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Multicommunity weight-driven bipartite network model
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Community structure and rewiring phenomena exist in many complex networks, particularly in bipartite
networks. We construct a model for the degree distribution of the rewiring problem in a multicommunity
weight-driven bipartite network (MCWBN). The network consists of many interconnected communities, each
of which holds a bipartite graph. The bipartite graph consists of two sets of nodes. We name each node in one
set a “producer” and each node in the other set a “consumer.” A weight value matrix defining the trade barrier
between any two communities is used to characterize the structure of the communities, which ensures the
higher preferential attachment probability in intracommunity than in intercommunity. The size of one producer
is defined as the number of consumers connected to it. We find that the nonlinear dynamics of the scale of
production, or the total size of all producers in each community is dependent only on the initial scale of
production in each community, and independent of the distribution of the producer size. Furthermore, if the
nonlinear system of the scale of production in each community is at an equilibrium state, the distribution of the
producer size in each community of the MCWBN model is equivalent to that in a one-community model.
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I. INTRODUCTION

Complex networks play an important role in the fields of
science, engineering, economy, and many others. The topol-
ogy of networks has been extensively investigated [1-7].
One feature of many real-world networks is the scale-free
nature, implying that the degree distribution of these com-
plex networks follows the power law. The scale-free nature
of complex networks can be considered e.g., by using a
mechanism of growing with preferential attachment [2]. An-
other common feature of many real-world networks is the
“community structure,” that is, the tendency for vertices to
divide into groups, with dense connections within each group
and only sparse connections between the groups [8-10]. So-
cial networks [11], biochemical networks [12—14], and infor-
mation networks such as the Internet [15] have all been
shown to possess strong community structure. Communities
can be considered as regions or countries in a social network
[16,17]; pages on the related topics in the internet [ 18]; some
kinds of functional units in a biochemical network or neural
network [12,19]; related papers on a topic in a citation net-
work [20]. Studies on community structure mainly focus on
the properties of the entire network and on algorithms for
finding the community structure [21-24]. A number of recent
results suggest that networks can possess properties at the
community level that are quite different from their properties
at the level of the entire network [24].

Studies on growing networks are attracting much atten-
tion [16,25-28]. However, in many real-world networks, the
evolution of the network occurs not only through growing
but also rewiring. Early stressing on the rewiring process is
the small world network model of Watts and Strogatz [29].
The network rewiring has been studied in Refs. [30-32]. The
zero range process [33-35], the diversity of genes [36,37],
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the popularity of minority game strategies [38], and the
popular culture change [39] may also be cast in terms of
network rewiring. Bipartite networks are an important kind
of networks in the real world such as the movie actor net-
work [29] consisting of actors and movies, the scientific col-
laboration network [25,40,41] consisting of scientists and ar-
ticles, and the economic network [40,42]. The rewiring
phenomena can also be found in many bipartite networks, for
example, in the producer-consumer bipartite network with
consumers changing the final product of one producer to the
same kind of product from another producer, in the
population-city network with people moving from one city to
another city, in the netizen-website network with netizens
shifting from one website to another website, and in the
producer-bank network with producers switching from one
bank to another bank. There have been some models con-
cerning the rewiring dynamics of bipartite networks
[30,42-44]. Some urn models are also kinds of rewiring pro-
cesses in bipartite networks [45,46]. Although growing net-
work model with community structure are proposed by some
studies [16,17,47], there is relatively little attention paid to
the rewiring dynamics in the bipartite network with commu-
nity structure.

