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Using soliton amplitude and phase ansatzes, a theory is proposed for searching for stationary soliton solu-
tions to the cubic-quintic complex Ginzburg-Landau �CGL� equation. For arbitrary combinations of system
parameters, our approach allows the existence of dissipative solitons together with their specific soliton char-
acteristics to be determined, and we demonstrate this explicitly for the case of a pulsed fiber laser system. The
regimes of existence of dissipative solitons and their rules of evolution in a complicated five-dimensional
parameter space are also analyzed. This work may open other research opportunities in diverse areas of
nonlinear dynamics governed by the CGL equation, and may impact significantly on experimental design.
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Solitons are ubiquitous in nature, appearing in diverse
systems such as shallow water waves, DNA excitations, mat-
ter waves in Bose-Einstein condensates, and ultrashort pulses
�or laser beams� in nonlinear optics �1�. They are a universal
phenomenon of self-trapped wave packets, exhibiting prop-
erties typically associated with particles. In a telecommuni-
cations context, this unique particlelike nature has been ap-
plied to the study of collisions of temporal solitons �2�.
Parallelly, it is this nature that enables spatial or spatiotem-
poral solitons to be proposed to use in all-optical signal pro-
cessing and logic �3�.

Originally, the terminology soliton was reserved for a par-
ticular set of integrable solutions existing as a result of the
delicate balance between dispersion �or diffraction� and non-
linearity. However, similar classes of stable self-sustained
structures can be found for a wide range of physical sce-
narios �e.g., in systems far from equilibrium�, and it has be-
come customary to also refer to these as solitons in the con-
temporary optics nomenclature. As a new paradigm of
nonlinear waves, solitons in real dissipative environments,
known as dissipative solitons �4�, are attracting a significant
surge of research activities on their spatial and/or temporal
complexity during the last two decades, particularly for sys-
tems modeled by the cubic �quintic� complex Ginzburg-
Landau �CGL� equations �5–7�. For this class of solitons, it
has been realized that a separate balance between gain and
loss is essential for their pattern formation, apart from that
between dispersion �or diffraction� and nonlinearity.

The dynamics of dissipative solitons is thus markedly dif-
ferent from that of conventional solitons. It depends drasti-
cally on the system parameters and may evolve stationarily,
periodically, or even chaotically �8–13�, competing against
other rich behaviors such as fronts, sources, and sinks
�14,15�. In the great majority of cases, dissipative solitons
serve as attractors with fixed profiles independent of the
choice of input characteristics �11–13�, analogous to the re-
cently identified behavior of optical similaritons in a self-
similar laser amplifier �16�.

Unfortunately, the cubic-quintic CGL equation governing
this dynamics involves a complicated five-dimensional pa-
rameter space and thus the search for its soliton solutions,
even when stationary, has generally resorted to extensive nu-
merical simulations �11–13�, apart from some special excep-
tions in which exact solutions can be found �9,15�. As such,

one of the main challenging open frontiers of this field is to
elucidate the subtle dissipative dynamics using effective ap-
proximate theories, in order to provide improved physical
insight and obviate the need for numerical attempts. Re-
cently, Skarka et al. solved the CGL model for such dynam-
ics using the variational theory �17�, with their predictions
agreeing well with numerical simulations for small nonlinear
gain, but deviating significantly for flat-top solitons for
which the nonlinear gain is large. Similarly, Tsoy et al. pro-
posed a dynamical model for prediction of dissipative soli-
tons using the moment method �18�, but the results approxi-
mate well only for a portion of soliton regime. Quite
expectedly, however, the limited range of validity of these
theories originates in that they suppose an amplitude or a
phase ansatz that explains only a small subset of rich behav-
iors of stationary dissipative solitons.

