balance
for each species, yielding

Da
�1�

Da
�2�AX

�1� = AX
�2�,

Db
�1�

Db
�2�BX

�1� = BX
�2�,

Dc
�1�

Dc
�2�CX

�1� = CX
�2�.

�3e�

The domain is considered sufficiently large to be modeled as
infinite. Thus, at infinity we apply no flux boundary condi-
tions.

AX
�1�,BX

�1�,CX
�1� → 0 as X → − � , �3f�

AX
�2�,BX

�2�,CX
�2� → 0 as X → � . �3g�

Finally, we have the initial conditions

A�1� = A0, B�2� = B0, B�1� = A�2� = C�1� = C�2� = 0,

�3h�

where A0 and B0 are the initial concentrations of reactants A
and B in the left and right liquids, respectively. This condi-
tion means that all of the species are initially homogeneous
in each semi-infinite region with one only containing A
whilst the other only contains B.

To nondimensionalize this set of equations, characteristic
length and time scales are constructed using the kinetic con-
stant and diffusion coefficient in liquid 2, i.e., we take

l0 = � Da
�2�

ka
�2�A0

n+m−1�1/2

and t0 =
1

ka
�2�A0

n+m−1 . �4�

We introduce the following dimensionless variables x=X / l0,
t=T / t0, a=A /A0, b=B /A0, and c=C /A0. The dimensionless
parameters are typically the ratio � of initial reactant con-
centrations

� =
B0

A0
, �5a�

the ratios �a, �b, �c, 	, and 
 of kinetic constants

�a =
ka

�1�

ka
�2� , �b =

kb
�1�

ka
�2� , �c =

kc
�1�

ka
�2� , 	 =

kb
�2�

ka
�2� , 
 =

kc
�2�

ka
�2� ,

�5b�

and the ratios of diffusion coefficients q, r, s, r̂, and ŝ de-
fined, respectively, as

q =	Da
�2�

Da
�1� , r =	Da

�2�

Db
�2� , s =	Da

�2�

Dc
�2� ,

r̂ =	Da
�2�

Db
�1� , ŝ =	Da

�2�

Dc
�1� . �5c�

We will assume here that the chemical front invades layer 2
�the symmetric situation where the front invades liquid 1
being trivial to obtain�. Now, the physical measurable dimen-
sional quantities such as the rate of production Rc

�2�, position
Xf, and width Wf of the front can be transformed into their
equivalent dimensionless quantities as R=Rc

�2�t0 /A0, xf
=Xf / l0, and wf =Wf / l0, where
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R = 
anbm, xf =

�
−�

�

Rxdx

�
−�

�

Rdx

, wf
2 =

�
−�

�

R�x − xf�2dx

�
−�

�

Rdx

.

�6�

The dimensionless equations in liquid 1 at the left are then

at
�1� =

axx
�1�

q2 − �aa�1�n
b�1�m

, �7a�

bt
�1� =

bxx
�1�

r̂2 − �ba�1�n
b�1�m

, �7b�

ct
�1� =

cxx
�1�

ŝ2 + �ca
�1�n

b�1�m
, �7c�

while we have in liquid 2 located to the right,

at
�2� = axx

�2� − a�2�n
b�2�m

, �7d�

bt
�2� =

bxx
�2�

r2 − 	a�2�n
b�2�m

, �7e�

ct
�2� =

cxx
�2�

s2 + 
a�2�n
b�2�m

. �7f�

On x=0, the boundary conditions �3d� and �3e� become

a�1� = paa�2�, b�1� = pbb�2�, c�1� = pcc
�2�, �7g�

ax
�1� = q2ax

�2�, r2bx
�1� = r̂2bx

�2�, s2cx
�1� = ŝ2cx

�2�. �7h�

The far field boundary conditions �3f� and �3g� are now

ax
�1�,bx

�1�,cx
�1� → 0 as x → − � , �7i�

ax
�2�,bx

�2�,cx
�2� → 0 as x → � , �7j�

while at t=0, the initial condition �3h� reads

a�1� = 1, b�2� = �, b�1� = a�2� = c�1� = c�2� = 0. �7k�

Notice that, in an infinite domain, the no flux far field bound-
ary conditions are effectively equivalent to having the con-
centrations specified at their initial values.

III. NONREACTIVE SYSTEM

For comparative purposes, it is useful to first recall the
properties of the concentration profiles in the absence of re-
actions. Then, the equations are linear, decoupled, and with
constant coefficients in each half space. When there is no
reaction, there is no product so that c�1�=c�2�=0. The remain-
ing four diffusion equations are

at
�1� =

axx
�1�

q2 , bt
�1� =

bxx
�1�

r̂2 , �8a�

at
�2� = axx

�2�, bt
�2� =

bxx
�2�

r2 . �8b�

We introduce the similarity variable

� =
x

2	t
, �9�

which allows the far field boundary conditions �7i� and �7j�
to transform into the initial conditions �7k�. The bulk equa-
tions in Eqs. �8� and boundary conditions �7g� and �7j� are
satisfied by the analytical solutions �23,24�

a�1� = 1 − q
erfc�− q��

pa + q
, a�2� =

erfc���
pa + q

, �10a�

b�1� = �r̂pb
erfc�− r̂��

r̂ + rpb

, b�2� = �
1 − rpb
erfc�r��
r̂ + rpb

� .

