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A comparative definition for community in networks is proposed, and the corresponding detecting algorithm

is given. A community is defined as a set of nodes, which satisfies the requirement that each node’s degree
inside the community should not be smaller than the node’s degree toward any other community. In the
algorithm, the attractive force of a community to a node is defined as the connections between them. Then
employing an attractive-force-based self-organizing process, without any extra parameter, the best communities
can be detected. Several artificial and real-world networks, including the Zachary karate club, college football,
and large scientific collaboration networks, are analyzed. The algorithm works well in detecting communities,

and it also gives a nice description of network division and group formation.
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I. INTRODUCTION

Many physicists have become interested in the study of
networks describing the topologies of a wide variety of sys-
tems [1-3], such as the World Wide Web [4], social and
communication networks [5,6], biochemical networks [7],
and many more. Many networks are found to divide natu-
rally into communities. Nodes belonging to a tight-knit com-
munity are more than likely to have other properties in com-
mon. In the world wide web, community analysis has
uncovered thematic clusters. In biochemical or neural net-
works, communities may be functional groups. As a result,
the problem of identification of communities has been the
focus of many recent efforts. Many different algorithms are
proposed [8-23] (see [24] for a review).

Communities within networks can loosely be defined as
subsets of nodes which are more densely linked, when com-
pared to the rest of the network. Modularity Q [25] was
presented as an index of community structure and now has
been widely accepted [8,9,14,22] as a measure for the com-
munities. Modularity Q was introduced by Newman and Gir-
van as follows:

0=2 (e, —a?), (1)

where e,, is the fraction of links that connect two nodes
inside the community r, a, is the fraction of links that have
one or both vertices inside the community r, and the sum
extends to all communities r in a given network. Note that
this index provides a quantitative measurement to decide the
best division of networks. The larger the value of Q, the
more accurate is a partition into communities. So maximiz-
ing modularity Q can also detect communities. Actually,
there are already many algorithms of maximizing Q such as
extremal optimization (EO) [22], Greedy algorithm [12], and
other optimal algorithms. There are also many other algo-
rithms to identify communities in complex networks such as
the Newman-Girvan (GN) algorithm [17,25], random walk
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method [10], edge clustering coefficient method [20], and
spectral analysis [8]. When the methods can only produce the
dendrogram of the community structure, the best partition is
usually obtained by maximizing modularity Q. Unfortu-
nately, the modularity O maximization problem was proved
to be an NPC problem [26]. Moreover, it has been proved
that modularity Q measurement may fail to identify modules
smaller than a scale which depends on the total number L of
links of the network and on the degree of interconnectedness
of the modules, even in cases where modules are unambigu-
ously defined [27].

There are also other community definitions based on the
topology of networks, such as self-referring definitions and
comparative definitions. The basic self-referring definition is
a clique, defined as a subgroup of a graph containing more
than two nodes where all the nodes are connected to each
other by means of links in both directions. In other words,
this is a fully connected subgraph. This is a particularly
strong definition and rarely fulfilled in real sparse networks
for larger groups [28]. The other referring community defi-
nition is the k core, which is defined as a subgraph in which
each node is adjacent to at least a minimum number k of the
other nodes in the subgraph. It is weaker than a clique, but it
is very hard to find the optimal k£ when we want to detect the
best partition of the network. Comparative definitions are
given on the basis of links comparison. There are three kinds
of comparative definitions which are called the LS-set,
strong, and weak community definitions. The LS set is de-
fined as a set of nodes in which each of its subsets has more
ties to its components within the set than outside [29]. The
LS-set definition is also quite stringent. Moreover, it is a very
tough problem to detect all the LS sets in a network. In order
to relax the constraints, Raddichi et al. [20] proposed the
strong and weak definitions. In a strong community, each
node has more connections within the community than with
the rest of the network, and in a weak community the sum of
all degrees within the community is larger than the sum of all
degrees toward the rest of the network. Based on these com-
parative definitions, the self-contained algorithm is devel-
oped, which is similar to the GN algorithm for finding strong
or weak communities in a network.
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In this article, following the basic idea of comparative
definitions, we define community as follows: a community is
a set of nodes, and each node’s degree inside the community
should be larger than or at least equal to its degree link to
any other community. This definition is different from other
comparative definitions. The strong, weak, and LS-set defi-
nitions are presented by comparing the degree in the com-
munity with the degree in the whole rest network. But our
community definition is designed by comparing the degree in
the community with the degree in each rest community, not
the whole rest network.

