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We consider a nematic liquid crystal constrained by two coaxial cylinders under the action of low-frequency
axial or radial electric fields. Assuming an initially hybrid configuration, we find the equilibrium texture of the
nematic subjected to weak anchoring boundary conditions on both cylindrical surfaces. We analyze the distinct
textures of the nematic as a function of the strength of the interaction of the nematic with the sidewalls, the
radii ratio of the cylinders, and the applied electric field. Also, for each radii ratio and strength of the nematic-
surface interaction, we determine the critical field for which a complete alignment of the nematic liquid crystal
occurs.
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I. INTRODUCTION

Equilibrium configurations of nematic liquid crystals
�NLCs� in a cylindrical cavity have been studied for approxi-
mately 40 years. The first of these calculations have been
done by assuming hard anchoring homeotropic boundary
conditions �1–3�, and more recently arbitrary anchoring ho-
meotropic boundary conditions have been considered to
study the competition between bulk elastic energies imposed
by the confining volume and molecular anchoring energies
�4–7�, including the effects of an applied low-frequency
electric field �8�.

The most convenient geometry to study NLCs after a ge-
ometry of plane-parallel cells is the cylindrical geometry,
from both a theoretical and experimental point of view. In
this case, essentially all experimentally observed and theo-
retically possible configurations of the director field n in a
cylindrical cavity admit either a complete or approximate
analytic description �7�. The possible equilibrium configura-
tions of a nematic liquid crystal in a cylindrical cavity de-
pend primarily on how the director n is anchored to the
lateral surface of the cylinder.

A liquid-crystal material in its equilibrium configuration
can exhibit three types of bulk deformations that are histori-
cally known as splay, twist, and bend. Each type of deforma-
tion is associated with a specific elastic constant K1, K2, and
K3, respectively, which describe the energy associated with
the related deformations. For the surface elastic term propor-
tional to K4 �saddle-splay surface elastic constant� different
definitions have been used by various researchers. For ex-
ample, the K4 distortion can result from liquid-crystal mol-
ecules being anchored to a curved surface �9�, inhomoge-
neous configurations in planar cells �10�, or hybrid aligned
cells with parallel anchoring �11�. Here we will use the
Saupe’s description �12�.

Surface elastic terms are unimportant in bulk quantities of
liquid crystals and typically ignored. But when liquid crys-
tals are confined to small cavities, its effect is found to be
significant, particularly when elastic energies imposed by the
confining volume compete with molecular anchoring ener-
gies �5�.

Halevi et al. �13� established the existence of a phase
transition—from the escaped radial �ER� to the axial �AX�

configuration—within a single NLC cylinder reaching for a
critical value of an axial applied field E0. They also demon-
strated that varying E0 in NLC-infilled photonic crystals the
photonic band gap can be fully tuned from open to closed.
These results could lead to tunable optical wave guides,
switches, limiters, and polarizers, to reconfigurable optical
networks, and to electro-optic interconnectors in microelec-
tronics. The elastic interaction of liquid crystals within cy-
lindrical confinements is also useful to describe liquid-crystal
photonic crystal fibers which are a new class of optical
waveguides. In general, liquid crystals, infiltrated in photonic
crystal fibers, allow an effective electrical control of such
optical waveguides �14,15�.

The purpose of this paper is to study the configuration of
a NLC confined within two coaxial cylinders subjected to an
axially or radially applied electric field to determine the
threshold field for which the nematic is completely aligned.
To this end we state the total free energy of the NLC, from
which we obtain the equilibrium equations by assuming
weak anchoring conditions on both internal and external cy-
lindrical surfaces. Then, we solve numerically the equilib-
rium equations and find the threshold fields for the two se-
lected directions, axial or radial field, parametrized by the
cylinders radii ratio and the strength of the interaction of the
NLC with the walls. In this way, we characterize the field
values for which both axial structure �AX or total escape� or
planar-radial structure �PR or smectic like� can occur.

II. THRESHOLD FIELD

Let us consider a nematic liquid crystal confined between
two coaxial cylindrical surfaces whose internal and external
radii are R1 and R2, respectively. The z axis coincides with
the cylinder axis and the director is weakly anchored to the
surfaces of the cylinders with preferential directions parallel
and perpendicular to the internal and external cylinders, re-
spectively.

