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A perspective on systems containing many action potential waves that, individually, are prone to spiral wave
breakup is proposed. The perspective is based on two quantities, “predator” and “prey,” which we define as the
fraction of the system in the excited state and in the excitable but unexcited state, respectively. These quantities
exhibited a number of properties in both simulations and fibrillating canine cardiac tissue that were found to be
consistent with a proposed theory that assumes the existence of regions we call “domains of influence,” each
of which is associated with the activity of one action potential wave. The properties include �i� a propensity to
rotate in phase space in the same sense as would be predicted by the standard Volterra-Lotka predator-prey
equations, �ii� temporal behavior ranging from near periodic oscillation at a frequency close to the spiral wave
rotation frequency �“type-1” behavior� to more complex oscillatory behavior whose power spectrum is com-
posed of a range of frequencies both above and, especially, below the spiral wave rotation frequency �“type-2”
behavior�, and �iii� a strong positive correlation between the periods and amplitudes of the oscillations of these
quantities. In particular, a rapid measure of the amplitude was found to scale consistently as the square root of
the period in data taken from both simulations and optical mapping experiments. Global quantities such as
predator and prey thus appear to be useful in the study of multiple spiral wave systems, facilitating the posing
of new questions, which in turn may help to provide greater understanding of clinically important phenomena
such as ventricular fibrillation.
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I. INTRODUCTION

Cardiac rhythm disorders such as ventricular fibrillation
are a major source of mortality in the United States. Many of
these disorders may be caused by rotating action potential
waves called spiral waves and their subsequent breakup into
additional spiral waves. Much progress has been made on the
microscopic dynamics underlying cardiac rhythm �i.e., ion
channel dynamics� and intermediate-scale dynamics �i.e., in-
dividual spiral waves�. However, characterization of the
macroscopic dynamics, including the global behavior of
multiple spiral waves, remains elusive.

Others have studied systems containing many waves. Bub
et al. �1� observed a transition from no spiral waves, to small
numbers of spiral centers with a constant interbeat interval,
to fractured, multiple spirals in cultured cell monolayers as
the plating density or intercellular connectivity was changed.
Jung et al. �2� described a statistics-based method for char-
acterizing spatiotemporal turbulence. When applied to a cel-
lular excitable medium model or astrocyte syncytium �3�, it
revealed a power-law scaling of the size distribution of co-
herent space-time structures for the state of spiral turbulence.
Xie et al. �4� studied the coexistence of stable spiral waves
with independent frequencies in a heterogeneous excitable
medium and concluded that multiple spiral waves could co-

exist because they are “insulated” from each other by chaotic
regions generated by wave conduction block. Samie et al. �5�
showed evidence that multiple reentrant circuits with differ-
ent frequencies can exist in the heart during ventricular fi-
brillation.

The present study continues research on the multiple-
spiral-wave system from a large-scale perspective, with the
goal of identifying features that are characteristic of the sys-
tem as a whole. Our goal was to develop improved intuition
into the complex behavior of these systems for possible ap-
plication to the study and diagnosis of cardiac tissue during
fibrillation. Accordingly, we focused our study on two quan-
tities that are defined from the state of the entire system. The
two quantities bear a resemblance to the classical predator
and prey quantities. Predator-prey-based models originated
from studies in ecosystems, but have since been applied to
diverse fields such as tumor cell dynamics �6�, the immune
response �7–9�, epidemiology �10�, and economics �11�.
Even excitable media have been studied using predator-prey
models, but only at the microscopic level to the best of our
knowledge �e.g., Savill and Hogeweg �12�, Biktashev et al.
�13��. Here, we apply the predator-prey concept at the mac-
roscopic level to the complete system. In our model, the
collection of all cells within all the action potentials plays the
role of the predator, while the excitable cells play the role of
the prey.

The paper is organized as follows: In Sec. II, we discuss
the computer simulations we use, the definitions of the
predator and prey quantities, and the diagnostics employed.
In Sec. III, we demonstrate that the system of spiral waves
behaves quite differently depending on the amplitude of the
oscillation of the predator and prey quantities. The behaviors
observed are linked to electrical restitution dynamics and are
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labeled as “type-1” �during small amplitude oscillation� and
“type-2” �when the amplitude is large�. We also describe the
behavior of trajectories in predator-prey phase space, includ-
ing its propensity towards one sense of rotation as opposed
to the other. We also show a remarkable relationship between
the amplitude and frequency of the oscillation of the predator
quantity that appears over both short and long time scales. In
Sec. IV, we suggest possible theoretical explanations for the
behavior observed. We introduce a concept we call “domains
of influence” and discuss how the wave dynamics within
these domains can lead to rotation in phase space, the two
types of behavior, and the amplitude versus frequency rela-
tionship. Finally, in Sec. V, we offer a summary and some
possible future directions.

II. METHODS

Our study is based on the data generated by two different
computer simulation models of action potential propagation
and on data from optical mapping experiments on canine
hearts. Separate definitions for our predator and prey quanti-
ties were developed for each of these three systems, allowing
them to be tailored to the nature of the action potential pro-
files exhibited by each. The two quantities were then studied
using a variety of tools borrowed largely from the field of
nonlinear dynamics.

A. Simulations

The two simulations employed in this study differ prima-
rily in the local dynamical models used to represent the ion
channel dynamics. These simulations were run with a variety
of parameters to provide some confidence that key results
apply generally to excitable media. In varying these param-
eters, we kept in mind that our primary interest was to de-
velop insight into what could be potentially applicable to
fibrillation. Thus, we concentrated on parameter regimes in
which individual rotating waves are susceptible to spiral
wave breakup, thought to be a necessary ingredient in the
development of fibrillatory activity.

For a large number of our simulations, we employed Fen-
ton and Karma’s 3V-SIM model �14�. Many of these simu-
lations were conducted with a set of parameters we call the
“default” parameters. These parameters were chosen to
maximize the propensity for spiral waves to break as they
rotated, while at the same time minimizing the tendency of
the spiral wave cores to meander. These were determined for
an earlier project �15� to be gfi=1.75, �r=33.83, �si=29, �o
=12.5, �v

+=7.99, �v2
− =312.5, �v1

− =9.8, �w
+ =870, �w

− =41, uc
=0.13, uv=0.04, ucsi=0.861, k=10, and D=0.002 cm2 /ms
with �d=c /gfi, where c, the membrane capacitance per unit
area, is equal to 1 �F /cm2. �Note that the definitions of �v1

−

and �v2
− here and in �16� are interchanged compared to the

definitions in �14�. Also, note that these default parameter
values differ from those in the original paper �14�.� Time is
in units of ms, space quantities are defined in units of cm,
and conductances are in mS /cm2.

Some simulations employed the model of Fox, McHarg,
and Gilmour �FMG� �17�, which is a more detailed ion chan-

nel model of canine cardiac ventricular muscle. The param-
eters used here were the same as those described in �17� with
the exception of ḠKr, which was set to 0.0068 mS /�F, half
its published value. This was done to promote vigorous spiral
wave breakup.

Our main interest was the dynamics of the spiral waves
themselves; accordingly, for the system geometry, we em-
ployed a simple square system large enough to support many
waves. The equations for both models were thus solved on a
rectangular spatial grid with time advances calculated using
the forward Euler method. The spatial coupling term D�2u
was approximated at each grid point �i , j� using a standard
five-point differencing scheme, where u is the membrane po-
tential. For the 3V-SIM model, we set D=0.002 cm2 /ms and
used a fixed time-step size �t=0.1 ms, with grid spacings of
�x=�y=0.03 in the x and y directions, respectively. Unless
otherwise stated, the system size for the 3V-SIM simulations
was 6 cm square. For the FMG model a fixed time step of
�t=0.02 ms was used with a grid spacing �x=�y
=0.015 cm and diffusion coefficient D=0.001 cm2 /ms.