The present paper proposes a bipartite network model
with the community structure to study the degree distribution
of the rewiring problem, and gives an analysis of the degree
distribution relationship between the model and a model
without community structure that is almost identical to the
model in Refs. [42-44]. First, a multicommunity weight-
driven bipartite network (MCWBN) model is proposed in
Sec. II. In Sec. III, we discuss the degree distribution of a
one-community model, which describes the rewiring dynam-
ics of one of communities in the multicommunity network
model. After that, we analyze the dynamics of the scale of
production in each community of the MCWBN in Sec. IV A
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FIG. 1. The bipartite network with multicommunities; circles
represent the consumers and squares represent the producers. N; (1)
is the expectation of the number of producers in the /¥ community
with i consumers from any community at time step ¢. The expecta-
tion of the number of producers after disconnecting a consumer is
denoted by N; (7). For example, in community @, N3,=1 and
N3 =2

and the degree distribution in each community in Sec. IV B.
Finally, summary and discussion are presented in Sec. V.

II. THE MODEL

We will focus on a generic rewiring problem of a multi-
community bipartite network. The network consists of many
interconnected communities, each of which holds a bipartite
graph. The bipartite graph consists of two sets of nodes. We
name each node in one set a “consumer” and each node in
the other set a “producer.” In this paper, the naming of the
nodes is only used to facilitate the description of a generic
bipartite graph, so we will keep our presentation abstract
apart from the names [48].

The MCWBN is illustrated in Fig. 1, which consists of
many communities with different numbers of consumers and
producers, the numbers of which also differ community by
community. Every consumer links with only one producer
that may be either in the same community with the consumer
or in another community. All the consumers have an equal
quantity of consumption and the size of a producer is defined
as the number of consumers that are connected to it. In this
study, the number of the consumers and that of the producers
in each community are maintained constant. However, the
consumers may change their choice of producers. The con-
sumers prefer choosing a producer from the same commu-
nity to choosing a producer of the same size from another
community due to the trade barrier (defined by a weight
value) between communities [49]. Thus, the distribution of
the producer size in each community evolves with the rewir-
ing of the consumers.

Let R be the number of the communities; p,, the number
of producers in the a(a=1,2,...,R) community; and c,,
the number of consumers in the & community. Let P be the
total number of all producers, i.e., P=3% »=1P, Let C be the

total number of all consumers, i.e., C= sk y=1Cyr
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Assume that N; (1) is the expectation of the number of
producers in the &/ community with i consumers from any
community at time step f. The scale of production in com-
munity « is defined by

C
S(t) = 2 iN; o(1). (1)
i=1

Beginning with any given initial distribution N; ,(0), the
MCWBN model evolves according to the following two
steps. The first is a removing step, the second is a preferen-
tial attachment step.

(1) A consumer (see, e.g., consumer 1 in community a of
Fig. 1) is selected randomly from the set of all consumers
and is disconnected from its producer. Then, the expectation
of the number of producers after disconnecting the consumer,
which is denoted by N; (), can be calculated by

W= -0 (1= L. @

Similarly to Eq. (1), the scale of production in community «
after disconnecting the consumer is defined by

C
So(0) = X iN; ,(0). (3)
i=1

(2) The producers compete with each other to win the
consumer that is disconnected from its producer. According
to the linear preferential attachment mechanism, the prob-
ability of the consumer choosing a producer with degree i

. . . . i~ 140)Wap .

—1 in community S is proportional to %ﬁ with W,(1)

defined by

R

Wo(t) = 2w ,[S5(0) + poal, 4)
y=1

where a stands for the initial attractiveness of every producer
and allows a nonzero probability for a producer with no con-
sumer [50]. w,,, with 0=<w, <1 is a coefficient arising due
to the trade barrier that prevents the consumer in community
a from choosing producers in community y. We assume
Wa =1 for any « in the present paper. w, ,<w, , ensures a
higher preferential attachment probability in intracommunity
than in intercommunity.

As the total probability of consumers in community [
being selected to disconnect from their producers is cg/C,

T R e RO

ZC W
ISR (i+a)w
+|1 321 C—'B_Wﬁ(t) N (0). (5)

Since the total number of consumers is C, it is apparent
that N; ,=0 when i>C. Therefore, Nc,j ,=Ng¢,; o(t)=0 in
the following analysis. Equations (2), (4) and (5) describe
the dynamics of the distribution of the producer size in each
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community. When R=1, the model degenerates to a one-
community model that is the same with that in Ref. [42] and
is almost identical to that in Refs. [43,44].