In this Rapid Communication, we propose a more com-
plete theory for dissipative solitons in CGL systems suitable
for a significantly wider parameter range compared to exist-
ing theories. By supposing a more general form of ansatz
solution, we can offer an accurate estimate of the dynamics
of stationary solitons such as their soliton characteristics, re-
gimes of existence, and rules of evolution. Without loss of
generality we illustrate our theory focussing on the case of a
fiber laser, with its dynamics modeled by the cubic-quintic
CGL equation �9–13,17,18�

i�z + 1
2��� + ���2� + ����4� = i�� + i����2� + i���� + i����4� ,

�1�

where � denotes the normalized envelope of the field, z is the
distance that the pulse travels, � is the retarded time, � is the
linear gain-loss coefficient, � describes the spectral filtering,
� accounts for the nonlinear gain which arises from saturable
absorption, the term with � represents, if negative, the satu-
ration of the nonlinear gain, while the one with � corre-
sponds, also if negative, to the saturation of the nonlinear
refractive index.

For our purposes, we proceed to search for the stationary
solutions of Eq. �1� of the form

��z,�� = A���exp�i���� + i	z� , �2�

where 	 is a real constant. Substitution of Eq. �2� into Eq.
�1� followed by a separation of the real and imaginary terms
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yields two coupled ordinary differential equations. Since
there are, apart from particular sets of system parameters
�9,15�, no exact analytical solutions in terms of elementary
functions for such two equations, we use the amplitude and
phase ansatzes

A��� =
�P

�1 + �1 − 
�sinh2� �

T
	
1/2

, �3�

���� = d ln A��� + C��

��A2����d��, �4�

where P is the peak power of dissipative solitons, T is the
pulse width, 
 denotes the shape factor with 0�
�1, and C
and d in combination account for the nonlinear pulse chirp
given by �����=−d���� /d�. By inserting the ansatzes �3�
and �4� into the intermediate differential equations and after
some manipulations, one can obtain the reduced system of
nonlinear equations

� + �P
1 +
1

2
�P2
2 =

�

12
C2P2T2
5 −

�

2
CdP
1

+ ���2 + 	2

2B 
6, �5�

�2�� + 1�P�2
1
4 − 
5� + �2�� + ��P2�
2
4 − 
1
5�

= �2�� − 	��
3
5 − 2
4� − BCdP�
1
4 − 
5�

+ �2B��2 + 	2��
4
6 − �
5� , �6�

where

	 = −
�

2�
−

� − 2�

2�
P
1 −

� − 2��

4�
P2
2, �7�

C =
� − 2�

B
�
1
3 − 1� +

� − 2��

2B
P�
2
3 − 2
1� , �8�

d =
2�� − 	 + �2B��2 + 	2�

� + 2�	
, �9�

T = �2B�2�� − 	 + �2B��2 + 	2�

�� + 2�	�2
. �10�

Here B=2�2+1 /2 and the parameters 
i �i=1, . . . ,6� are
unique functions of 
, given by 
1= 1

2
−1��1+
�−2��, 
2

= 1
2
−1�3�1+
�
1−2�, 
3= 1

2 �1+
�+2�, 
4= 1
2�
1−�−1, 
5

= 1
2�
2−3�−1
1, and 
6=1− 1

2 �1+
�
1 with �=�2

+4 arctanh2��
� and �=�
 /2 arctanh��
�.
Equations �5�–�10� are the central theoretical results de-

scribing the dynamics of a wide range of stationary dissipa-
tive solitons. We point out that Eqs. �5� and �7� can follow
from the variations with respect to the phase, 	z, and the
pulse energy, E=�−�

� ���2d�= PT /�, respectively �10,17�,
while Eqs. �9� and �10� result directly from the boundary

conditions at �= ��. The remaining two equations are the
natural results of integrating the intermediate differential
equations over time from −� to �, with the aid of Eqs. �9�
and �10�. It is easily seen that the particular sets of exact
soliton solutions reported in Ref. �9� can be reproduced here.
Take the cubic case for example, and it follows from Eq. �9�
that d= ��2B−1� /2� for �=0. By substituting this together
with Eqs. �7�, �8�, and �10� into Eqs. �5� and �6�, we finally
obtain that 
=0, C=0, 	= �2�−��P /3�, and T=�Bd /�	,
leading to a one-parameter soliton family A=�P sech�� /T�
with the parametric relation �=��3�2B−1� /2�2+9�2�, all as
identical as in Ref. �9�. Nonetheless, we should stress that in
most cases our system of equations is an otherwise approxi-
mate substitute for Eq. �1�, but it exhibits an accuracy sig-
nificantly better than existing theories and a utility suitable
for interpretation and design of experiments, with errors
comparable to the prediction of pulse propagation in an op-
tical amplifier using a self-similar parabolic ansatz �19�.