All simulations were started with no-flow boundary con-
ditions �i.e., �u /�n=0, where n represents the direction nor-
mal to the boundary�. A single spiral wave was initiated in
the 3V-SIM system using the standard cross-field stimulation
technique. In the FMG simulations spiral waves were initi-
ated by setting a portion of the system back to the resting
state while a plane wave was propagating across the system,
thus creating a wave break. The wave then rotated around
this point, thus creating a spiral wave. Other methods were
also used to initiate a spiral wave in a few of the 3V-SIM
simulations. No dependence of the long-term behavior of the
system on the method used to initiate the first spiral wave
was noted.

Following the creation of the spiral wave, we waited for
approximately three spiral wave rotation periods, allowing
the spiral wave to establish itself. Then, at time t=650 ms
�3V-SIM� or t=600 ms �FMG�, we switched the boundary
conditions from no-flow to periodic �i.e., u�x=0,y�=u�x
=L ,y� for all y and u�x ,y=0�=u�x ,y=L� for all x, L being
the system size in the x or y directions� for the remainder of
the simulation. Systems with periodic boundary conditions
effectively have no boundaries—action potentials that propa-
gate out one boundary seamlessly reenter the simulation
from the opposite boundary. This was done because we were
not interested in the interactions between spiral waves and
boundaries, only in interactions between spiral waves and
themselves.

To generate many simulations within the same 3V-SIM
dynamical system, we randomized how the spiral wave was
started from one simulation to the next. The width of the
strip associated with the second stimulus used in cross-field
stimulation was randomly chosen between 33.3% and 83.3%
of the total horizontal width of the simulation region. Addi-
tionally, the timing of the second stimulus was randomly
chosen to be between 349.6 ms and 361.6 ms after the first
stimulus. The ranges of both random choices were chosen so
as to guarantee that a spiral wave would be formed.

B. Optical mapping experiments

To perform the optical mapping experiments, adult beagle
canine hearts were prepared in vitro using experimental pro-
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cedures that have been approved by the Institutional Animal
Care and Use Committee of the Center for Research Animal
Resources at Cornell University. Briefly, the right coronary
artery was cannulated at its origin using polyethylene tubing.
The right atrial and ventricular myocardium perfused by that
artery were then excised. The preparation was then sus-
pended in a heated tissue chamber with either the endocar-
dial or epicardial surface of the right ventricle facing up to-
wards the camera. Oxygenation was established through both
superfusion and perfusion via the coronary artery using Ty-
rode solution. Following equilibration, the preparation was
stained with the voltage-sensitive dye Di-4-ANEPPS
�10 �M�. Ventricular fibrillation was induced by rapid pac-
ing �cycle lengths=80–200 ms� via a bipolar electrode
pressed against the surface of the preparation. For purposes
of imaging, reduction of mechanical motion was accom-
plished either through reduction of the Tyrode calcium con-
centration to 0.125 mM or through the introduction of the
electromechanical uncoupler blebbistatin �20 �M� �18�. Op-
tical recordings were created using excitation light produced
by 16 high-performance light-emitting diodes �Luxeon III
star, LXHL-FM3C, wavelength 530�20 nm�, coupled to
collimator lenses �Luxeon, LXHL-NX05� and driven by a
low-noise constant-current source. The fluorescence emis-
sion light was collected by a Navitar lens �DO-2595, focal
length 25 mm, F-stop 0.95�, passed through a long-pass filter
��610 nm�, and imaged by a 128�128 back-illuminated
EMCDD array �electron-multiplied charge coupled device,
Photometrics Cascade 128+�. The signal was digitized with a
16-bit analog-to-digital �A/D� converter at a frame rate of
511 Hz �full frame, 128�128 pixels, representing a typical
field of view of 6�6 cm2�. The PCI interface provided high-
bandwidth uninterrupted data transfer to the host computer.

The data were divided into records 200 time samples
long. The time record of each pixel was normalized to the
unit interval. A moving average of length five time samples
was then calculated, and spatial averaging was applied using
the four nearest neighbors. The records were then renormal-
ized to the interval �0,1� and subtracted from 1, so that 0 and
1 corresponded to the lowest and highest membrane poten-
tials, respectively. This study concentrated on either the epi-
cardial or endocardial surface of the right ventricle; accord-
ingly, all pixels outside this region of interest were masked
out prior to analysis.

C. Predator and prey quantities

We define the predator quantity D�t� to be the fraction of
system cells in the excited state—that is, inside an action
potential—at time t. Similarly, we define the prey quantity
Y�t� to be the fraction of cells that are excitable, but not
excited �i.e., not in an action potential and not refractory� at
time t. The idea here is that cells in the action potential �i.e.,
the predator cells� are all capable of exciting �“eating”� ex-
citable cells �i.e., the prey cells�. Without prey around, preda-
tor cells will eventually die off, as is the case along the
trailing edge of the action potential. Following a refractory
period, dead cells will spontaneously regenerate, becoming
prey cells again. This analogy suggests that the fraction of

excited and excitable cells should behave roughly like the
predator and prey variables in the well-known predator-prey
system of ordinary differential equations; see, for example,
�19�.

In our optical mapping data, we defined pixels to be in the
predator �i.e., excited� state if their values were greater than
0.60 as illustrated in Fig. 1. The choice of 0.60 was some-
what arbitrary; we found that the dynamics of the predator
quantity was generally not sensitive to the exact choice—
thus, any reasonable choice for the definition of “excited”
could have been used. Similarly, pixels with values less than
0.20 or 0.12, depending on the appearance of the data, were
defined to be in the prey state.

For the 3V-SIM model, we defined cells to be in the
predator state if the membrane potential u was greater than
or equal to 0.7, since u	1 corresponded to a fully excited
cell, while u�0 in the resting state. Similarly, when the gat-
ing variable v was greater than 0.6 and u�0.6, we consid-
ered the cell to be sufficiently recovered to be labeled as
“excitable” and thus part of the prey population.

For the FMG model, cells with membrane potential
greater than −20 mV were considered to be in the predator
state. Cells were defined to be in the prey state when the
membrane potential was decreasing with time and had value
less than −80 mV.

D. Diagnostics

Diagnostics for this study included standard plots of the
predator and prey quantities versus time, the predator and
prey quantities versus each other �i.e., phase space plots�,
and snapshots of the membrane potential V vs x and y at
various times. We also employed the following two types of
diagnostics.