III. THE DEGREE DISTRIBUTION OF THE BIPARTITE
NETWORK IN A ONE-COMMUNITY MODEL

Before analyzing the MCWBN model, we first consider a
one-community bipartite network model with rewiring dy-
namics, the community of which is one of communities in
the multicommunity network model. The preferential attach-
ment probability of a node in the one-community model is
linearly proportional to the sum of the degree and the initial
attractiveness of the node. The dynamics of the one-
community model is represented as follows:

ﬁﬂﬂ=“+”mﬁﬂu—n+<1—@ﬂ&u—n, ©)
C
&m=¥?iiﬁﬁﬁ;M+{l—f”””i]va
C—-m+ Pa C—-m+ Pa
)

where i=0,1,2,...,5 and O<m=1. The notations of

IV,-(t),]\NJlT(t),é,IS, and a correspond to N; ,(1), N;a(t), Cos P
and a with dropping index «a for the community label for
simplicity, respectively.

The parameter m represents that each consumer is se-
lected to undergo rewiring with a probability m/C at each
time step [51].

Rewiring dynamics in one-community was also consid-
ered in some related models [30,42—45]. All these models
concern a bipartite network, and assume that the size of the
network does not change rapidly, but the structure of the
network changes with time rapidly, and assume that a node is
chosen randomly to be attached in the removing step. In Ref.
[45], the fitness parameter is considered as the inverse local
temperature and the attachment probability is a nonlinear
function of the degree and fitness parameter of the node. The
degree distribution of the bipartite network was discussed
depending on the fitness parameter. The preferential attach-
ment mechanism in Ref. [30] is the same with that in Ref.
[45] except for the formulation of the fitness function.

The model in Refs. [42-44] is almost identical to our
one-community model. If m=1 in the Egs. (6) and (7), our
one-community model is the same as that in Ref. [42], where
a simulation result on the distribution of the producer size
was presented. A time-dependent exact solution on the de-
gree distribution in a one-community model was provided by
Evans and Plato [43,44]. In the model of Evans and Plato,
the attachment probability is a mixture of a random attach-
ment probability p, and the preferential attachment probabil-
ity p,, and the rewiring dynamics was organized into one
step, in contrast to our two-step rewiring dynamics of Eq. (6)
and Eq. (7). However, the two steps of the rewiring in our
one-community model can be mapped to the one step rewir-
ing in the model of Evans and Plato [44] by substituting Eq.
(6) into Eq. (7) as follows:
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Ni(t) _ﬁi(t_ 1) =A~/i+1(t_ DmlIlg iy (1 =mll, ;)
- ﬁi(t - DmlIlg (1 =mlIl, ;)
= Ni(t = DmILy (1 = mIlg,)

+Ni—l(t_ Dmlly (1 =mllg,_y), (8)

where Tl ,=i/C, HA,,:p,%+ppa with p,=aP/(aP+C
-m) and p,=1-p,. If m=1, the two models are almost iden-
tical. While in our one-community model, after a producer
with degree i loses a consumer, the degree of the producer
reduces to i—1 and the total degree of all the producers de-

creases to C—1.

In the present paper, we focus on the analysis of the rela-
tionship of the degree distribution between the one-
community model and the multicommunity model. The exact
solution of the one-community model and detailed discus-
sion of the degree distribution depending on the parameter a
can be obtained by the approach that was presented by Evans
and Plato [44].

Based on the analytical results of Evans and Plato [44]
and the simulation results in [42], a tendency of the variation
of the degree distribution with a changing from zero to in-

finity occurs in the case that C and P are sufficiently large.
When a is close to zero, all the consumers will link to one
producer, which gives a condensate, or a monopoly in the
present paper. With increasing of a from zero, the power law
distribution with exponent 1 emerges. Exponential distribu-
tion can be found around a=1. When a>1, a Gamma-like
distribution appears. To the extreme, if a is large enough, a
dominates the attachment probability, thus the attachment
probability of each producer becomes approximately equal,
resulting in the Possion distribution.