Then how do we detect the communities in a network
based on our definition? Obviously, whether a node belongs
to a community or not is determined by its connections. We
can define the attractive force of a community to a node by
the links connect them. Employing an attractive-force-based
self-organize process, the community structures can be de-
tected without any extra parameter. The algorithm also gives
a nice description of the affection of a community to a node
and group formation process.

This paper is organized as follows. Section II gives our
comparative definition for communities in networks. Then in
Sec. III, the corresponding algorithm is given in details. The
application of the definition and the algorithm in ad hoc,
Zachary karate club, college football, and large scientific col-
laboration networks are presented in Sec. IV. Some conclud-
ing remarks are given in Sec. V.

II. QUANTITATIVE DEFINITIONS OF COMMUNITY
A. Previous comparative definition

The most important comparative definitions of commu-
nity are strong and weak definitions, which are proposed by
Raddichi et al. [20]. Suppose there is a network G which has
n nodes and it can be represented mathematically by an ad-
jacency matrix A with elements A; ;=1 if there is an edge
from i to j and A; ;=0 otherwise.

Definition of community in a strong sense. The subnet-
work V is a community in a strong sense if for any i be-
longed to V we have

EAi,j> > Ajj. ()

jeVv je(G-V)

Definition of community in a weak sense. The subnetwork
V is a community in a weak sense if we have

> A > > A (3)

ijeV i,eV,je(G-V)

Obviously, the strong community definition concerns the
situation of every node, but the weak sense takes a commu-
nity as a whole. From the strong (weak) definition of com-
munity we can easily get that if V;,V,C G satisfy the strong
(weak) definition, then we have that V, UV, also satisfy the
strong (weak) definition. Raddichi et al. [20] call this phe-
nomena as self-contained and use the self-contained algo-
rithm to detect communities, which is similar to the GN al-
gorithm for finding strong or weak communities in a
network. Instead of cutting the edge with largest link be-
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tweenness, the self-contained algorithm cuts the edge with
the smallest value of the edge-clustering coefficient. They
introduced an approach to calculate the edge-clustering co-
efficient based on circles of order g (g=3, triangles, and g
=4, squares) in the networks. In this paper, we mainly dis-
cuss the self-contained algorithm with edge-clustering coef-
ficient of order 3 [self-contained algorithm (g3) for short].

B. New community definition

Inspired by the above strong and weak definitions, we
define the community as follows.

Definition of Community. If V{,V,,...,V,, are m commu-
nities of G, V}, k=1,2,...,m, should satisfy that

k=m
Uv,=G 4)
k=1
and
VieVi X A,;= max{ D Apt=12, .. m} (5)
iEVk iEVt

This definition can be summarized as follows: a community
should satisfy that each node’s degree inside the community
should not be smaller than the node’s degree toward any
other community. The same as the strong sense, our defini-
tion also focuses on the situation of the node. But different
from comparing the degree in the community with the degree
in the whole rest network, our definition compares the degree
in the community with the degree in each rest community
instead of the whole rest network. Obviously, our definition
is weaker than the strong definition. Here we can also give
another most weak community definition: in a community,
the sum of all degrees inside the community should not be
smaller than the sum of degrees toward any one other com-
munity. The same as the weak sense, our most weak com-
munity definition focuses on the case of community instead
of the single node. The difference between the weak defini-
tion and our most weak definition is that the weak definition
compares the sum of degrees inside the community with the
sum of degrees towards the whole rest network, but the most
weak one compares the sum of degrees inside the community
with the sum of degrees towards any other community. In the
following discussion, we only deal with the new definition
given by formula (5) and mainly compare it with the strong
definition.

Let us first give some analytical and quantitative compari-
sons of different definitions of community on artificial net-
works following the same lines of calculations in [30] for
strong and weak definitions. Each network has n=128 nodes
divided into 4 communities of 32 nodes each. Edges between
two nodes are introduced with different probabilities depend-
ing on whether the two nodes belong to the same community
or not: every node has (k;,,,) links on average to its fellows
in the same community, and (k;,,,,» links to the outer world,
keeping {(k;pa) +<{kinery=16. We also can say each pair of
nodes in the same community has an edge with probability

Kinra

Pin=1{y,_1 and each pair of nodes in the different community

has an edge with probability p,,,= IX,'”T, where N;,=32 and

ou
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FIG. 1. (Color online) Proportion of networks that all four pre-
sumed networks satisfy the corresponding definitions with the
changes of out-degree. Each point denotes the average value of
1000 realizations. In the plot, ODS, SDS, WDS, ODA, SDA, and
WDA mean our definition simulation, strong definition simulation,
weak definition simulation, our definition analysis, strong definition
analysis, and weak definition analysis, respectively.