Phase space density. The predator and prey quantities
D�t� and Y�t� were sometimes observed to spend most of

Predator
cutoff
level

Prey
cutoff
level

Membrane
potential Predator

Prey
Time

1.0

0.0

FIG. 1. �Color online� Definitions of the predator and prey states
as applied to the time record of a single pixel taken from typical
filtered optical mapping data. The pixel was considered to be in the
predator or prey state when the optical signal, assumed to represent
the membrane potential, was above or below fixed cutoff levels.
Here the data were normalized and inverted so that 0.0 and 1.0
represented the minimum and maximum observed membrane po-
tentials, respectively, for the given pixel. The predator and prey
quantities D�t� and Y�t�, at any given time t, were then defined to be
the fraction of cells in the predator and prey states at time t.
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their time in small regions of predator-prey �D-Y� phase
space. We quantified this by calculating a phase space den-
sity quantity—i.e., an estimate of the relative fraction of time
the system point spends in the various regions of phase
space. The phase space was divided up into an nD by nY
rectangular array of rectangular bins, each of size 1 /nD by
1 /nY, where nD and nY are the number of bins in the predator
and prey directions in phase space, respectively. nD=nY =50
provided adequate resolution for our purposes. The phase-
space density as a function of phase space location was then
calculated from


�Di,Y j� =

�
s=1

Ns

�
n=ns

start

ns
ext

�„i,is�n�…�„j, js�n�…

�
s=1

Ns

�ns
ext − ns

start + 1�

, �1�

where Di= i /nD, Y j = j /nY, i=1, . . . ,nD, j=1, . . . ,nY, the sum
over s is a sum over Ns=48 3V-SIM default simulations, all
of which were run with the same dynamics, but with ran-
domized initial conditions as described above, n is the time-
step index, and ��i , j� is the Kronecker delta, equal to 1 if
i= j and 0 otherwise. The functions is�n� and js�n� are the
values of D�n�t�nD and Y�n�t�nY, respectively, rounded up
to the nearest integer, for the sth simulation. The sum over
time steps starts with a time step ns

start chosen to be well after
the switch of the system to periodic boundary conditions,
while ns

ext is a time step beyond which extinction of action
potentials is guaranteed to occur in the sth simulation. We
chose ns

ext to be the first time step in the sth simulation for
which u over the entire system falls below uc /2=0.065.

Mean time to extinction. We also observed that action
potential propagation activity tends to persist for much
longer periods of time when the system occupied certain re-
gions of predator-prey phase space. To verify this assertion,
we calculated the mean time to cessation of all action poten-
tial activity as a function of current phase space location.
Specifically, we evaluated the following:

MTE�Di,Y j� =

�
s=1

Ns

�
n=ns

start

ns
ext

�ns
ext − n��t �„i,is�n�…�„j, js�n�…

�
s=1

Ns

�
n=ns

start

ns
ext

�„i,is�n�…�„j, js�n�…

,

�2�

as a measure of the mean time remaining before extinction,
given that the current location of the system in phase space
was at �Di ,Y j�.

III. RESULTS

As our primary interest was to develop insight that could
be potentially useful to cardiac fibrillation, we concentrated
on the behavior of excitable media in a regime in which
individual rotating waves were susceptible to spiral wave
breakup.

A. Types of behavior exhibited by the predator
and prey quantities

We found that the amplitudes of the oscillations of the
predator and prey quantities varied quite significantly over
time and that the type of behavior exhibited by the system
and by the predator and prey quantities was generally quite
different depending on how large these amplitudes were. Ac-
cordingly, we found it convenient to define two behavioral
types that we will refer to as types 1 and 2, which correspond
to the behavior characteristic of small- and large-amplitude
oscillations, respectively. It was also not unusual to see be-
havior intermediate between these two types, which typically
was associated with intermediate amplitudes of oscillation.
The two behavioral types were particularly clear when the
3V-SIM simulations were run with the default parameters.
Accordingly, in the following, we use these default 3V-SIM
simulations to define both types of behavior and provide ex-
amples of each.

1. Type-1 behavior

We define type-1 behavior to consist of small amplitude
oscillations that possess a fair degree of repetitiveness, which
appear in both the predator and prey quantities. The period of
repetition closely matches the spiral wave period, as illus-
trated in Fig. 2�a�.

The cause of this nearly repetitive pattern is clear from an
examination of the underlying spatial and temporal pattern of
the spiral waves. Snapshots of the membrane potential in the
system at different times �Fig. 2�b�� reveal that the spatial
pattern of spiral waves also repeated nearly exactly with a
period equal to the spiral wave period. The existence of this
pattern demonstrated that the system was often able to orga-
nize its spiral waves so their mutual interaction prevented
breakup, despite a very strong tendency of isolated spiral
waves in the same system to break up. Therefore, the spiral
waves were able to rotate essentially unimpeded, forcing the
dominant frequency exhibited by the predator and prey quan-
tities to be closely tied to either the spiral wave rotation
frequency or one of its harmonics �usually the first�.

While the predator and prey wave forms repeated nearly
identically within each type-1 episode, there was consider-
able variation in waveform from one type-1 episode to the
next. This was consistent with the spiral wave patterns ob-
served, which were nearly repetitive within each episode, but
differed quite considerably between episodes.

2. Type-2 behavior

When oscillations of large mean amplitude appeared in
the predator and prey quantities, we found that the underly-
ing dynamics had quite substantially changed. As suggested
by the snapshot panels in Fig. 3, the observed behavior �type
2� was no longer repetitive. Both spiral wave breakup and
the extinction of individual spiral waves were now prevalent.
The former appeared through the natural dynamics of spiral
waves in the system, which were prone to breakup, while the
latter occurred when spiral waves merged or ran into one
another. Collisions between spiral wave arms took place in
different locations and with different timings from one spiral
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wave rotation to the next. This was in distinct contrast to
type-1 behavior, when collisions occurred at nearly the same
time during each spiral wave period, at nearly the same lo-
cation and in essentially the same manner.

The larger amplitude of the oscillations also implied that
type-2 behavior trajectories occupied a larger region of phase
space than type-1 behavior, as suggested by Fig. 4. More
generally, across all 3V-SIM simulations, we found that
type-1 behavior was generally confined to the relatively
small area marked as region I in Fig. 5, while type-2 behav-
ior generally extended into both regions I and II. �The tra-
jectories obtained were necessarily confined to the region-II
triangle, since only within this region is it true that predator
and prey quantities D�t� and Y�t� are non-negative and
D�t�+Y�t��1, properties that the predator and prey quanti-
ties must have. This last condition must be true since the
predator and prey quantities are defined to be nonoverlap-
ping fractions of the total system area.�

Perhaps the most intriguing aspect of type-2 behavior was
the frequency of the predator and prey oscillations. The ob-

served oscillation periods, although at times somewhat diffi-
cult to measure because of substantial changes in the wave
form from one cycle to the next, were definitely different
from the spiral period frequency. For example, the three os-
cillations of the predator quantity illustrated in Fig. 3 �i.e.,
3V-SIM simulations with default parameters� have periods
�from left to right� of approximately 148, 135, and 113 ms,
while the spiral wave rotation period was 101 ms. The cor-
responding oscillation frequencies are therefore 0.68
,
0.75
, and 0.89
, where 
 is the spiral wave rotation fre-
quency. These frequencies are all distinctly different from the
linear meandering frequency �1.3
� and also different from
all the frequencies associated with alternans behavior in the
action potential duration �APD� of the spiral waves �0.5
,
1.5
, 2.5
, etc.� �15�. This suggests that these “new” fre-
quencies are associated with the dynamics of the system of
spiral waves as a whole rather than with the dynamics of
individual spiral waves. We also note that, in the example
shown in Fig. 3�a�, the oscillations with the larger amplitudes
have the longer periods. This trend—that frequency tends to
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FIG. 2. �Color online� �a� Predator and prey quantities �D�t� and Y�t�� vs time during type-1 behavior in the 3V-SIM system. The spiral
wave period �101 ms� is shown for reference. �b� Snapshots of the membrane potential �resting state=0, activated state �1� in space taken
at various times during the time interval shown in �a�. The first frame also shows the sense of rotation of the tips of the eight spiral waves
present. All three frames in the first row illustrate these rotations by marking the locations of the eight spiral wave tips �identified by the
numbers 1–8�. Frames in the second row, which are taken 100 ms, or almost exactly one spiral wave period �=101 ms�, later than those in
the first row, show the continued, nearly identical pattern of rotation of these eight spiral waves.
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FIG. 3. �Color online� �a� Predator and prey quantities �D�t� and Y�t�� vs time during type-2 behavior in the 3V-SIM system. The time
interval used is equal in duration to that used in Fig. 2�a�, to allow direct comparison. The spiral wave period �101 ms� is shown for
reference. �b� Snapshots of the membrane potential �resting state=0, activated state � 1� in space taken at various times during the time
interval shown in �a�. Frames in the second row are taken 100 ms, or almost exactly one spiral wave period �=101 ms�, later than those in
the first row.
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decrease with amplitude—was found to hold consistently
across all the different systems tested.