�10b�

The above solution �10� for two immiscible fluids can be
reduced to the solution for two miscible fluids by setting the
partition coefficients pa= pb=1 and equating the diffusion co-
efficients Da

�1�=Da
�2�=Da, Db

�1�=Db
�2�=Db so that q=1 and r̂

=r. One obtains then for miscible nonreactive fluids,

a�1� � a�2� =
erfc���

2
, b�1� � b�2� = �

erfc�− r̃��
2

, �11�

where r̃ is here simply equal to 	Da /Db. Solutions �10� and
�11� are valid for all time and give the concentration profiles
of species A and B after contact for, respectively, immiscible
and miscible solvents each initially containing a different
species. For the miscible fluids, one recovers the classical
solution �11� depending only on the ratio of initial concen-
trations � and on r̃=	Da /Db. On the contrary, for immis-
cible fluids, the solutions in Eqs. �10� depend not only on �,
but also on the ratios of the diffusion coefficients in each
phase q, r, r̂ and on the partition coefficients pa and pb.

In Fig. 1 typical concentration profiles of a against � are
plotted to illustrate the difference between the immiscible
and miscible nonreactive cases. For the miscible case, solu-
tion �11� is symmetric with regard to �=0 which is not the
case in the immiscible situation. As an example, Fig. 1 shows
the profiles for the immiscible case when q= 1

2 so that species
A diffuses four times faster in liquid 1 than in liquid 2. When
pa=1 so that A has the same solubility in both liquids �Fig.
1�b��, a larger diffusivity of species A in liquid 1 leads to
higher concentrations in liquid 2. Depending on whether the
solubility of A in liquid 1 is larger �pa�1, Fig. 1�a�� or
smaller �pa�1, Fig. 1�c�� than in liquid 2, the concentration
of A in the left liquid 1 will be larger or smaller, respectively,
than in the miscible case. Furthermore, in that latter case, the
concentration of A in liquid 2 at the interface can even be-
come greater than the initial concentration in liquid 1 as can
be seen in Fig. 1�c�. From Eqs. �10� the condition for this to
occur is that pa+q�1. Similarly, for species B to have a
greater concentration in liquid 1 at the interface than the
initial concentration in liquid 2 requires that 1

pb
+ r

r̂ �1 in the
case of immiscible systems.
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IV. REACTIVE SYSTEMS: LARGE TIME ASYMPTOTICS

In the presence of a chemical reaction, a narrow reaction
zone is formed at the location where the reaction-diffusion
terms are balanced. Outside the reaction zone one of the
reactants will be virtually exhausted so that no reaction takes
place. We call this the “outer region.” The outer region is a
purely diffusive region where lengths scale with 	t. The re-
action zone width wf is anticipated to increase at a slower
rate than 	t, so that for large times the reaction front width is
negligible compared to the diffusive length scale. Hence, the
reaction zone will be treated like a single point where both a
and b vanish. We define xf�t� as the point where the outer

solution a(xf�t� , t)=0. Seeking a similarity solution leads to
the equation

xf�t� = 2�	t , �12�

where � is an unknown constant that determines the reaction
front wave speed �see Eq. �5� in Gálfi and Rácz �12��. The
front can, in principle, invade either of the phases, depending
on the parameters. For concreteness we will assume as men-
tioned above that the front moves to the right into the x�0
layer, i.e., ��0. The condition on the parameters consistent
with this assumption will be derived.

The presence of a moving front requires that the right
domain �x�0� is now itself divided into two regions: Region
2 is redefined as the zone where 0�x�xf�t� and we intro-
duce region 3 defined as the remaining zone where xf�t��x.
This layout is sketched in Fig. 2. No reaction takes place in
the outer region where one of the species has been ex-
hausted, i.e., b�1�=b�2�=a�3�=0, where the subscript i
=1,2 ,3 denotes the region where the concentration is evalu-
ated. The six remaining transport equations in the outer re-
gion where the reaction is negligible are

at
�1� =

axx
�1�

q2 , ct
�1� =

cxx
�1�

ŝ2 , �13a�

at
�2� = axx

�2�, ct
�2� =

cxx
�2�

s2 , �13b�

bt
�3� =

bxx
�3�

r2 , ct
�3� =

cxx
�3�

s2 . �13c�

Using the similarity variable � defined in Eq. �9�, the ana-
lytical solutions are obtained and twelve constants are intro-
duced. Four constants are determined from the interfacial
conditions at �=0.

a�1� = paa�2�, c�1� = pcc
�2�, a�

�1� = q2a�
�2�, s2c�

�1� = ŝ2c�
�2�,

where the subscript � indicates derivatives with respect to �.
Four more constants are determined from the far field con-
ditions.