From Eqs. �5� and �6�, one can determine whether a dis-
sipative soliton exists definitely or not for arbitrary combina-
tions of system parameters and, if so, one can determine
accurately all of its pulse features such as the peak power P,
the pulse width T, the shape characterized by 
, and the
pulse chirp given by C and d. We illustrate this in Figs. 1 and
2 by choosing two different sets of system parameters and
we compare our predictions with numerical simulations. For
a given set of five parameters, two possible soliton solutions
�red crosses� can be found by solving the coupled equations
�5� and �6�, which are, respectively, depicted as the thick and
thin lines in Figs. 1�a� and 2�a�. It is clear that according to
previous linear stability analyses �4� and Lyapunov exponent
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FIG. 1. �Color online� �a� Fixed points with red crosslets denot-
ing a stable soliton �SS� and an unstable soliton �US� given by Eqs.
�5� and �6� for a set of system parameters specified in the figure.
The evolution of an arbitrary input pulse towards a stationary dis-
sipative soliton is shown in the inset. The stable cw �SC� and un-
stable cw �UC� are denoted by blue crosslets at 
=1. �b� and �c�
show, respectively, the amplitude and chirp of the stable soliton,
related to the characteristics P=2.3970, 
=0.5300, T=1.2367,
C=−0.0235, and d=0.5418. Solid curves: Predicted results; Open
circles: Simulated results.
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calculations �17�, the soliton with larger peak power, denoted
by SS, is definitely stable while the smaller one, US, is un-
stable. Independently of its initial pulse energy and profile,
an input pulse always evolves towards the fixed point SS,
just as indicated by the pulse evolutions in Figs. 1�a� and
2�a�. This is a typical feature of attractors and was exten-
sively discussed before �4�.

Hence, by inserting the values of P and 
 into Eqs.
�7�–�10�, the other soliton characteristics 	, C, d, T, and as a
result the amplitude �3� and phase �4� follow easily. It is
striking that the predicted amplitude, A���, and pulse chirp,
�����, are in excellent agreement with numerical simula-
tions, both for the Gaussian-type soliton �Figs. 1�b� and 1�c��
and for the flat-top one �Figs. 2�b� and 2�c��. Quantitatively,
we introduce a quantity ��= ����−���2d��1/2 / �����2d��1/2

for a measure of deviation, where � and �� are the numerical
and predicted solutions, respectively, and show by excluding
the uncontrollable wave number effect that �� has a value of
0.7% for the former case and 3% for the latter one, both
indicating sufficiently good accuracy of analytical predic-
tions. Particularly, additional simulations show that errors of
�1% can be obtained for parameters typical of current ex-
perimental systems �refer to Chaps. 7 and 9 in Ref. �4�, for
example� and thus the analytical approach presented above is
well adapted to both the interpretation of experimental re-
sults and the future optimization of related experimental
systems.

Additionally, it is of interest to note that as 
=1, Eqs. �5�
and �6� can be reduced to the same quadratic equation �
+�P+�P2=0, yielding two continuous wave �cw� solutions
with C=0 �18�. For comparison, we depict such two cw so-
lutions by blue crosses in Figs. 1�a� and 2�a�. They are, re-
spectively, the asymptotes of two soliton solutions, SS and
US, for 
 approaching to unity, and thereby the higher cw,
SC, is stable while the lower one, UC, is unstable. An in-
spection of Figs. 1 and 2 reveals that as � increases, the
soliton shape evolves from a Gaussian-like shape �0�


�0.9� into a flat-top shape �0.9�
�1�, and eventually
broadens to be a stable cw for a certain larger � �
=1�. We
stress that the stable cw here also serves as a attractor such
that any small localized excitation can evolve into it, with the
leading and trailing edges behaving as two moving fronts.