3. Behavior of the default 3V-SIM model

A large number of simulations �48� were conducted using
the 3V-SIM model with default parameters �defined in the
Methods section �Sec. II�� with varying initial conditions in
order to assess the range of behavior at least one excitable
tissue model was capable of exhibiting. These simulations
typically spent long periods of time in type-1 behavior that
were interspersed with short bursts of type-2 behavior. The
transitions between type-1 and type-2 behavior were particu-
larly clear and abrupt in these simulations. This behavior was
observed well after periodic boundary conditions had been
imposed and transients had disappeared, suggesting that the
behavior was inherent in the dynamics of the multiple spiral
waves themselves.

All simulations entered type-2 behavior after an initial
transient caused by the initiation of spiral waves and conver-
sion to periodic boundary conditions. In 44 of the 48 default
3V-SIM simulations, spiral wave activity terminated sponta-
neously within 3.7 s, with activity lasting less than 2.0 s in
most cases. However, in the remaining four simulations the

system transitioned into type-1 behavior, which lasted for
several seconds. All four systems then reverted back to
type-2 behavior. Wave activity subsequently ceased in two of
the systems. The remaining two systems reverted back to
type-1 activity. Both systems then eventually converted back
to type-2 behavior, which was followed by termination of
spiral wave activity.

Figure 6 shows one of these long-lived, but otherwise
representative, simulations. Episodes of type-2 behavior are
clearly apparent in Fig. 6�a�, appearing as bursts of large
amplitude oscillation in both the predator and prey quanti-
ties. The episodes appear near the beginning and at the end
of the recording, and also between about t=14 and 16 s. The
remainder of the record shows type-1 behavior. The two la-
bels ��i� and �ii�� indicate the time periods from which the
data for Figs. 2 �type-1 behavior� and 3 �type-2 behavior�
were extracted.

The power spectrum of the predator quantity is shown in
Fig. 6�b�. We observe that, during type-1 activity, most of the
power is concentrated around the spiral wave frequency
�10 Hz� and its harmonics at 20, 30, and 40 Hz. This is to be
expected of behavior that is nearly repetitive over intervals
equal to the spiral wave period. There is additionally some
power at 5 Hz and its harmonics, apparently due to APD
alternans activity.

In contrast, during type-2 activity, most of the power is
concentrated below the spiral wave frequency, consistent
with the lower-frequency oscillations associated with type-2
behavior. We also note that the power in the harmonics of the
spiral wave frequency at 20, 30, and 40 Hz largely disap-
pears during these times and is instead spread more broadly
over the frequency spectrum. This is consistent with the lack
of repetitiveness observed during type-2 episodes.

When the system was exhibiting type-2 behavior, it had a
significant chance of suffering complete spiral wave extinc-
tion �i.e., cessation of all action potential wave propagation
activity�, while when exhibiting type-1 behavior, the system
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had little chance of undergoing spiral wave extinction in the
short term. We quantified this observation by plotting the
“mean time to spiral wave extinction” as a function of loca-
tion in phase space. Figure 7 shows that the spiral activity of
systems found in a small region centered around the point
predator=0.3, prey=0.2, survived at least one order of mag-
nitude longer than those systems located in most of the rest
of the triangularly shaped accessible phase space. This small
region corresponds closely to region I in Fig. 5, the region
that is home to type-1 behavior. The mean remaining lifetime
of the system decreased dramatically as one moved away
from this small region in any direction. Lifetimes for systems
found in and close to region II were up to 4 orders of mag-
nitude shorter than those found in the center of region I.
These relatively long times to spiral wave extinction for sys-
tems in region I may be explained by the relatively long
periods of time systems in region I stayed in region I. As
illustrated in Fig. 8, the mean time spent in region I was at
least 1 order and up to 4 orders of magnitude greater than the
mean time spent elsewhere in the accessible phase space.

4. 3V-SIM model with different parameters

We found that the tendency for the system to exhibit
type-2 versus type-1 behavior was affected by the steepness
of the APD restitution function. Variation of the simulation
parameter �w

− conveniently allowed us to modify the steep-
ness of this function without changing other key properties
of the system. As shown in Fig. 9�a�, quantities such as the
minimum value of the preceding diastolic interval �DI� for
which action potential propagation is possible �40 ms�, the
maximum APD possible �265 ms�, and the conduction veloc-
ity restitution function �not shown� are not affected by
changes in �w

−. In particular, the slope of the APD restitution
function could be adjusted to be greater or less than 1, the
key value at which alternans begins to occur �20� in the local

dynamics of models lacking substantial memory, such as this
one. We observed that, at low values of �w

−, when the APD
restitution function was steeply sloped with the main part of
the slope greater than 1, the behavior was completely domi-
nated by type-2 activity until termination of all wave activity
occurred �Fig. 9�b��. As �w

− was increased, the slope de-
creased, and type-1 behavior tended to appear more fre-
quently and for longer periods. In Fig. 9�c�, we see large-
amplitude oscillations of both predator and prey quantities
for t�17 s, with most of the power appearing below the
spiral wave frequency of 10 Hz, as was typical of type-2
behavior. Thereafter, the oscillation amplitude decreased and
most of the power was concentrated at the spiral wave fre-
quency and its harmonics, characteristic behavior for type-1
behavior. The case of the flattest restitution function, Fig.
9�d�, was dominated by type-1 behavior almost from the
very beginning.

5. FMG simulations

The behavior of the predator and prey quantities was
similar in simulations employing the more detailed and more
complex FMG model. We again observed both type-1 and
type-2 behavior. As before, type-1 behavior was character-
ized by small-amplitude oscillations of both the predator and
prey quantities at the spiral wave rotation frequency �5 Hz�,
as illustrated in Fig. 10. Type-2 behavior appeared as isolated
bursts in this system �between t=2.5 and 4.25 s in Fig. 10�a�
and for a short period of time between 10.5 and 11 s in Fig.
10�b��.

B. Phase shift between the predator and prey quantities

A clear, characteristic feature of both type-1 and type-2
behaviors was their propensity to trace out clockwise-
rotating orbits in predator-prey phase space, as shown in Fig.
4. To quantify these observations, the number of clockwise
�cw� versus counterclockwise �ccw� rotations around a cal-
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culated reference point was determined for several trajecto-
ries. The reference point �D0 ,Y0� was chosen as the mean
value of (D�t� ,Y�t�) over time periods long compared to the
spiral wave period. An ambiguity always existed as to
whether the trajectory had rotated clockwise or counterclock-
wise in between successive data points. We resolved this
ambiguity by always taking the smallest angle in absolute
value as the angle through which the trajectory rotated. We

added together all the positive angle changes to yield the
total ccw rotation; likewise, summing the absolute values of
all the negative angle changes yielded the total cw rotation.
We then defined the parameter r to be the ratio of total cw to
total ccw rotation. Table I shows the results of this calcula-
tion for several trajectories taken from distinct 3V-SIM and
FMG simulations and from experimental optical mapping
data exhibiting type-2 behavior. �type-1 behavior also ap-
pears to have been present in recent optical mapping experi-
ments; these will be described in future publications.� We
found that cw rotation was favored over ccw rotation in ev-
ery simulation examined but one for a variety of values of
the parameter �w

− in the 3V-SIM simulations and in all the
experimental data.