N,,,=96. Then the probability that node i has u inward edges
is given by

p(u’Nin) = C}l\/m—lp?n(l - pin)Nm_l_u (6)

and the probability that node i has v outward connections is
given by

q(v’Nout) = C;)Vompzm(l - pouz)N"”’_U s (7)

where C in the above two equations is the binomial coeffi-
cient. Therefore, the probability that node i has u inward
edges and satisfies our definition is given by

P(u)=p(u,Nm)<2 > > q(v1,N,-,,)q(vz,Nm)q(v3,Nm)).

v1=0 v,=0 v3=0
(8)

Hence, the probability that all the presumed communities
satisfy the our definitions is given by

—1

Niy n
P=< > P(u)) : 9)
u=0

We have shown the change of percentage that all four pre-
sumed communities satisfy the corresponding definitions (as
shown in Fig. 1). We could find that our definition is in the
middle of the strong and weak definitions given by Raddichi
et al. [20].

III. ALGORITHM

In order to detect the community structure under our new
definition, we set each node and its random half of neighbors
to be a community initially. Then we define the attractive
force by the connections among nodes and let the communi-
ties be self-organized with the forces. When the community
structure becomes fixed, the survivors will be the best parti-
tions which satisfy the above definition naturally.
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Let F;; denotes the attractive force of community k to
node i and F}; can be calculated by the formula

Fii= 2 Aij (10)

JjeVi

Then our algorithm is defined as follows.

(1) We initially set each node and its random half neigh-
bors to be a community. If a node has 4 neighbors and # is
odd, we let the node and its random % nodes as a commu-
nity. If two or more than two communities are the same, just
keep one of them. So after the first step the network is par-
titioned to n or less than n overlapping communities. n is the
number of nodes in the network.

(2) Calculate F; for all k and i.

(3) For every node, move it into the community or com-
munities with the largest attractive force, respectively, at the
same time.

(4) Check all communities; if two or more than two com-
munities are the same, just keep one of them.

(5) Repeat steps 2—4 until sufficient N steps or the parti-
tion be fixed.

The time complexity of our algorithm is O(n?). Step 1
runs in time O(dn), step 2 in O(n?), step 3 in O(n?), step 4 in
O(n?), and the repeated time in step 5 is uncertain, where d is
the average degree. According to the numerical experiments
in artificial networks, around ten repeating steps, the parti-
tion will be fixed. So we think the time complexity is O(n?).

Even our definition of communities is not a self-contained
one such as strong and weak definitions; there should be
more than one partition that may satisfy our community defi-
nition. So we keep some stochastic factors in our initial par-
tition and run the algorithm several times. Then we could
report the average result or choose the best one from all the
partitions. Here we introduce another indicator for evaluating
the partitions. We think the best partition should satisfy that
there are more connections inside the communities and less
connections outside the communities. So we use the propor-
tion of average connection density inside the communities
and the connection density outside the communities to mea-
sure how reasonable a partition is. This kind of measurement
can be defined as follows. Suppose the network contains n
nodes and L connections and is partitioned to m communi-
ties. n;, i=1,2,...,m, denotes the number of nodes in the ith
community and L;, i=1,2, ... ,m, denotes the number of con-
nections in the ith community. Then the average connection
density inside the communities is

o 2L
in— (11)

m 2
=1 — 1
and the connection density outside the communities

2L =23 L;
out = nz_z?ilniz . (12)
Then the measurement H can be defined as H= % and when

there only one community H=0. Obviously, largér H means
a more reasonable partition.
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FIG. 2. (Color online) The accuracies of our algorithms, GN
algorithm, and self-contained algorithm (g3). From the plot we can
see that the accuracy of the one-run algorithm is similar to the GN
algorithm. The partition of the optimal algorithm with the aid of
measurement H is better than GN algorithm when the out-degree
becomes larger, where we run 15 times for each network for opti-
mum. Each point is the average of 20 realizations of networks.