(a)

(b)

(c)

FIG. 1. Diffusive concentration profiles for species A against
�=x /	4t in the absence of any reaction for, respectively, the mis-
cible �dashed� and immiscible �full� cases. The miscible case corre-
sponds to q= pa=1, whilst the immiscible case is represented with a
ratio of diffusion coefficient q= 1

2 and various values of the partition
coefficient: �a� pa=2, �b� pa=1, and �c� pa= 1

4 . The dotted line rep-
resents the interface at �=0.

0

Region 1 Region 2 Region 3

FIG. 2. A sketch of regions 1, 2, and 3. Full lines denote the
concentrations a and b. Dotted lines denote x=0 �location of the
interface between the two immiscible fluids� and x=xf �location of
the reaction front�.
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a�1� → 1, c�1� → 0 as � → − � ,

b�3� → �, c�3� → 0 as � → � .

These conditions are equivalent to the initial conditions.
Three further constants are determined by setting a�2�=b�3�

=0 and c�2�=c�3� on x=xf�t�. One remains thus with one ad-
ditional constant h and, for immiscible reactive two-layer
systems, we obtain the outer solution profiles

a�1� = 1 − q
erfc�− q��

q + pa erf���
, c�1� = h

ŝpc erfc�− ŝ��
ŝ + spc erf�s��

,

�14a�

a�2� =
erfc��� − erfc���

q + pa erf���
, c�2� = h

ŝ + spc erf�s��
ŝ + spc erf�s��

,

�14b�

b�3� = � − �
erfc�r��
erfc�r��

, c�3� = h
erfc�s��
erfc�s��

. �14c�

In the special case when the product c is insoluble in liquid 1
like in the experiments by Eckert et al. �1,2,4�, the partition
coefficient pc=0 and the solution for the product becomes
simply

c�1� = 0, c�2� = h, c�3� = h
erfc�s��
erfc�s��

.

Solution �14� for two immiscible fluids can be reduced to a
solution for the case of two miscible fluids by setting pa
= pc=q=1 and s= ŝ to obtain

a�1� � a�2� = 1 −
erfc�− ��
erfc�− ��

, b�3� = � − �
erfc�r��
erfc�r��

,

�15a�

c�1� � c�2� = h
erfc�− s��
erfc�− s��

, c�3� = h
erfc�s��
erfc�s��

. �15b�

The constants � and h are obtained by balancing the reaction
rates with the fluxes at the reaction front. The flux of species
A into the reaction front divided by its rate of consumption
equals the flux of species B into the reaction front divided by
its rate of consumption which also equals the total flux of
species C emerging from the reaction front divided by its
rate of production. Thus using dimensional quantities we
have

−
Da

�2�

ka
�2� ax

�2� =
Db

�2�

kb
�2� bx

�3� =
Dc

�2�

kc
�2� �cx

�2� − cx
�3�� . �16�

Hence we obtain

e�2�r2−1� erfc�r�� =
�

	r
�q + pa erf���� , �17�

and

h =

se�2�s2−1� erfc�s���ŝ + spc erf�s���

�q + pa erf�����ŝ + spc�
. �18�

Equivalent conditions are rigorously obtained by construct-
ing an inner solution inside the reaction zone �see Appendix
A� and matching this solution to the outer solution �see Ap-
pendix B�. The resulting inner solutions are given by

aI =
U


t�G, bI =
U	r2


t� �G + z� , �19a�

cI = h −
U
s2


t� �G + z
ŝ + spc erf�s��

ŝ + spc
� , �19b�

where G�z� is the solution to system �B5a� and �B5b�,
z= 1

2
�x−xf�t�−�1/2�, 
=U�4	mr2m /U2��, �−1=n+m+1, and
U−1= 1

2
	��q+ pa erf����e�2

. Thus the concentrations inside
the reaction zone scale with t−� and the width of the reaction
zone scales with t�1/2�−�. As ��0, the reaction front width is
smaller than the diffusive length scale 	t, which justifies the
assumption we made that the reaction zone can be modeled
by a point. The validity of this solution was checked by
comparing it with numerical solutions to system �7a�–�7k�.
Excellent agreement was found between the large time evo-
lution of the full system of equations �7a�–�7k� and the ana-
lytical asymptotic solutions �14� and �19�.

To compare to the miscible case we can put the partition
coefficients equal to 1 and the diffusion coefficients of each
species equal in liquid 1 and 2, i.e. we take pa= pb= pc=q
=1, and s= ŝ. In this case Eq. �17� is equivalent to Eq. �24�
by Koza �18� when 	= m

n . If in addition 	=
=1, then Eq.
�18� is the dimensionless version of Eq. �14� in Sinder and
Pelleg �19� for the A+B→C reaction.