More significantly, we can predict the regimes of exis-
tence of dissipative solitons in the five-dimensional param-
eter space. For simplicity, we only consider here the change
of soliton characteristics with one parameter at a time around
the fixed point SS in Fig. 1, keeping the other four param-
eters identically unchanged. Figure 3 shows the evolutions of
the shape factor 
, the peak power P, the full width at half-
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FIG. 4. �Color online� Evolutions of the shape factor 
 �blue�
and peak power P �black� versus �a� �, �b� �, �c� �, and �d� � under
otherwise identical conditions as in Fig. 1. Here solid, dashed, and
dashed-dotted curves denote the stable, unstable, and metastable
solitons, respectively, with their regimes of existence separated by
the gray broken vertical lines.
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FIG. 2. �Color online� The same as in Fig. 1 except for using
another set of system parameters specified in �a�, which yields a
stable flat-top soliton with the characteristics P=3.1181, 

=0.9916, T=1.2285, C=−0.0131, and d=0.5436.
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FIG. 3. �Color online� Evolutions of soliton characteristics: �a�

 �blue� and P �black�; �b� FWHM �blue� and energy E �black�,
with the parameter �. Here solid and dashed curves stand for the
stable and unstable solitons, respectively, and crosses in �a� for the
SS and US points in Fig. 1.
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maximum �FWHM� given by TFWHM=2T arcsinh�1 /�1−
�,
and the pulse energy E with the spectral parameter � under
otherwise existing conditions. In Fig. 3�a� we also display
the evolution of unstable soliton with � using dashed curves,
along with an indication of the fixed points SS and US at
�=1.2 by crosses. It is clearly shown in these double label-
ing plots that the stable stationary soliton exists only in an
interval of � �here in between 0 and 3.3�, and moreover, as �
grows, the soliton peak power is monotone decreasing while
its FWHM increases, resulting in an increase of pulse energy
except for a slight decrease at both ends. Intriguingly, the
shape factor 
 reaches its maximum first �here at �=0.29�
and then decreases into its minimum at the end of the inter-
val. This implies that the spectral filtering tends to broaden
and lower the pulse.

The other rules of soliton characteristics evolving with �,
�, �, and � are depicted seriatim in the subplots in Fig. 4, all
around the fixed point SS in Fig. 1. As can be clearly seen,
the existence of stable solitons is limited by two broken ver-
tical lines located around the solid ones, e.g., in between 0.64
and 0.84 for �. Further, it is shown that both the peak power
and the shape factor for the stable soliton increase with the
parameters �, �, and �, but decrease with �. Apparently, for
a certain value of �, �, �, or �, the factor 
 arrives at unity
and as a result the soliton evolves into a stable cw. A com-
parison of Fig. 4�a� with Fig. 3 in Ref. �17� shows that our
result about the peak power is significantly better for predic-
tion in a significantly wider � region. Besides, we depict by

dashed-dotted curves in Fig. 4�b� the evolutions of P and 

with the gain from 0 to 0.33. In such an interval, the dissi-
pative soliton is found to be metastable and may, after a long
propagation distance, evolve into a multisoliton bound state
�10� or into a stable cw due to an instability of the
background �4�. All of these unexpected dynamics have been
corroborated by extensive simulations.

In conclusion, in order to establish the theoretical frame-
work of stationary dissipative solitons governed by the
cubic-quintic CGL equation, we have developed an analyti-
cal approach using amplitude and phase ansatzes. With this
theory, one can predict accurately the possibility of existence
of dissipative solitons in the underlying five-dimensional pa-
rameter space, can determine their amplitude, shape, width,
chirp, and even their regimes of existence, and can find the
rules of evolution of soliton characteristics with the physical
system parameters. Based on these results, it is possible to
construct a desired dissipative soliton without time-
consuming numerical attempts. In view of the increasing im-
portance of the CGL equation in description of highly di-
verse nonlinear phenomena �7�, we anticipate that our results
will open new research opportunities and may result in a
substantial impact on experiments. Particularly, in nonlinear
optics, our theory may have practical implications in such
active areas as the design of passively mode-locked lasers
�4,13� and the study of soliton propagation in photonic crys-
tal fibers with gain and filtering �20�.
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