We shall assume that under these arbitrary boundary con-
ditions the initial nematic’s orientation occurs in the plane
r-z and that is only a function of r; that is, the director n̂ is
given by n̂= �sin ��r� ,0 ,cos ��r��, where � is defined in
Fig. 1.
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The Frank’s elastic free energy Felast is given by

Felast =
1

2
�

V

�K1�� · n̂�2 + K2�n̂ · � � n̂�2 + K3�n̂ � � � n̂�2

− K4 � · �n̂ � � � n̂ + n̂ � · n̂��dv

+
1

2
�

S1

W� sin2 �1 ds1 +
1

2
�

S2

W� sin2 �2 ds2, �1�

where K4 is the coefficient of a divergence term which can
be transformed to a surface integral by using Gauss’s theo-
rem �12�. The two last terms provide the interaction between
the NLC and the confining surfaces �16�. There �1 and �2
denote the angles between n̂ and the preferred direction of
alignment at the surface and W� denotes the strength of the
interaction in units of energy per area, which we will assume
the same for both surfaces. For our system we have �1=� at
r=R1 and �2=� /2−� at r=R2.

Then by expressing � · n̂ and �� n̂ in cylindrical coordi-
nates we obtain the free energy Felast per unit length:

Felast = �K1�
R1/R2

1 �	d�

dx

2

�cos2 � + � sin2 �� +
sin2 �

x2 �x dx

+ �K1��2 cos2 ��R2� − �1 cos2 ��R1� +
R1W�

K1
� , �2�

where �=K3 /K1, x=r /R2, and �1=R1W� /K1+K4 /K1−1 and
�2=R2W� /K1+K4 /K1−1 are the dimensionless surface an-
choring parameters.

A. Axial electric field

The contribution to the total free energy taking into ac-
count the interaction of NLC with an external electric field is
expressed by the electric free energy Felect. By taking E0
along the z axis, in SI units the Felect is given by

Felect = −
1

2
�

V

�zz�r�E0
2 dv . �3�

Now we express the element of the dielectric tensor �zz�r�
in terms of the perpendicular and parallel dielectric permit-
tivities of the NLC, �� and ��, respectively. At a point where
the director forms an angle with the z axis, the dielectric
tensor in the proper coordinate system of the NLC has an
uniaxial form. This must be transformed into the “labora-

tory” coordinate system x ,y,z, resulting in the following ex-
pression for the dielectric tensor elements: �ij =���ij +�aninj,
where �a=��−�� is the dielectric anisotropy and the director
defined above can be written as n̂=sin ��r�er+cos ��r�ez,
where er and ez are the cylindrical unit vectors along the r
and z directions, respectively. For infinite circular cylinders
the symmetry implies that � only depends on the radial dis-
tance r. Since n̂ is a position dependent vector, �ij shows
explicitly that we have inhomogeneity, as well as anisotropy.

Using Eq. �3� and �ij, the electric energy per unit length,
Felect, becomes

Felect = − �K1qa�
R1/R2

1 	 ��
s

�a
s + cos2 �
x dx , �4�

where �a
s is the low-frequency dielectric constant and qa is an

important dimensionless parameter defined as qa

�a

sE0
2R2

2 /K1, which represents the ratio of the electric and
elastic energies; for qa	1, the influence of the applied field
is weak, while for qa
1, the field essentially overcomes the
elastic forces between the molecules.

Using Eqs. �2� and �4�, the total free energy per unit
length, F=Felast+Felect, is obtained. The stationary orienta-
tional configuration ��x� is determined by minimizing the
free energy. This minimization leads to the Euler-Lagrange
equation �8� in the bulk:

x2d2�

dx2 �cos2 � + � sin2 �� +
1

2
x2	d�

dx

2

�� − 1�sin 2�

+ x
d�

dx
�cos2 � + � sin2 �� −

1

2
�1 + qax2�sin 2� = 0,

�5�
with ��x� satisfying the following weak anchoring boundary
conditions on the cylinders walls at R1 and R2, respectively,

�d�

dx
�

x=R1/R2

= � 1

2
	R2

R1

�1 sin 2�

cos2 � + � sin2 �
�

x=R1/R2

, �6�

�d�

dx
�

x=1
= � 1

2
�2 sin 2�

cos2 � + � sin2 �
�

x=1
. �7�

The quasiescaped radially configuration is radially depen-
dent and can be obtained by solving Eq. �5� subjected to the
conditions given by Eqs. �6� and �7�.