C. Relationship between period and amplitude

Figures 2�a�, 3�a�, 6, 9, and 10 all suggest that there is a
correlation between the amplitude and frequency of the
predator and prey oscillations, with the frequency tending to
decrease as the amplitude increases. Since any behavior apart
from type-1 behavior exhibits oscillation periods that vary
substantially from one period to the next, we sought mea-
sures of oscillation period and amplitude that could be de-
fined over time intervals commensurate with these periods,
to study this relationship. We found quantities based on the
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local extrema of the predator quantity to be appropriate. Spe-
cifically, as illustrated in Fig. 11�a�, we located all the local
maxima and minima for the time record of the predator
quantity. Panel �b� of Fig. 11 shows patterns and the degree
of activation, obtained from an optical mapping experiment,
at a typical maximum and minimum, those marked as “I”
and “II” in panel �a�. We defined the instantaneous period T
associated with each time interval connecting two adjacent
extrema �which always must be one maximum and one mini-
mum� to be twice this time interval. The corresponding in-
stantaneous amplitude A was defined as the difference in the
value of the predator quantity between this local maximum
and minimum. These definitions for the instantaneous period
and amplitude also have the advantage of being meaningful
quantities in our proposed explanation of the results, which
we detail in the next section.

As shown in Table I, when the instantaneous periods and
amplitudes obtained from 20 3V-SIM simulations, 2 FMG
simulations, and 6 optical mapping experimental recordings

were plotted logarithmically versus one another, we observed
straight-line relationships, with least-squares calculations of
all 26 slopes � falling between 0.46 and 0.57 and most fall-
ing between 0.47 and 0.54. Typical data from the 3V-SIM
simulations and optical mapping experiments are shown in
Fig. 11�c�. The instantaneous periods showed a tendency to
be distributed in a bimodal distribution when plotted versus
the logarithm of the periods, with the two peaks in the dis-
tribution occurring close to the ends of the range of periods
observed �Fig. 11�d��. We also found that, when the instan-
taneous periods and amplitudes were calculated on the basis
of the predator quantities obtained from various rectangular
subsets of the total simulation area, the same power-law de-
pendence �T�A1/2� was present. Furthermore, when T was
plotted versus ��obs /�tot�1/2A, where �obs /�tot is the rectan-
gular area of observation as a fraction of the total simulation
area, the data were found to overlap, as shown in Fig. 11�e�.
This suggests that the instantaneous period T scales as
���obs�1/2A��, where ��0.50.

TABLE I. Ratio r of the total cw to total ccw rotation and the slope � of the least-squares fit of
log�instantaneous period� vs log�instantaneous amplitude� obtained from several episodes of simulation and
optical mapping data. The type�s� of behavior and the value of the parameter �w

− �for the 3V-SIM simulations�
for each episode are also provided.

Type of data �w
− �ms� Observed type of behavior r

log�inst. period�/
log�inst. amplitude�

3V-SIM simulations 25 Type 2 5.47 0.538

25 Type 2 0.84 0.532

25 Type 2 1.24 0.564

25 Type 2 1.09 0.545

40 Type 2 8.61 0.527

40 Type 2 6.27 0.542

40 Type 2/type 1 8.28 0.538

40 Type 2/type 1 2.75 0.529

41 Type 2/type 1 1.68 0.522

41 Type 2/type 1 1.53 0.514

41 Type 2/type 1 1.60 0.522

41 Type 2/type 1 1.56 0.539

60 Type 1 1.99 0.529

60 Type 1 1.50 0.515

60 Type 1 1.53 0.522

60 Type 1 1.55 0.539

95 Type 1 1.72 0.516

95 Type 1 1.64 0.506

95 Type 1 2.06 0.519

95 Type 1 1.82 0.508

FMG simulations �Fig. 10�a�� Type 2/type 1 4.33 0.46

�Fig. 10�b�� Type 2/type 1 3.96 0.48

Optical mapping Type 2 1.42 0.509

Type 2 1.80 0.483

Type 2 1.33 0.474

Type 2 1.44 0.483

Type 2 1.49 0.479

Type 2 1.36 0.475
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IV. DISCUSSION AND ANALYSIS

This study focuses on the dynamics of spiral waves at the
level of many spirals, all rotating and interacting within a
larger system, rather than at the level of individual spirals.
Our results show that the behavior at this level is in general
very complicated. Nevertheless, when the predator and prey
quantities are calculated, a number of patterns emerge. We
find that these systems tend to display one of two character-
istic types of behavior, summarized in Table II, or display
characteristics somewhere between these two types. Further-
more, we observe that this is not a static situation, but rather,
the systems are able to move back and forth through a spec-

trum of behavior between type-1 and type-2 behavior. One of
the systems we studied, the default 3V-SIM simulation sys-
tem �with �w

− =41 ms�, demonstrated this property particu-
larly clearly, switching back and forth between “pure” type-1
and type-2 behavior quite abruptly �Fig. 6�, making it a con-
venient system to study. We now attempt to provide expla-
nations for what is happening during type-1 and type-2 be-
havior, and why these two behavioral types have the
properties that we observe.

A. Domains of influence

We speculate that these two types of behavior differ be-
cause of differing patterns of action potential propagation in
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subregions within the system that we will refer to as “do-
mains of influence.” We define the domain of influence of a
particular action potential wave as the region within which it
propagates without interference from other waves. While this
definition is hopefully clear, it is not always obvious how to
identify these domains, particularly in simulations exhibiting
type-2 behavior or in experimental data. Thus, the presence
of these domains is a hypothesis that we attempt to support
through consistency of the observed behavior of the predator
and prey quantities with a theory based on these domains. An
example of how these domains might be drawn for a particu-
lar configuration of action potentials, taken from type-2 be-
havior during a 3V-SIM simulation, is shown in Fig. 12.

As we have seen, type-1 behavior is characterized by the
settling of the multiple spiral wave system into a highly re-
petitive pattern with the period of repetition almost exactly
equal to the spiral wave period. Examination of the system
underlying type-1 behavior reveals the presence of many
well-defined spiral waves, each with its own center of rota-
tion that moves very slowly, if at all, as a function of time
�Fig. 2�b��. In this case, the domains of influence are the
regions occupied by each of the rotating spiral waves. Colli-
sions between neighboring spiral waves occur, by definition,
on the borders between these domains. This type of pattern
could be created by initiating a large number of stable spiral
waves that would also be stable in isolation—however, here,
we are more interested in spiral waves that would tend to
break up by themselves, but collectively form a pattern that
prevents the breakup of individual waves. As opposed to the
former pattern �e.g., Fig. 9�d��, which, when memory and
electrotonic current modifications �21� can be neglected, re-
quires an APD restitution function slope less than 1, we have
shown here that the latter pattern can occur even when a
portion of the restitution function has slope greater than 1
�e.g., Figs. 6 and 9�c��.

Type-2 behavior, in contrast, is much more dynamic and
seems to occur with increasing frequency as the steepest part
of the APD restitution function is chosen increasingly greater
than 1. While at any one time the system still contains many
waves that appear to be, at that instant, rotating, their rotation
tends to be short lived. The waves are either terminated or
are broken up through collision with other waves, or are
deflected through these interactions, leaving them to travel in
new directions or to begin rotating around a new center.
These disruptions can occur before the wave has had a
chance to complete even one spiral wave rotation. Thus, the
domains of influence of these waves can be created and de-

stroyed over time scales as short as the spiral wave period
and can change rapidly in spatial extent during their brief
existence.