IV. APPLICATION IN ad hoc AND REAL NETWORKS

A. Algorithm on artificial networks

In order to test our algorithm, we apply it to artificial
networks with 128 nodes and 4 predetermined communities,
which are the same kind networks in Sec. II. The accuracy of
the algorithm is evaluated by the similarity function S [31].
For each given out degree (k;,,,), we produce 20 realizations
of networks. Then, for each network, we first run the algo-
rithm one time and give the average accuracy of 20 networks
as one run shown in Fig. 2. Then we run the algorithm 15
times for each network and choose the best partition with the
aid of indicator H. The average accuracy of 20 networks is
also shown as optimal in Fig. 2. Comparing our algorithm
with GN and self-contained algorithms [17,20,25], we could
find that the accuracy of the one-run algorithm is similar to
the GN-algorithm and better than the self-contained algo-
rithm (g3), and the optimal algorithm is better than the GN,
self-contained (g3), and one-run algorithms.

We also test, with the process of our algorithm, to what
extent the partition satisfies our definition (see Fig. 3). For a
given partition V;, i=1,2,...,m, we define its community
degree (CD) as the ratio

zr'ril|‘7i|

CD=
SLlv;

; (13)

where ‘7,~ denotes the subset of V;, in which each node satis-
fies the requirement of our definition for community; that is,
the node’s interdegree is larger or equal to its intradegree
between any other community. The numerical experiments
results tell us when the community structure is not very
fuzzy; the algorithm will finally produce a partition that sat-
isfies our definition very well. The community degree tends
to 1. When the community structure is very fuzzy, it is hard
to find the partition that satisfies the definition exactly.
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FIG. 3. (Color online) The evolution of community degree with
the process of the algorithm. The results are for the one-run algo-
rithm. We can see that when the community structure is not very
fuzzy, the one-run algorithm services our community definition
very well.

Recently Fortunato and Barthelemy [27] proved that
modularity QO may fail to identify small communities and
give a kind of network as shown in Fig. 4. We test our
algorithm on this kind of networks. When each circle con-
tains a clique with three or more than three nodes, our algo-
rithm can detect all the predeterminate communities (circles)
always.

Furthermore, we also have done a quantitative compari-
son of different definitions of community on a small graph
with four complete subgraphs (as shown in Fig. 5). Without
the red dashed link, four subgraphs are communities that
fulfill the strong, weak, and our definitions and the H index is
9.0 (modularity Q=0.61). But with the link, four subgraphs
are no longer communities under the strong definition. With
the red dashed link, the small graphs was divided into two
communities {ACD,B} or {ABD,C}, H=4.1 (modularity Q
=0.30) by self-contained algorithm (g3), and four communi-
ties {A,B,C,D}, H=7.2 (modularity 0=0.58) by our algo-
rithm.

FIG. 4. (Color online) The circles represent the communities in
which each pair of nodes are connected. The circles be connected to
each other by the minimal number of links. The plot is cited from
[27].
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A B

C D

FIG. 5. (Color online) Small graph with four complete sub-
graphs. Without link L, four subgraphs are distinct communities that
fulfill all the definitions. When link L is added, four subgraphs do
not satisfy the strong definition, but they are communities under our
definition.

B. Zachary karate club network

When apply our algorithm to a real network, first we use
the popular Zachary karate club network [32], which is con-
sidered as a simple workbench for community-finding meth-
odologies [17-19,21,25,33]. This network was constructed
with the data collected observing 34 members of a karate
club over a period of 2 years and considering friendship be-
tween members. By our algorithm, 3 communities are de-
tected (as shown in Fig. 6). The partition is reasonable com-
pared with the actual division of the club members.

As mentioned above, there may be many partitions that
satisfy the requirement of our definition and the final parti-
tion is related to the initial conditions. For the karate club
network, if we think the club division is caused by some
leaders, such as leaders (nodes) 1, 33, and 34, and set the
leaders and their random half neighbors as initial partition,
then our algorithm will divide the network into two commu-
nities. That is consistent with the real division. If we set 1, 2,
33, and 34 as the leaders, our algorithm will also partition the

FIG. 6. (Color online) The community structure of the Zachary
karate club network. Our algorithm detects three communities
which are depicted by circles, squares, and triangles. When we set
1, 2, 33, and 34 as leaders, the partition is the same. But if we set 1,
33 and 34 as leaders, the network will be divided into two commu-
nities. Circles represent a community and the rest is another one,
which corresponds to the actual division.
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TABLE 1. The accuracy of each detected community compared
with the counterpart of real-world communities.