In what follows, we will present results for the specific
case of 4�-n-pentyl-4-cyanobiphenyl �5CB� liquid crystal.
The material parameters used are �5� TIN−T=10 °C with
TIN=35 °C, �=1.316, K1=1.2�10−11 N, W� /K1=40 �m−1,
and K4 /K1=1. The latter relation between surface and bulk
constants of the nematic turns into the following relation
between the surface parameters: �1=

R1

R2
�2. Hence, in this

case the boundary conditions given by Eqs. �6� and �7� take
the same form.

Numerical solutions of Eq. �5� were calculated by using
the shooting method �17� for different values of x0=R1 /R2,
�2, and qa. The cases with x0=0.5, �2=2.0, and qa

FIG. 1. Sketch of two coaxial cylindrical capillaries infiltrated
by a nematic liquid crystal and subjected to a low-frequency electric
field axially or radially applied.
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=0,1 ,2 ,3 ,4 ,4.9 are depicted in Fig. 2. This plot exhibits
that, for qa=0, the values of the orientational angle � are the
largest ones and are determined by both parameters x0 and
�2. Notice how the values of � at the walls diminish by
increasing the field until they finally get aligned parallel to z
axis for a critical value of the electric field.

Figures 3�a� and 3�b� show the threshold field surface and
their corresponding equifield curves plotted as contour lines,
respectively, versus the parameters x0 and �2. Here, the
threshold field is defined as the critical value of the axially
applied electric field necessary to align the director in the z
axis. This phase transition has been previously studied �13�
and shown that for fields smaller than the critical field, radi-
ally dependent configurations take place.

Notice how for �2=0 and x0�0.2 a nonvanishing field is
required to align axially the nematic; however, beyond x0
=0.2 the nematic liquid crystal is completely aligned only by
the influence of the elastic forces. It is worthwhile to mention
that for small x0 values the configurations approach the es-
caped radial which has a large negative elastic bulk energy.
Thus, for small values of �2�3.5 the surface energy corre-
sponding to the inner cylinder reinforces the bulk energy and
overpasses that of the outer one, so the resulting elastic force
contributes to reduce the qa value. As should be expected, the
effect of the surface forces is stronger when the interior cyl-
inder radius enlarges, so qa diminishes by increasing x0.
Complimentarily, for larger values of �2
3.5 and x0�0.35
the surface force of the outer cylinder is larger than that of
the inner, so the total surface force opposes the electric force.
Hence qa augments by increasing x0 until it reaches a maxi-
mum and then decreases. This change of behavior occurs
because when the distance between both cylinder reduces
�x0
0.35� the axial configuration is more favored to fill up
the space between the cylinders. We should remark that this
is a system in small cavities for which the surface anchoring
plays an important role in determining the equilibrium con-
figuration of the liquid crystal as that found in Ref. �5�.

In Fig. 3�b� we have traced dotted lines to distinguish
three regions with different behaviors. For region I, qa grows
monotonically against both x0 and �2. For region II qa de-
creases as x0 increases by keeping �2 fixed. Region III qa
grows when �2 increases and x0 remains fixed, until it
reaches a maximum to decrease after this. As we discussed
above, this changing behavior is the result of the competition
between the surface elastic forces in both walls, the elastic
bulk force, and the electric field.