The constant � which gives the evolution of the front
position xf in time �see Eq. �12�� is the solution to the tran-
scendental equation �17�. Notice that the left-hand side of
Eq. �17� is a monotonic decreasing function of � whilst the
right-hand side is a monotonic increasing function of �,
hence, there is at most one solution for �. In the special case
when A and B diffuse at the same rates, i.e., when r=1, then
Eq. �17� can be rearranged to yield

erf��� =
	 − �q

	 + �pa
. �20�

A special case of this equation can be obtained from Eq. �6�
in Cornell et al. �9� for the case of miscible fluids for a single
stage reaction with 	=m /n, q=1, and pa=1.

To illustrate the contraction of the reaction zone in time,
a, b, and c are plotted against � at t=103 and t=106 in Fig.
3 for a single set of parameter values with w*=wf / �2	t�
� t−1/3. In Fig. 3, unity partition coefficients have been cho-
sen to yield continuous concentrations at the interface in or-
der to highlight the change in the concentration gradients at
the interface due to the change in the diffusive rates between
each liquid.
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V. PROPERTIES OF THE REACTION FRONT

Using the asymptotic outer solutions �14� derived, let us
analyze the ensuing properties of the reaction front. In Ap-
pendix C, the first moment of the production rate is shown to
indeed be given by Eq. �12�, namely, xf =2�	t, and further,
the reaction front width is shown to be given by

wf = 
	�t�q + pa erf����e�2
�1−2�

	I

�	r2�m� , �21�

where I is a constant, defined in Appendix C, that only de-
pends on n and m. The presence of the interface can have a
dramatic effect on the speed of the reaction front, however,
the effect on the width of the reaction front is much weaker.
Figures 4 and 5 illustrate the effects of the presence of an
interface on the temporal dependence of the asymptotic front
position xf predicted from Eq. �12� and of the asymptotic
front width wf predicted from Eq. �21� for various parameter
cases. They show that increasing pa or q or decreasing r
cause the reaction front to move slower �see Figs. 4�, but the
width of the reaction front gets larger �see Fig. 5�.

A. Position of the front

The position of the front xf depends linearly on
�� �

	 ,r ,q , pa�, which is the solution to Eq. �17�. �Although �
is independent of n and m for complicated kinetics with frac-

(a)

(b)

FIG. 3. Concentrations as a function of � �a� at t=103 and �b� at
t=106 for q=r=s=2, ŝ= r̂=4, �= 1

2 , n=m=�a=�b=�c= pa= pb= pc

=	=
=1. To better visualize the tiny reaction zone, we plot here a
rescaled rate of production R*=10abt2/3 and w*=wf / �2	t�. The
dotted lines denote the interface at �=0 and the asymptotic first
moment of the reaction zone at �=�.

Increasing

Increasing

(a)

(b)

Decreasing

(c)

FIG. 4. Temporal dependence of the position xf of the reaction
front for various values of the partition coefficient pa �a�, and of the
ratio of the diffusion coefficients q �b� and r �c�. In �a� pa

=0, 1
4 , 1

2 ,1 ,2 ,4 ,8 ,16, in �b� q=0, 1
3 , 2

3 ,1 , 4
3 , 5

3 ,2, and in �c� r
= 1

2 , 3
5 , 3

4 ,1 , 3
2 ,3 ,6. Except where stated the parameter values are

�= 1
2 and q=r=s= ŝ= r̂=n=m=�a=�b=�c= pa= pb= pc=	=
=1.

The dashed lines correspond to the miscible fluids case when �a�
pa=1, �b� q=1, and �c� r= r̂. The lines corresponding to q=2 in �b�
and r= 1

2 in �c� coincide with xf =0.
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tional orders, in the case of an elementary reaction step 	
�m /n so that n and m can affect ��. By expanding Eq. �17�
in small � we obtain the approximation

� �
	�

2

	r − �q

	r2 + �pa
for 0 �

	r

�q
− 1 � 1. �22�

The condition for the front to move to the right, i.e., for a
non-negative solution for � to exist, requires �q�	r. In

conditions for which this equality is satisfied and the front
thus invades liquid 2, we find that increasing � �i.e., increas-
ing B0 over A0�, q �i.e., increasing the diffusivity of A in
liquid 2 compared to liquid 1�, or pa �i.e., increasing the
solubility of A in liquid 1 compared to liquid 2� reduce �. On
the contrary, increasing 	 �i.e., increasing the rate of con-
sumption of B over that of A� or r �i.e., increasing the diffu-
sivity of A compared to B in liquid 2� leads to an increase in
�.

It should be noted that the solubility of the species has no
effect on the direction of the front, since pa cannot alter the
sign of �; however, as effectively stated in the previous sen-
tence, the solubility does affect the magnitude of the front
speed. In particular, in the large pa limit, � tends to zero,
which physically corresponds to reducing the solubility of
species A in liquid 2 making it more difficult for species A
and hence the reaction front, to invade liquid 2.