IV. THE DYNAMICS OF THE DEGREE DISTRIBUTION
OF THE BIPARTITE NETWORK IN THE
MULTICOMMUNITY MODEL

In this section, we relate the degree distribution of the
bipartite network in each community of the MCWBN model
to that in the one-community model studied in the previous
section. We first find that the dynamics of the scale of pro-
duction S (1) [see Eq. (1)] in each community is independent
of the distribution of the producer size and converges to a
fixed point in Sec. IV A. Based on this result, we next show
that the distribution of the producer size in each community
of the MCWBN model is equivalent to that in the one-
community model in Sec. IV B.

A. The dynamics of the scale of production
in each community

Using Egs. (1)—(3), the evolution of the scale of produc-
tion in community « after the removing step of the rewiring
is described as follows:
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C+1 , C+1 .
So(1)= Ez i+1,a(t—1)+2i(l—é)Ni,a(t—l)

i=0
C+1 C+1
i+ 1)2
=D iN(t-1)+ 2 {uzvm,a(r— 1)
i=0 =0

) .
i i+1
- ENi,a(f— 1) - C Niolt - 1)}

:(]—é)SQ(l‘—l), (9)

because N, ,(1—1)=0.
Similarly, using Egs. (1), (3), and (5), we obtain the evo-
lution of the scale of production in community « as follows:

C+l1

S(1)= 2 2 i(i=1+a)N_, (1)

P CW,;( 0E

C+1
+ > {1 -> —-B—-B—(Ha)] Ny (1)

i=0 a1 CWp(t)
C+1

=s;(;)+2 2 [(i+1)(i+a)

B=1 CWﬁ(
—i(i+a)]1\F (1)

pWBa
= S(0) + /321 W0 [S () +ap,). (10)

because p,=S0'N; (7).

Thus, from Egs. (4), (9), and (10), we get the evolution
dynamics of the scale of production in each community as
follows:

X S(t—1)
wg(t)=2wm{sy(t-1)-—L+p)ﬂ], (11)
y=1
$,0= 5,00 1) - 2220
AW, Sat=1) }
+B§CWE()[S( D-="g—*ral.
(12)

where wg o, ¢g, C, p,, and a are parameters in Egs. (2), (4),
and (5). It is shown from Egs. (11) and (12) that the scale of
production S,(#) in community « at the time step 7 depends
only on the scale of production in each community at the
time step #—1.

To check whether the system of the scale of production
[see Egs. (11) and (12)] converges to a fixed point for vari-
ous cases, we carry out 1000 runs of the system with five
communities, in each run beginning with randomly gener-
ated initial conditions §,(0),S,(0),...,Sz(0) and randomly
generated parameter values. Figure 2 shows the evolution of
the average value and the standard deviation of 3>_,[S,(f)
—S,(t=1)| over the 1000 runs. Since =3_,|S (1)=S,(r—1)]

PHYSICAL REVIEW E 78, 026103 (2008)

= o014

=

w012

o o

o1

W o.08

Gt

(=]

& o0.08f|\
g .

g ]
S o004t
s ]
k| -
g o002 4
=

8 or

[}

&

5 002 ‘ . . .
Z 0 2 4 6 8 10

FIG. 2. Evolution of the average value and the standard devia-
tion of °_[S,(1)=S,(t—1)| with time 7 over the 1000 runs. Each
run  begins with randomly generated initial conditions
51(0),8,(0),...,5,(0) and randomly generated parameter values.
§,(0), paa, and wg , with @, 8=1,2,...,5 and @+ B are uniformly
distributed in the interval of (2000, 6000), (500, 2000), and (0.2,
0.8), respectively; w, ,=1 and ¢,=S,(0).