B. Radial electric field
Now we shall consider the case of an applied electric field

E acting along the radial direction from the inner cylindrical
surface to the outer. In this case the electric free energy is
given by

Felect = −
1

2
�

V

�rr�r�E2 dv , �8�

where �rr�r� is an element of the dielectric tensor. We have
employed the electrostatic field E
−er�� /r ln�R2 /R1� gen-
erated between the two coaxial cylinders subjected to a po-
tential difference ��. Using Eq. �8� and �ij, the electric en-
ergy per unit length, Felect, becomes

Felect = − �K1qr�
R1/R2

1 	 ��
s

�a
s + sin2 �
dx

x
, �9�

where the dimensionless parameter qr is defined as qr

�a

s��2 / �K1 ln2�R2 /R1��. Using Eqs. �2� and �9�, the total
free energy per unit length, F, is obtained. The stationary
orientational configuration ��x� is determined by minimizing
this free energy. This minimization leads to the Euler-
Lagrange equation in the bulk:

x2d2�

dx2 �cos2 � + � sin2 �� +
1

2
x2	d�

dx

2

�� − 1�sin 2�

+ x
d�

dx
�cos2 � + � sin2 �� +

1

2
�qr − 1�sin 2� = 0,

�10�
where ��x� satisfies the weak anchoring boundary conditions
on the cylinders walls at R1 and R2, given, respectively, by
Eqs. �6� and �7�.

Numerical solutions of Eq. �10� were calculated by using
the same material parameters as those used for the axial elec-
tric field for different values of x0=R1 /R2, �2, and qr. The
cases for x0=0.5, �2=2.0, and qr=0,0.2,0.4,0.6,0.8,1.0 are
shown in Fig. 4. This plot clearly shows that, for qr=0, the
values of the orientational angle � are the lowest ones which

FIG. 3. �Color online� �a� qa against x0 and �2 for 5CB. �b�
Equifield curves are represented by contour lines. Dotted lines sepa-
rate three regions of different behavior.

θ

FIG. 2. �Color online� Director configurations � versus x for
5CB with x0=R1 /R2=0.5, �2=2.0, and axial electric field parameter
qa=0,1 ,2 ,3 ,4 ,4.9.
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are determined only by the ratio x0 and the interaction of the
nematic with the walls. Notice how the values of � at the
walls grow up by increasing the field until they finally get
radially aligned for a critical value of the electric field.

Figures 5�a� and 5�b� show threshold field surface and
equifield curves, respectively, versus x0 and �2. The radial
threshold field is defined similarly as in the axial case.

This is also a configurational transition since for values
smaller that this critical value the nematic acquires radially
dependent textures. In Fig. 3�b� equifield curves are repre-
sented as contour lines to show that the threshold fields are
essentially hyperbolalike curves, which implies that qr in-
creases by enlarging either x0 or �2. In contrast to the axial
case discussed in last section, here the dependence on both
parameters is completely monotonous. This is so because the
spatial dependence of the radial electric field �1 /r� compen-
sates the effect of the line defect resulting from the escaped
radial configuration, obtained in the limit case when x0→0.
Another way to stress the difference between both configu-
ration is by noting that Eq. �10� is invariant after a change of
scale r�=ar, whereas Eq. �5� is not. Hence, the former equa-
tion should have a monotonous dependence on x0.

III. CONCLUDING REMARKS

We have calculated the configurations of a nematic liquid
crystal confined between two coaxial cylinders submitted to

a low-frequency electric field for arbitrary anchoring bound-
ary conditions for certain realistic values of the elastic pa-
rameters.

We demonstrate that to axially orient a nematic liquid
crystal confined between two cylinders there exist three re-
gions in the �2-x0 space showing different behaviors, which
are essentially the result of the competition between the sur-
face elastic forces at both cylinders and the electric force. In
contrast, the behavior of the system under the action of a
radial field is quite monotonous because its inversely propor-
tional dependence compensate the augment of elastic bulk
energy around the inner cylinder, as its radius decreases.

Our results suggest to use this coaxial nematic cored fiber
to design a device for electrically switch the propagation of a
desired number of TM modes of optical fields.
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FIG. 4. �Color online� Director configurations � versus x for
5CB with x0=R1 /R2=0.5, �2=2.0, and radial electric field param-
eter qr=0,0.2,0.4,0.6,0.8,1.0.

Radial field

FIG. 5. �Color online� �a� qr versus x0 and �2 for 5CB. �b�
Equifield curves are represented as contour lines.
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