Recalling the parameter definitions given in Eq. �5a�–�5c�,
for ��0, i.e., �q�	r, this amounts to satisfying the condi-
tion

B0

A0

ka
�2�

kb
�2� �	Da

�1�

Db
�2� , �23�

with a stationary front occurring at equality. A special case of
this was studied numerically �25� and confirmed analytically
�see Eq. �26� of Ref. �18�� for the reaction A+B→C in mis-
cible fluids for which ka

�2�=kb
�2�. For equimolar initial concen-

trations �A0=B0� and when ka
�2�=kb

�2�, the front remains sta-
tionary ��=0� only if Da

�1�=Db
�2�. This is a constraining

condition as different chemical species rarely have exactly
the same diffusion coefficient. As a consequence, in the vast
majority of situations, the equality of Eq. �23� is not satisfied,
the front will move, and ��0.

A consequence of Eq. �23� is that, for immiscible systems,
the direction of the front is independent of Da

�2�. Rearranging
Eq. �23�, the condition for ��0 in two immiscible liquids is

Db
�2��B0ka

�2�

A0kb
�2��2

� Da
�1�, �24a�

whilst if the same reaction is carried out in two miscible
liquids, with both liquids having the same properties as liq-
uid 2, then the condition for ��0 is

Da
�2� � Db

�2��B0ka
�2�

A0kb
�2��2

. �24b�

Hence, as long as Da
�1��Da

�2�, then there exists a range of
parameter values in which a reaction front formed by two
immiscible fluids can travel in the opposite direction to the
reaction front formed by two miscible fluids.

B. Speed of the front

The relationship between each of the physical variables
and the speed of the reaction front can easily be identified
from the dependence of � upon the dimensionless variables
and so a summary of the effects of the various physical pa-
rameters upon the front position and hence its speed are

Increasing

(a)

Increasing

Decreasing

(b)

(c)

FIG. 5. Temporal dependence of the width of the front wf for
various values of the partition coefficient pa �a�, and of the ratio of
the diffusion coefficients q �b� and r �c�. The parameter values are
the same as those in Fig. 4.
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given in Table I. It is seen that all effects favoring the inva-
sion of liquid 2 by the reactant A contained initially only in
liquid 1 will lead to a front traveling faster to the right, when
��0. For both miscible and immiscible systems with �
�0 increasing the initial concentration of A, increasing the
diffusivity of A, or reducing the rate of consumption of A
lead to increases in the front speed whilst the opposite effect
occurs when the corresponding changes are made to the pa-
rameters associated with B. For immiscible systems, increas-
ing the solubility of A into layer 2 favors also the invasion of
this layer by the chemical front.

The effective influence of Da
�2� is more complicated to

isolate since it affects both q and r: increasing Da
�2� increases

both of these parameters, however, increasing q causes � to
decrease whilst increasing r causes � to increase. Thus � has
a nontrivial dependence on Da

�2�, hence the � sign in Table I
for the influence of Da

�2� on the dimensionless quantities xf
and wf. However, in dimensional quantities the position of
the front is given by

Xf = 2�	Da
�2�T , �25�

and we find that increasing Da
�2� causes �	Da

�2� to increase,
and hence the front speed increases.

C. Width of the front

Interestingly, varying the parameters does not always
have the same influence on the front width and front speed
�see Table I�. Indeed, the position of the reaction front al-
ways scales with 	t, however, the width of the reaction front
scales with t�1/2�−�, so that when ��

1
2 the width tends to

infinity in the course of time while when ��
1
2 the width

tends on the contrary to zero. As a consequence and as �
=1 / �n+m+1�, larger values of n and m yield wider reaction
zones. Physically, for elementary reactions, n+m�1 so that
the case ��

1
2 may be irrelevant in that case. When n+m

�1, it can be shown that increasing pa or q causes wf to

increase, whilst increasing � causes wf to decrease; the re-
verse holds when n+m�1. Returning to dimensional quan-
tities the width of the front is given by

Wf =
�Da

�2���1/2�−m��Db
�2��m�

�ka
�2���−m��kb

�2��m�

�
	�T

A0
�	Da

�2�

Da
�1� + pa erf����e�2�1−2�

	I .

Notice that in dimensional quantities Eq. �17� is

	Da
�2�

Da
�1� + pa erf��� =

kb
�2�A0

	Da
�2�

ka
�2�B0

	Db
�2�

�erfc��	Da
�2�

Db
�2�� e�2�Da

�2�/Db
�2��

e�2 .

In the most common case where n=m=1 and using the pre-
vious relation we obtain

Wf = 
Db
�2�	�Da

�2�T

A0kb
�2� �	Da

�2�

Da
�1� + pa erf����e�2�1/3

	I �26a�

=
Da
�2�	�Db

�2�T

B0ka
�2� erfc��	Da

�2�

Db
�2��e�2�Da

�2�/Db
�2���1/3

	I �26b�

=�Da
�2�Db

�2��1/4
erfc��	Da
�2�

Db
�2���1/6

	I

� 
�Te�2��Da
�2�+Db

�2��/Db
�2��

A0B0kb
�2�ka

�2� �1/6�	Da
�2�

Da
�1� + pa erf����1/6

.