Conference name Accuracy GN accuracy
Atlantic Coast 1 0.9000
Big East 0.8000 1
Bigl0 1 1
Bigl2 1 0.9231
Conference USA 0.6429 0.9000
IA Independents 0 0
Mid American 0.8667 0.8667
Mountain West 1 0
Pac10 1 0.5556
SEC 1 0.7500
Sunbelt 0.4444 0.4444
Western Athletic 0.7273 0.7273
Accuracy 0.7901 0.6723

network into three communities, which is the same as the
result without leaders. It is very interesting, with the process
of group formation, that nodes 1,2 and nodes 33,34 combine
and are in the same community, respectively. The other com-
munities do not contain any nodes of 1, 2, 33, and 34. It
implies that, if some leaders have contradictions and want to
divide the network, some nodes will not always follow the
leaders and may form other groups (see Fig. 6).

C. College football network

We also apply our algorithm to the collage football net-
work which was provided by Newman [34]. The network is
a representation of the schedule of Division I games for the
2000 season. Nodes in the network represent teams and
edges represent regular-season games between the two teams
they connect. What makes this network interesting is that it
incorporates a known community structure. The teams are
divided into 12 conferences [17]. Games are more frequent
between members of the same conference than between
members of different conferences. It is found that our over-
lapping algorithm identifies the conference structure with a
high degree of success. We detect 12 communities in which 5
communities were detected exactly, the average accuracy is
0.79, and no node is overlapping. The GN algorithm associ-
ated with the Q function [25] gives the partition. It divides
the football teams into 10 communities, and the average ac-
curacy is 0.67. The results are shown in Table I.

D. Scientific collaboration network

Up to now we have only discussed examples of networks
which are smaller than 200 nodes. It is necessary to test our
algorithm on large networks. Newman composed a scientific
collaboration network of scientists posting preprints on the
condensed matter archive at www.arxiv.org form 1995 to
1999 [35] which contains 16 725 nodes and 47 594 edges
(data download from [34]). We use the optimal algorithm
with (N=50) and 100 runs. Then we got the division with
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FIG. 7. (Color online) The reordered adjacent matrix (a) and
Zipf plot of community size distribution (b) of a scientific collabo-
ration network. The power-law density function for the upper tail is
pls)~s72.

maximal H=1754.8 and 2676 communities. In the final di-
vision, 0.93 nodes satisfy our community definition and 158
nodes are overlapping. The community size distribution
obeys a power law [36] with density function p(s) ~ s> for
the upper tail (see Fig. 7). In order to investigate the effect of
repeating time N (see algorithm step 5), we recorded the
community degree with the change of N. Here, community
degree means the proportion of nodes that satisfy our defini-
tion. From Fig. 8, we can find that when N> 10 the commu-
nity degree is near the maximum value, which is similar with
the results on small artificial networks (see Fig. 3). It seems
that the repeating time N to reach the final division of net-
work is not dependent on the network size. It indicates that
the complexity of our algorithm is O(n?).

V. CONCLUSION AND DISCUSSION

In this paper, we present a comparative community defi-
nition and the corresponding algorithm. A community should
satisfy that each node’s degree inside the community should
be larger than or equal to the node’s degree toward any other
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FIG. 8. (Color online) The evolution of the community degree
of scientific collaboration network with the process of the one-run
algorithm. We can see that for large N, the community degree can-
not achieve 1 (maybe the evolution process enters a circle or chaos),
but when N=10, the community degree is near the maximum value
0.93.

community. Then we introduce the concept of attractive
force and develop a self-organizing algorithm based on the
comparing of attractive forces. The algorithm can detect the
community structures without any extra parameter. In order
to choose the best partition from several possible results, we
also define an indicator H to evaluate the partitions. We ap-
ply the algorithm to artificial networks and some real-world
networks such as the Zachary karate club network, college
football network, and large scientific cooperation network.
The algorithm work well in all networks. Furthermore, our
community definition and identification algorithm can be
generalized to weighted and directed networks easily.

Moreover, our algorithm can be use to predict network
division when there are some contradictions between some
leaders. In the algorithm, we can initially set some leaders
and their random half neighbors to be the communities, re-
spectively. Then the self-organizing process gives a nice de-
scription of leaders’ affections. We think this partition tech-
nique has great potential for analyzing network structure.

In Sec. II, we give the most weak community definition:
in a most weak sense, the sum of all degrees inside the com-
munity should not be smaller than the sum of degrees toward
any other community. From the view of statistical physics,
we think the most weak definition is also reasonable. Here
we propose an open problem of finding a algorithm to detect
the communities based on the most weak definition.
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