B. Frequency power spectrum of type-1 and type-2 behavior

The power spectra obtained from both the simulations and
the experiments show two types of patterns corresponding to
the two types of behavior: during type-1 behavior, there is a
tendency for power to congregate around the spiral wave
frequency and its harmonics �Figs. 6�b�, 9�c�, 9�d�, 10�a�, and

TABLE II. Summary of the characteristics of the two types of predator-prey behavior

Type I Type II

Characteristic frequency Multiple of the spiral
wave frequency

A spread of frequencies associated with global dynamics
with a general shift to frequencies lower than the spiral

wave frequency

Oscillation amplitude Small Large

Underlying wave pattern Nearly repetitive Non-repetitive

Phase space region occupied Regions I only Both Regions I and II

Tendency towards cw rotation in phase space Mild Strong
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FIG. 12. �Color online� An example of how the domains of
influence might be drawn for a particular pattern of action potential
propagation. The background color image is a snapshot of a large
�15 cm�15 cm� 3V-SIM simulation ��w

− =41 ms� taken during
type-2 behavior. Red=predator �action potential� regions; green
=prey regions; blue=neither predator nor prey. Black and white
dots mark spiral wave tips rotating in the clockwise and counter-
clockwise directions, respectively. The black lines mark the bound-
aries of the domains of influence. Domains located near the edges
of the system continue through the periodic boundaries to the op-
posite side of the system. Note that each domain contains exactly
one spiral wave, except the one marked with the “X” which con-
tained two spiral waves until they annihilated one another shortly
before the time of this snapshot. The boundaries drawn are not
definitive, but rather represent the authors’ best guess of an average
of where the adjacent spiral waves had collided, will collide, and/or
would have collided had not breakup or some other disrupting event
occurred.
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10�b��, while when the system is exhibiting type-2 behavior
the tendency is for power to spread out both above and es-
pecially below the spiral wave frequency �Figs. 6�b�, 9�b�,
9�c�, and 10�b��. These two power spectrum patterns are con-
sistent with the types of behaviors we hypothesize are taking
place within the domains of influence; that is, during type-1
behavior, waves are primarily executing spiral wave rotation
within their respective domains of influence, and thus most
of the power will be expected to be concentrated around the
spiral wave frequency and its harmonics. In contrast, during
type-2 behavior, waves execute only a portion of a spiral
wave rotation or are propagating in some more complicated
pattern within their domains. Thus, in this case, we would
expect the power spectrum to be characterized by frequen-
cies that are commensurate with the inverse of the lifetimes
of the domains of influence or by the typical time it takes for
the resident wave to cross its domain. These frequencies
could extend above the spiral wave rotation frequency when
the domains last shorter than a spiral wave period or when
the wave takes less than a spiral wave period to traverse its
domain. This situation is typical of the experimental data,
where the behavior is type-2-like, and transit times of waves
across the entire preparation are small compared to the spiral
wave rotation period. In contrast, frequencies would be ex-
pected to be found more often below the spiral wave fre-
quency when the system is composed largely of waves that
take more than one spiral wave period to cross their domains.
This scenario is more typical of many of our 3V-SIM simu-
lations, where study of the system during type-2 behavior
reveals the presence of waves that are traveling relatively
long distances across the system.

1. Self-organization during type-1 behavior

Perhaps the most important question we can ask about
type-1 behavior has to do with the nature of the self-
organization the system exhibits. When individual spiral
waves are not prone to breakup, the ability for the system to
maintain a particular spatial pattern of spiral waves from one
spiral wave rotation period to the next is not all that
surprising—without breakup, we generally only see drifting
and/or meandering of the spiral wave centers, both of which
are slow processes compared to spiral wave rotation. The
existence of type-1 behavior is much more surprising when
breakup is an inherent property of individual spiral waves. In
this case, the system must somehow organize its spiral waves
so that their mutual interaction inhibits their tendency to
break up, as we saw in the 3V-SIM simulations. The process
by which this occurs is, at the moment, unknown, although
we can make some modest observations. We see, for ex-
ample, that during type-1 behavior the arm of each spiral
appears to collide with other waves repeatedly at a location
where breakup might otherwise be expected to occur. We can
speculate, therefore, that breakup is being inhibited by these
repeated collisions.

Once we accept the near-repetitive spatial pattern of
type-1 behavior, it is not too difficult to understand most of
the other type-1 properties. If type-1 behavior were exactly
repetitive from one spiral wave period to the next, then all
dynamical quantities, including the predator and prey quan-

tities, would also be necessarily repetitive with the same pe-
riod. Thus, it is not surprising that the near repetition of
type-1 behavior would yield near-repetitive behavior in the
predator and prey quantities and that the period of repetition
would be the spiral wave period. Also, we should not be too
surprised that the oscillation amplitude of the predator and
prey quantities is relatively small, since simple rotation of a
spiral wave would be expected to have a smaller impact on
the fraction of tissue activated at any one time, in contrast to
the larger fluctuation one would anticipate resulting from an-
nihilation and formation of action potential waves, as rou-
tinely takes place during type-2 behavior.

2. Type-2 behavior as a less organized, “searching” mode

Type-2 behavior appears to lack the same degree of the
self-organization and near-repetitive dynamics present in
type-1 behavior; thus, the spatial pattern of spiral waves is
free to change during type-2 behavior, allowing the system to
sample one pattern of spiral waves after the next. We can
therefore think of a system exhibiting type-2 behavior as
being engaged in a “searching” mode, as it looks for oppor-
tunities to either coalesce into self-organization �type-1� or
progress into behavior that will lead to complete action po-
tential extinction. We have seen that systems involved in
type-2 behavior are actually able to change spiral wave pat-
terns fairly quickly, perhaps even on a time scale approach-
ing the spiral wave period �cf. Fig. 3�. This allowed the sys-
tem to conduct its search relatively rapidly, sampling new
spatial patterns of spiral waves in quick succession. Further-
more, for our default 3V-SIM system, it seemed fairly easy
for type-2 behavior to find spiral wave patterns that self-
organized into the nearly repetitive behaviors characteristic
of type-1 behavior. It also seemed relatively easy for type-2
behavior to generate patterns of spiral waves that involved
near total activation of the tissue, corresponding to a high
value of the predator quantity, or near total recovery of the
tissue �high prey value�, both of which corresponded to en-
tering into region II in Fig. 5. This translated into large am-
plitudes in the oscillation of the predator quantity and also
increased the tendency for type-2 behavior to end in extinc-
tion of all spiral wave activity �e.g., the ends of the simula-
tions shown in Figs. 6�a�, 9�b�, and 10�a��. These tendencies
explain the large disparities in the mean time to spiral wave
extinction �Fig. 7� and phase space densities �Fig. 8� we ob-
tain for type-1 versus type-2 behavior.

C. Clockwise rotation in phase space

We believe the observed tendency towards clockwise ro-
tation in predator-prey phase space, when it occurs, is based
on the fact that rotation will always appear when both dy-
namical variables are oscillatory with the same frequency
and the phase shift between the two variables is something
other than a multiple of � �180°�. This type of behavior is
common in the analysis of electronic signals, where the ro-
tating pattern is generally called a Lissajous figure �e.g.,
�22��. In our case, we suggest that the observed clockwise
rotation is caused by approximately oscillatory behavior of
both the predator and prey quantities, with the predator quan-
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tity lagging behind the prey quantity by less than half an
oscillation period.