�26c�

The first expression for Wf, Eq. �26a�, reveals that increasing
ka

�2� or B0, which both decrease �, cause Wf to decrease since
erf�x�ex2

is an increasing function of x. The second expres-
sion, Eq. �26b�, reveals that increasing kb

�2�, A0, or Da
�1�, which

TABLE I. Parameter effects upon the position �xf and dimensional Xf� and width �wf and dimensional Wf�
of a front invading liquid 2 when the remaining parameters are fixed. The � sign corresponds to the case
when increasing a parameter causes an increase in a physical property, the � sign corresponds to the reverse
of this, and the � sign corresponds to a parameter that can both increase or decrease. The special case where
n=m=1 is shown in the two last columns.

Parameter xf Xf

n=m=1

wf Wf

Da
�2�, diffusivity of A in liquid 2 � � � �

Da
�1�, diffusivity of A in liquid 1 � � � �

Db
�2�, diffusivity of B in liquid 2 � � � �

A0, initial concentration of A � � � �

B0, initial concentration of B � � � �

ka
�2�, rate of consumption of A in liquid 2 � � � �

kb
�2�, rate of consumption of B in liquid 2 � � � �

pa, solubility of A in liquid 1/liquid 2 � � � �
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each increase �, cause Wf to decrease since erfc�x�ex2
is a

decreasing function of x. Similarly, increasing pa, which de-
creases �, causes Wf to increase.

Notice that Wf appears to scale with �Da
�2��1/3�Db

�2��1/6 in
Eq. �26a�, �Da

�2��1/6�Db
�2��1/3 in Eq. �26b�, and �Da

�2�Db
�2��1/4 in

Eq. �26c�, however, none are true since Da
�2� and Db

�2� are
implicit in �. For the case n=m=1 we find that I
�1.902 50. A summary of the effects of the various physical

parameters upon the front width are given in Table I for this
special case.

D. Product of the reaction

The product of the reaction is now examined. Using Eqs.
�17� and �18� to determine � and h, respectively, the outer
solution for the product c is then fully specified by Eq. �14�.
The corresponding concentration profiles are illustrated in
Fig. 6. When the product is insoluble in liquid 1, i.e., pc=0
then between the interface and the reaction front, i.e., region
2, the product concentration is a constant equal to h �see Fig.
6�a��. When the product is more soluble in liquid 1 than in
liquid 2, i.e., pc�1, it is possible for the maximum concen-
tration of the product to lie in liquid 1 at the interface and not
at the reaction front �see Fig. 6�c��. This occurs when pc�1
− �s / ŝ�erf�s����1, which requires that erf�s��� �ŝ /s�. In the
cases when the maximum concentration of the product
equals h, then we find that increasing ŝ, s, or 
 leads to an
increase in h, whilst increasing pc leads to a decrease in h.
When the maximum concentration of the product occurs in
region 1 at the interface then increasing ŝ, pc, or 
 leads to an
increase in the maximum concentration, whilst there is a
nontrivial dependence on s. The effect of the parameters q,
pa, �, 	, and r upon the maximum concentration is more
involved due to their effect on �.

An important quantity is the total amount of product pro-
duced which, using Eqs. �14� and �18�, is given by �−�

� cdx
=2
e−�2	t / 
	��q+ pa erf�����. Returning to dimensional
quantities we have

�
−�

�

CdX =
2kc

�2�A0
	Da

�2�e−�2	T

ka
�2�	��	Da

�2�

Da
�1� + pa erf���� . �27�

We obtain the interesting result that the total amount of prod-
uct produced in time depends on the ratio kc

�2� /ka
�2� and not on

the individual magnitudes of each reaction rate. This in fact
does physically make sense since this problem is diffusion
limited, i.e., no matter how fast the reaction is it can only
consume the reactants inside the reaction zone and the reac-
tants can only enter the reaction zone at their diffusive rates.
Thus, given a sufficiently large amount of time even a very
slow reaction will enter a diffusion limited state. The center
of mass of the product is given by

xc =

�
−�

�

xcdx

�
−�

�

cdx

= 	t
� +
ŝ2 − s2pc

2sŝ�spc + ŝ�
	� erfc�s��es2�2� .

�28�

This quantity can be negative even when ��0. Hence, even
though we have a reaction front moving to the right �i.e., �
�0 and xf �0� for immiscible fluids the center of mass of
the product can move in the opposite direction �xc�0�. This
is strikingly different from the miscible case where xc=�	t
= 1

2xf, which is equidistant between the position where the

(a)

(b)

(c)

FIG. 6. Analytical outer solutions for �a� pc=0, ŝ=2, s=4; �b�
pc=1, ŝ=2, s=4; and �c� pc=2, ŝ=4, s=2. The dotted lines denote
the interface at �=0 and the reaction front at �=�. The remaining
parameter values are q=r=2, �= 1

2 , and pa=	=
=1. Numerically
solving Eq. �17� leads to ��0.2562.
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fluids are initially brought into contact and the front position
xf, and hence the center of mass moves along the direction of
the reaction front. A useful measure of the width of the prod-
uct zone, wc, is obtained from the second moment for c,

wc
2 =

4t

3

�2 +

1

s2 +
pc�s2 − ŝ2�
sŝ2�spc + ŝ�

erfc�s��es2�2� − xc
2,

�29�

which shows that the width of the product zone scales with
	t. In particular, for the miscible case, the second moment of
the product distribution is wc

2= ��2+ �4 /s2��t /3. As ��0 the
product width has a much larger asymptotic limit than the
reaction zone width since wc�	t while wf � t�1/2�−�.