— 0 when r— oo, the system actually converges to a fixed
point for various values of the parameters and various initial
conditions in the case of five communities. Additionally, the
simulations for the cases of ten, twenty, and fifty communi-
ties are carried out respectively, and the system in these cases
converges to a fixed point as well.

From Egs. (11) and (12), the fixed point of the scale of
production SZ is determined by

R S*
W= 2] wﬁ,y[sj— Ey +pﬂ], (13)
Y=
R *
cWpa o S }
=C [ - 2 +paal. 14
,321 ch c'r (14)

We can see the influence of the community structure
(wg,q) on the scale of production of community « (SZ) from
Egs. (13) and (14). If wg o(8=1,2,...,R, B+ a) is large, i.e.,
there is little barrier for the consumers in other communities
to choose the producers in community «, SZ will be large.

B. The relationship of the degree distribution in the bipartite
network between the one-community model and the
multicommunity model

According to Sec. IV A, the scale of production in each
community converges to an equilibrium state SZ. At the equi-
librium state, though the scale of the production in each com-
munity keeps constant, the rewiring dynamics continues, i.e.,
the consumers who are connected to the producers in com-
munity & may be reconnected to the producers in other com-
munities and vice versa. We next study the evolution of the
distribution of the producer size in each community of the
MCWBN model. When the scale of production in each com-
munity is at an equilibrium state, the number of consumers
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that are connected to producers of each community keeps
constant. Since the number of producers in each community
does not change as well, we can consider the multicommu-
nity model as R one-community models (see Appendix):

Ni—,a(t) w z+l a(t_l)+( )Ni,a(t_l)’
C C
(15)
R, o= L= amg. 1a<r>+[ “*—“)”i}ﬁ;am,
C—-m+ Pa C—-m+ Pa
(16)

where 5=SZ, ﬁ:pa, and m:SZ/EI;:IS*zSZ/C with «
=1.2,....R !

Equations (15) and (16) represent the dynamics of the
distribution of the producer size in each community of the
multicommunity model with each community holding dy-
namics like Egs. (6) and (7). In other words, though all the
communities in the MCWBN model connect with each other,
the dynamics of the distribution of the producer size in R
communities of the MCWBN model is equivalent to R mu-
tually independent one-community models if the scale of
production in each community converges to an equilibrium
state. Furthermore, as the system for the distribution of the
producer size in the one-community model is globally as-
ymptotically stable [44], the distribution of the producer size
in each community of the multicommunity model converges
to a unique distribution that follows the exponential distribu-
tion, the power law distribution, the Gamma-like distribu-
tion, and the Possion distribution depending on different sys-
tem parameters according to the discussion in Sec. III.

V. SUMMARY AND DISCUSSION

A multicommunity weight-driven bipartite networks
(MCWBN) model was constructed to study the rewiring dy-
namics of the bipartite network with community structure.
We first discussed the degree distribution of a one-
community model which is taken out from the multicommu-
nity model. Then we found that the evolution of the scale of
production in each community of the MCWBN model de-
pends only on the initial scale of production in each commu-
nity and is independent of the distribution of the producer
size. Furthermore, if the nonlinear system of the scale of
production in each community is at an equilibrium state, the
distribution of the producer size in each community of the
MCWBN model is equivalent to that in a one-community
model.