We can make a simple argument for why this type of
relationship should often exist between the predator and prey
quantities. Every point on the boundary of every region con-
taining cells in the “predator” state is either moving outward
into the surrounding medium or is retracting inward into the
predator region, as portrayed in Fig. 13. We consider points
in the former category to be part of the wave front, while
those in the latter are part of the “wave back.” The predator
regions themselves may be thought to be regions of
activation—that is, the regions occupied by action potentials.
During a short period of time �t, the area occupied by preda-
tor cells is increased by the area traversed by the wave front
and decreased by the area traversed by the wave back, as
suggested by Fig. 13. Thus, if F is the area per unit time
swept out by all the predator region wave fronts, B the cor-
responding quantity for the predator region wave backs, and
D the area of the predator region, then D satisfies the differ-
ential equation

dD

dt
= F − B . �3�

A similar equation holds for the prey region:

dY

dt
= R − F , �4�

where Y is the area of the prey region and R is the area per
unit time being added to the prey region as a result of recov-
ery of tissue from the refractory state back into the excitable
�i.e., prey� state. This occurs over portions of the boundaries

of the prey regions; over the remainder of the prey bound-
aries, the action potential �i.e., predator� region is intruding.
We note that the area being added to the predator region is
essentially the same as the area being taken away from the
prey region, as action potentials advance into prey regions.
Thus, the loss of prey region area per unit time is simply
−F—that is, minus the area per unit time being added to the
predator regions, as suggested by Fig. 13. This accounts for
the last term in Eq. �4�.

Over most of the system, we can expect the wave backs to
follow behind the wave fronts. Thus the locations and propa-
gation velocities of the predator wave fronts at a given time
t generally become the approximate locations and velocities
of the wave backs at times approximately equal to the local
value of the APD later �Figs. 14�a� and 14�b��. It is therefore
a reasonable approximation that the area being added per
unit time to the predator region at a given time t resulting
from wave-front propagation is the area being subtracted
from the predator region on the wave back at the later time
t+APD. Thus, we have that B�t+APD��F�t�. A similar
statement may be made of the addition and removal of the
prey region area: R�t+REC��F�t�, where REC is the time
recovery occurs, measured relative to the time of activation
at the same location �Fig. 14�c��. These statements, of
course, are not strictly true—such patterns would not be ex-
pected to hold near the centers of spiral wave rotation or in
the vicinity of spiral wave breakup. Also, APD and REC are
not normally constant, either in time or in space, so that
snapshots of wave fronts and wave backs at the later time
will never perfectly coincide. Nevertheless, it is reasonable
to expect that these relationships hold approximately over
most of the system most of the time, corresponding to the
vast majority of the system being occupied by well-formed,
normally propagating action potentials waves, at any given
time.

Assuming that Eqs. �3� and �4� are approximately correct,
we can argue that, if the area swept out by the wave front
oscillates roughly sinusoidally in time, as we have observed
in our 3V-SIM spiral wave breakup simulations, then the
predator and prey quantities D�t� and Y�t� will not simply
oscillate 180° out of phase with one another, as one might at
first expect. Instead, the prey quantity is delayed relative to
out-of-phase behavior, leading to roughly circular, clockwise
rotating trajectories in predator-prey phase space �the x di-
rection corresponding to predator, y corresponding to prey�.

This is perhaps most easily shown by representing F�t� as
a sine function:

F�t� = a + b sin 
t , �5�

where a, b, and 
 are constants. As argued above, we then
have that B�t� and R�t� are time-delayed versions of F�t�:

B�t� = F�t − APD� = a + b sin 
�t − APD� �6�

and

R�t� = F�t − REC� = a + b sin 
�t − REC� . �7�

Substituting into Eqs. �3� and �4� and integrating, we find
that
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FIG. 13. Changes in the areas of the predator and prey regions
during a time interval �t occur on the boundaries of these regions.
An area F�t is added to the predator region and subtracted from the
prey region as the predator region �alias, the action potential� ad-
vances into the prey region �containing excitable tissue�. Predator
area B�t is lost on the trailing edge of the action potential, while
prey area R�t is regained along its boundary with refractory tissue
as the latter recovers. Here F, B, and R are the rates at which the
corresponding areas are gained or lost per unit time.
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D�t� = const − 2b
 sin 
�APD

2
	sin 
�t −

APD

2
	 , �8�

Y�t� = const + 2b
 sin 
�REC

2
	sin 
�t −

REC

2
	 . �9�

The factors sin�
�APD /2�� and sin�
�REC /2�� are both
positive, as long as both the APD and recovery time �REC�
are less than the period of oscillation, 2� /
. Thus, since
REC is always longer than APD, we see that the time-
dependent part of the prey quantity Y�t� is always delayed by
the time interval �REC−APD� /2 relative to −D�t�, the out-
of-phase version of the predator quantity. In particular, each
maximum in the prey quantity is delayed by �REC
−APD� /2 relative to the corresponding minimum in the

predator quantity, leading to the relative phasing of the sinu-
soidal oscillations between the predator and prey quantities
shown in Fig. 15�a�. In turn, Fig. 15�a� shows that D�t� is
increasing as the maximum in Y�t� is attained �point A in Fig.
15�a��, implying that the trajectory in D-Y phase space must
appear as shown at point B in Fig. 15�b�. Other portions of
the trajectory may be constructed in a similar fashion at the
other extrema of D�t� and Y�t�, yielding the clockwise rota-
tion of the system point as it moves along its trajectory in
D-Y phase space, as depicted in Fig. 15�b�.

The typical positioning of the predator behind, and in pur-
suit of, the prey is not just a familiar image. In the preceding
derivation, it is an important assumption—and it is also what
is actually happening within the domain of each spiral wave,
in the simulations and presumably in the experiments, with
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FIG. 14. Illustration of the implications of wave backs and the leading edges of the prey region following and mimicking the propagation
of wave fronts. The location of the wave front at time t �represented by the thick line in all three panels� is the location of the wave back at
the later time t+APD �panel �b��, which is also the location of the leading edge of the prey region at time t+REC �panel �c��. Thus, the area
swept out by the wave front between times t and t+�t �F�t in panel �a�� is the same area swept out by the wave back between times
t+APD and t+APD+�t �B�t in panel �b�� which is the same as that swept out by the leading edge of the prey region between times
t+REC and t+REC+�t �panel �c��.
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FIG. 15. �Color online� �a� Qualitative illustration of the phase shift in time of the oscillatory part of the prey variable Y�t� compared to
that of the predator variable D�t�. �b� Phase space trajectory of (D�t� ,Y�t�) when the peak in Y�t� lags behind the minimum in D�t�.
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the predator action potential chasing �or moving into� the
excitable tissue prey.

Another assumption used in this derivation—that of sinu-
soidal behavior at the spiral wave frequency—was not found
to be universally true in the simulations. It was not unusual
for the predator and prey quantities to deviate substantially
from this behavior. In fact, during type-1 behavior, we even
found predator and prey wave forms that more closely re-
sembled two complete sinusoidal oscillations per spiral wave
period than one. Nevertheless, a majority of the time, we
found that the peaks and valleys of the predator wave form
tended to lag behind those of the prey by less than half a
spiral wave period, leading to the observed dominance of
clockwise rotation in predator-prey phase space.