VI. CONCLUSIONS

The present study has derived analytically the large time
asymptotic profiles for the concentrations a, b, and c of re-
actants A, B, and product C involved in a chemical reaction
with effective kinetics anbm when the reactants are each ini-
tially contained in immiscible liquids and brought into con-
tact. This study generalizes previous works in miscible sys-
tems to cases where the reaction rate for each chemical
species can be different and to systems where the two reac-
tants are initially contained in immiscible solvents. Hence
the present work provides a unifying framework that allows
a treatment of the dynamics both in miscible systems �with
the same solvent for A and B� �8,12,18,19� and in immiscible
systems. In the case of an immiscible system the problem
depends on additional parameters such as the ratio of kinetic
constants, the ratio of diffusion coefficients in each fluid, and
the partition coefficients. We find that the theoretical scalings
�8� already known for miscible fluids are unaltered by the
introduction of immiscible fluids.

A parametric study has been conducted showing that for
immiscible fluids the speed of the front can be increased by
choosing physical parameters favoring transport of the in-
vading species in the invaded fluid, i.e., by increasing its
initial concentration, its diffusion coefficient and/or solubil-
ity, or by reducing its rate of consumption. On the contrary,
the width of the reaction front is increased by increasing the
diffusion coefficients inside the invaded fluid or reducing the
reaction rates, initial concentrations, the solubility of the in-
vaded fluid, or the diffusion coefficient of the invading spe-
cies in its initial liquid.

The direction of the front is found to depend on the dif-
fusion coefficient of the invading species in its initial fluid
but not on its value in the invading fluid. This has the im-
portant consequence that a reaction front in immiscible fluids
can travel in the opposite direction to the reaction front
formed in miscible fluids for a given fixed range of param-
eter values. The value of the invading species partition coef-
ficient affects the magnitude of the front speed but it cannot
alter the direction of the front. For sufficiently large times,
the total amount of product produced in time is independent
of the magnitude of the reaction rate. The centre of mass of
the product distribution can move in the opposite direction to
the first moment of the production rate which is strikingly
different to the miscible case.

In summary, the results presented here should allow one
to yield insight into the reaction diffusion concentration pro-
files of systems undergoing a simple effective A+B→C re-
action in the most general case for both immiscible and mis-
cible systems. Experimental tests of our theoretical
predictions could be performed in two-layer systems either
in Hele-Shaw cells or in thin tubes. Caution should, however,
be taken by using gels or high viscosity solutions to avoid
any convective motions which have been shown recently to
be able to profoundly affect the dynamics even in horizontal
systems �4,7�.
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APPENDIX A: INNER SOLUTION
IN THE REACTION ZONE

The solution in the outer region was obtained by vanish-
ing both reactants at the point x=xf�t�, effectively consider-
ing an infinitely thin reaction zone. However, the reaction
zone is a small region in which a and b overlap. Note that
without an overlap region the term anbm would be identically
zero everywhere. The reaction-diffusion equations at the re-
action front are given by Eqs. �7d�–�7f� for liquid 2 defined
for regions 2 and 3, namely,

at = axx − anbm, bt =
bxx

r2 − 	anbm, ct =
cxx

s2 + 
anbm.

�A1�

In order to examine this inner region we introduce the inner
coordinate

Z = �� − ��t�, �A2�

where ��0 so that as t tends to infinity the term Z / t� tends
to zero corresponding to � tending to �. Expanding the outer
region solutions �14� around �=�, i.e., around the front and
substituting ��−��=Z / t� we obtain, to leading order

a�2� → −
UZ

t� , b�2� → 0, c�2� → h�1 +
WLZ

t� � ,

�A3a�

a�3� → 0, b�3� →
VZ

t� , c�3� → h�1 −
WRZ

t� � , �A3b�

where

U =
2e−�2

	��q + pa erf����
, V =

2�re−r2�2

	� erfc�r��
, �A3c�
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WL =
2s2pce

−s2�2

	��ŝ + spc erf�s���
, WR =

2se−s2�2

	� erfc�s��
.