Many real-world networks are huge and exhibit commu-
nity structure. It is difficult for empirical investigations on
the degree distribution to cover the entire network or to con-
sider the interaction of the communities. It is also very dif-
ficult to investigate whether the degree distribution in each
community is the same as that in the whole network. In the
multicommunity model, the community structure is repre-
sented by parameter w, g that only affects the scale of pro-
duction in each community instead of the stationary distribu-
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tion of the producer size in each community. After the scale
of production converges to the fixed point, w, g can be ne-
glected. Furthermore, if the initial attractiveness a is uniform
in the whole network, the degree distribution in each com-
munity is identical. These results imply that we only need to
investigate one of the communities without considering the
community structure, i.e., we only need to carry out empiri-
cal investigations on the degree distribution in one commu-
nity to estimate the degree distribution in other communities,
when we investigate the stationary degree distribution in a
huge multicommunity network with uniform initial attrac-
tiveness a. It is worthy of note that we cannot neglect the
community structure before the system is fixed at the station-
ary distribution, as the scale of production in each commu-
nity may change dynamically due to the parameter w, g.
Thus, the empirical investigations on the degree distribution
without considering the community structure are to some
extent reasonable. For instance, empirical investigations on
the firm sizes carried out independently in the US and Japan
show that the distribution of firm sizes vs. rank follows the
identical power law distribution in the US and Japan, maybe
as well as in other countries [52-55]. The identical power
law distribution is also found for the distribution of city sizes
in developed countries [56].

In some multicommunity real-world networks, the values
of the parameter ¢ may be different community by commu-
nity. What kinds of distributions in each community and in
the entire network emerge in such a situation is a future
problem. Furthermore, the multicommunity model can be ex-
tended to consider the situation where growth and rewiring
both exist.
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APPENDIX: DERIVATION OF EQS. (15) and (16)

Assume that the system of the scale of production in each
community of the multicommunity model is at an equilib-
rium state at time step ¢-1, then SN, (1= 1)

EC iN; (1—1)= S According to Eq. (9),

*

—% * Sa
S -8 =-_2=—m. (A1)
a (23 C
As 5=SZ, from Eq. (A1),
E+1 5+1
2 (= DN ()= 2 iN, ()=C-m.  (A2)
i=0 i=0
Furthermore, from Egs. (5) and (A1),
_ S* _ S—*
E+l

= > [iN; () = iN; (1)]
i=0

5+1

E E [i(i =1+ a)N;_; (1) = i(i + a)N (1)].

= cw*
(A3)
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From Eq. (7),
C+1

> [iNi(1) - iN; ()]
=0

E+1
=S il 1 +a)N; (1) - i(i + )N (1)]
C-m+ Pa i=0
C~‘+1
= | S (i~ DN,(1) + Pa

C-m+Pal i=0

From Eq. (6),

(A4)

C+l C+l

S (= DV, () = E(’ ;)”"N( i~ 1)

i=0

C+1
S {i_l M} o)
i=0 C
=C-m. (A5)
Combining Egs. (A4) and (A5),
6+1
E [iNL(1) = iN-()] = mCom+Pa) (A6)

C-m+Pa
Using Eq. (A4) and Eq. (A6),
c+1
— S i~ 1 + )N (1) - ii + )N ()] = m.
C—-m+ Pa i=0
(A7)
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Considering Eq. (AS), we conclude that Eq. (A7) holds
for any values of 1\~/l7_1(t) and IV: (¢) that satisfy EZC:BliN; (1)
=3 1(i—1)N__,(t)=C—m. Taking account of Eq. (A2) and

letting ]TC(t)=]\/za(t) and ]'\VC_I(t)=I\T_La(t), Eq. (A7) be-
comes

C+l
— 2 Lili— 1+ a)N;, ()~ i(i +a)

C-m+ Pa i=0

N ()]=m.

(AB)
Hence, it is shown from Egs. (A3) and (A8) that

C+1
gl ~g—Wﬂ—2 [i(i = 1+ @)NL_ (1) = i(i + Q)N ,(1)]
E+1
= S ili— 1+ a)N7, (1) - ili + a)N7 ()],

C—-m+ Pa i=0

Thus,

L_E_ﬁ_ﬁ_ (A9)
C-m+Pa p=1 CW

When the system of the scale of production in each commu-
nity of the multicommunity model is at an equilibrium state,
Wg(t)= W* By Eq. (A9), the system of Egs. (2), (4), and (5)
becomes that of Eqs (15) and (16), where C= S pP= =p,, and
m=5,/3 §=5/C.
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