D. Dependence of instantaneous period on amplitude

The origin of the approximate dependence of the instan-
taneous period on amplitude as T�A1/2 in both the simula-
tions and experiments remains unclear. However, we have
been able to devise a simple system that reproduces this
quantitative dependence and also exhibits qualitative simi-
larities to other observed statistical features. We simply
model the local predator quantity Di in the ith domain as

Di�t� = CTi
2�t�sin �i�t� , �10�

where C is a constant, �i�t+�t�=�i�t�+2��t /Ti�t�, and �t
=2 ms. The time-varying periods Ti�t� were calculated inde-
pendently for each domain according to the following:

ln Ti�t + �t� = ln Ti�t� + 
0.05��t/Ti�t���r − ri�t���1/2,

�11�

where r is randomly chosen with equal probability between 0
and 1, and ri�t� varies slightly to either side of 0.5, so as to
always favor return of T�t� to a value of about 0.0316
�=10−1.5�. Specifically, r0�t�= �ln T�t�−ln Tmin� / �ln Tmax
−ln Tmin�, where Tmax and Tmin were chosen to be 10−1.5+100

and 10−1.5−100, respectively. In other words, each of the do-
main predator quantities oscillates with an amplitude propor-
tional to the square of its period, and these periods vary
slowly and randomly about a value of 10−1.5 and indepen-
dently of one another.

When simulations of this simple model were conducted,
the results in Fig. 16 were obtained. As shown in Fig. 16�a�,
calculation of the instantaneous periods and amplitudes gives
the same T�A1/2 dependence obtained from the spiral wave
simulations and optical mapping experiments. We also find
that the distribution of the data in amplitude-period space is
not unlike that seen in the main simulations and experiments.
In particular, we see a flare in the spread of instantaneous
amplitudes for the smaller periods. The distribution of data
versus the logarithm of the periods �Fig. 16�b�� also bears
qualitative resemblance to the corresponding distribution in
the main simulations and experiments �Fig. 11�d��. Specifi-
cally, we see that both graphs show the tendency for most of
the periods to congregate at both ends of the main range over
which the period varies, in a bimodal distribution. The data
were also found to overlap �Fig. 16�c�� for different numbers
of domains, Nd, when plotted versus the amplitude times

Nd
1/2, just as in the experiments and simulations �cf. Fig.

11�e��. Finally, we also observe qualitative similarities in the
wave form of the predator quantities. Comparing Fig. 16�d�
with Figs. 2�a� and 3�a�, we observe that both display
smooth, sinusoidal-like undulations, with smaller short-
period oscillations often superimposed on a larger, longer-
period pattern. Qualitatively similar wave forms are also ob-
served in the experimental predator data �not shown�.

If we assume that this model is indeed representative of
what is happening, the next question to answer is, what type
of dynamics might underlie such a model? The answer is
unclear at present. However, we can make the following ob-
servations and speculations. First, the proportionality of the
amplitude of the individual domain predator quantities Di�t�
to the square of the periods Ti�t� suggests that the amplitude
of the oscillation of these predator quantities’ second deriva-
tive, d2Di�t� /dt2, is approximately independent of the peri-
ods, since d2Di�t� /dt2�−4�2Csin �i�t�, from Eq. �10�, if we
can assume a small time step �t and slow variation in the
periods �1 /Ti�t���dTi /dt��1. Plots of the second time de-
rivatives of both individual Di�t�’s and the total predator
quantity from simulations of Eq. �10� confirm the approxi-
mate constancy of these amplitudes, once fluctuations above
1 /10th the Nyquist frequency are filtered out. Second, if the
area inside a spiral wave, and thus, the area used to calculate
one of the Di’s, can be represented as �xfront�t�−xback�t��l /S,
where the x direction is oriented in the direction of propaga-
tion of the wave, xfront and xback are the wave-front and wave-
back locations, respectively, l is the length of the wave front,
and S is the area of the domain, then d2Di�t� /dt2 would then
be proportional to d2xfront /dt2−d2xback /dt2—that is, the dif-
ference between the wave-front and wave-back accelera-
tions. These changes in velocity of the wave front and wave
back, in turn, are often thought to be governed by the DI
encountered by the wave front as it propagates. Thus, the
acceleration of the wave front, for example, is given by

dv�DI�
dt

= v��DI�
d�DI�

dt
= v��DI�

dxfront

dt

d�DI�
dx

= v��DI�v�DI�
d�DI�

dx
, �12�

where v�DI� is the wave-front velocity, dependent on the
preceding DI �i.e., conduction velocity restitution function�,
and v��DI� is the slope of this function. Both v�DI� and
v��DI� can be expected to be characterized by “typical” val-
ues during the continual, rapid activation of tissue that domi-
nates spiral wave turbulence. This leaves us to try to under-
stand the nature of the gradient of DIs in such a system.
Severe gradients in DIs are thought not to exist in systems
entertaining action potential propagation—they are quickly
eroded over a number of different length scales, discussed by
Echebarria and Karma �23�. Thus, we can suppose that pat-
terns of multiple spiral waves will become increasingly com-
plex until gradients in DIs up to this theoretical value are
reached and would subsequently level off. Thus, there is
some rationale for the existence of a characteristic amplitude
for the oscillation of the �d2Di /dt2�, although obviously this
argument remains highly speculative.
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V. SUMMARY AND CONCLUSIONS

Summarizing, the use of “predator” and “prey” dynamical
variables has provided us with diagnostic tools that we can
use to characterize the behavior of systems containing many
interacting spiral waves. These quantities are so named be-
cause the dominant sense of rotation in phase space is the
same as that found in predator-prey dynamical systems and
occurs for similar reasons. Study of these quantities has al-
lowed us to identify two characteristic types of behavior we
call type 1 and type 2, with the behavior of all the simula-
tions and optical mapping experiments we studied falling
into of one of these categories, or in transition between these
two categories. The two types of behavior possessed a num-
ber of different distinguishing characteristics, including the
degree of repetitiveness of wave propagation patterns in
time, the distribution of spectral power, and inferred dynami-
cal organization. Type-2 behavior also exhibited a strong cor-
relation between the time intervals between consecutive ex-

trema in the predator time history and the change in the value
of the predator quantity that occurs within these time inter-
vals. These characterizations led to the development of a
theory based on the summation of behavior of the dynamics
within the “domains of influence” of the individual waves
present in the system. While we at present cannot say that
this theory is either complete or correct, it does yield behav-
ior consistent with all the characteristics observed, and thus
is a starting point towards additional understanding of this
complex system.

This study demonstrates that quantities such as predator
and prey can raise important, new questions that shed new
light on multiple spiral wave systems that might otherwise
not be posed. Among these are the following: What dynam-
ics is involved in the transitions between type-1 and type-2
behaviors, and when and why do such transitions occur?
Why should the nonrepetitive behavior associated with
type-2 behavior also be correlated with larger amplitude os-
cillations in the predator and prey quantities? What actually
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FIG. 16. �Color online� Data from a simple domain-based model. �a� Instantaneous periods T relative to the spiral wave period plotted
vs the corresponding amplitudes A of the predator quantity for Nd=30. Calculated least-squares slope: 0.515. �b� Distribution of data vs the
instantaneous period �relative to the spiral wave period, logarithmic binning� for the same model run as in �a�. �c� Instantaneous period T vs
instantaneous amplitude A of the predator quantity multiplied by the square root of Nd for three different values of Nd: Nd=10 �blue dots�,
40 �black “�’s”�, and 360 �green circles�. The log-log fit least-squares slopes were found to be 0.534, 0.531, and 0.523, respectively. �d�
Typical behavior of the global predator quantity as a function of time t taken from the Nd=30 run. In both �a� and �c�, the solid lines depict
the least-squares fit; the dashed lines mark unit standard deviation departures from each fit.
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is responsible for the square-root dependence between in-
stantaneous amplitude and instantaneous period? What is
happening during those time intervals when the trajectory
does not rotate clockwise in phase space? What new dynam-
ics are responsible for the new frequencies observed during
type-2 behavior? The answers to these questions will hope-
fully result in new insight into the large-scale dynamics of
these systems.
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