�A3d�

We now seek an inner solution �aI ,bI ,cI� in a form that can
match the outer solution by writing

aI =
A�Z�

t� , bI =
B�Z�

t� , cI = h +
C�Z�

t� , �A4�

so that for large times the inner solutions for a and b tend to
zero whilst c tends to a finite value h �see Eqs. �A3��. Insert-
ing Eq. �A4� into Eq. �A1� using Eq. �A2� we get

�A
t2� + 
�1 − 2��

Z

t2� +
�

t��AZ

2
+

AZZ

4
=

AnBm

t�1+n+m��−1 ,

�B
t2� + 
�1 − 2��

Z

t2� +
�

t��BZ

2
+

BZZ

4r2 =
	AnBm

t�1+n+m��−1 ,

�C
t2� + 
�1 − 2��

Z

t2� +
�

t��CZ

2
+

CZZ

4s2 = −

AnBm

t�1+n+m��−1 .

We notice that in these equations the powers of t present are
−2�, −�, 0, and 1− �1+n+m��. As t tends to infinity, with
��0, a balance of the O�1� terms requires

� =
1

1 + n + m
, �A5�

which is the same scaling first determined by Cornell et al.
�8�. The leading order terms require that

AZZ =
BZZ

	r2 = −
CZZ


s2 = 4AnBm. �A6�

Solving the equations in Eqs. �A6� along with suitable
boundary conditions provides the functions A�Z�, B�Z�, and
C�Z� that define the inner solution �A4�.

APPENDIX B: MATCHING INNER
AND OUTER SOLUTIONS

The analytical solution �14� in the outer region was found
and depends on two unknown constants h and �. The match-
ing conditions for the inner solution �A4� with the left and
right outer solutions �A3� are

A → − UZ, B → 0, C → hWLZ as Z → − � ,

�B1a�

A → 0, B → VZ, C → − hWRZ as Z → � .

�B1b�

The linear equations in Eqs. �A6� are AZZ=BZZ / �	r2�
=−CZZ / �
s2� which can be integrated twice and after using
the matching conditions as Z→−� we obtain

A + UZ =
B

	r2 = −
C


s2 +
hWL


s2 Z .

The matching conditions as Z→� yield two conditions,
namely,

h =
U
s2

WR + WL
and V = U	r2. �B2�

These conditions are equivalent to Eqs. �17� and �18�. Using
Eq. �B2� we can express B and C as

B = V�A
U

+ Z�, C = − 
s2�A +
WRUZ

WR + WL
� . �B3�

Thus A is determined from the ordinary differential equation

AZZ = 4VmAn�Z + A/U�m

under the two constraints that

A → − UZ as Z → − � and A → 0 as Z → � .

By scaling Z=z /
 and

A =
UG



, �B4�

we obtain

Gzz = Gn�G + z�m, �B5a�

where 
= �4VmUn−1��. The far field conditions become

G → − z as z → − � and G → 0 as z → � .

�B5b�

This system is identical to system �27� obtained by Magnin
�10� who analyzed this problem when the diffusion coeffi-
cients are equal. Analytical solutions for the inner solution G
have not been found, hence numerics have to be employed to
solve system �B5a� and �B5b�. Notice that, when n=m, we
have G�−z��G�z�+z, thus Gz�0�=− 1

2 and Gzzz�0�=0 so that
Gzz is maximum at z=0. Thus, in this special case the posi-
tion of the front can be considered as the point where the rate
of reaction has its maximum.

APPENDIX C: POSITION xf AND WIDTH wf

OF THE REACTION FRONT

Appendixes A and B explicitly allow the rate of produc-
tion R=
aI

nbI
m to be expressed. Indeed using Eq. �A4� with A

and B given by Eqs. �B4� and �B3�, respectively, we get

R =
1

4

U
t−�n+m��Gzz,

where the function G depends on n and m and the term U

depends on 	, r, q, �, pa, n and m, respectively. The time
scaling is the most dominant factor revealing that smaller
values of n and m yield larger reaction rates for a given t.
Using the coordinate scaling dx=2
−1t�1/2�−�dz allows the
following integrals to be evaluated:

�
−�

�

Rdx =

U

2	t
�

−�

�

Gzzdz =

U

2	t
,
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�
−�

�

Rxdx = 
U�
−�

�

Gzz�� +
z


t��dz = 
U� ,

where the results �−�
� Gzzdz= �Gz�−�

� =1 and �−�
� zGzzdz= �zGz

−G�−�
� =0 have been utilized. Thus, the first moment of R is

given by

�
−�

�

xRdx

�
−�

�

Rdx

= 2�	t � xf . �C1�

Hence, the first moment of the reaction rate is equivalent to
the position of the reaction front xf given by Eq. �12�.

The second moment of the production rate is a useful
measure of the size of the reaction front, wf. Consider

�
−�

�

R�x − xf�2dx =
2
U


2 t�1/2�−2�I, I = �
−�

�

Gzzz
2dz ,

where the integral I must be evaluated numerically since
there is no analytical solution for G. Introducing the notation
Inm, where the subscripts n and m denote their values, we
find that I11�1.902 50, I12= I21�3.296 68, and I22
�3.761 55. Using Eq. �6� we obtain

wf =
2	I



t�1/2�−�, �C2�

illustrating that the reaction front width scales with t�1/2�−�,
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