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Within the general quadrupolar model for biaxial nematic liquid crystals, whose potential of mean torque
extends that in the Maier-Saupe theory with two extra interaction terms, we propose a quantitative criterion to
identify the dominant biaxial interaction. We show that the ratio of the biaxial-to-uniaxial and uniaxial-to-
isotropic transition temperatures is almost independent of one interaction parameter, thus indicating the other
as dominant. We also show that there is a significant mismatch between the principal orientational order
parameters predicted by the theory and those measured for the biaxial phase of a tetrapode.

DOI: 10.1103/PhysRevE.78.021710 PACS number�s�: 61.30.Cz, 61.30.Dk

I. INTRODUCTION

The thermotropic biaxial nematic phase, whose existence
was predicted by Freiser in 1970 �1,2�, promises to possess
novel and applicable properties �3,4�. There has, therefore,
been considerable interest in the creation of compounds
which might exhibit the biaxial phase. However, it seems
that many of the early claims to have found the biaxial nem-
atic are false �5�. In relatively recent years there have been
further claims to have discovered a biaxial nematic phase, for
V-shaped molecules �6,7� and for tetrapode molecules in
which four mesogenic groups are tethered laterally to a
single silicon atom �8,9� and to a single germanium atom
�10�.

The evidence for these new claims seems to be stronger;
indeed, somewhat surprisingly, it has proved possible to pre-
pare a monodomain of the biaxial nematic phase thought to
be exhibited by a tetrapode �8�. This has then been employed
to determine the second-rank orientational order parameters
in the biaxial nematic as well as the uniaxial nematic phase
by using infrared spectroscopy. The four relevant order pa-
rameters are defined as �11–13�

S ª Szz
ZZ, �1a�

D ª Sxx
ZZ − Syy

ZZ, �1b�

P ª Szz
XX − Szz

YY , �1c�

C ª �Sxx
XX − Syy

XX� − �Sxx
YY − Syy

YY� , �1d�

in terms of the entries of the supermatrix S, where the su-
perscript uppercase letters denote the principal laboratory
axes and the subscript lowercase letters the principal molecu-
lar axes. The order parameters S and D are nonzero in the
uniaxial nematic phase, whereas P and C are zero; in the
biaxial nematic phase, all four order parameters S, D, P, and
C are nonzero. In addition to the same S as in Eq. �1a�, three
other scalar order parameters—namely, S�, T, and T�—were

introduced in �14�; they are related to those in Eqs. �1b�–�1d�
through the equations

S� = D, T =
1

3
P, T� =

1

3
C .

A fairly complete list of notation employed over the years in
this field by different authors is given in �15� along with a
convenient conversion table.1 Individual molecules are as-
sumed to possess D2h symmetry, and their interaction is
given the general quadrupolar expression put forward by
Straley �16�.

The heart of the molecular-field theory2 is the potential of
mean torque experienced by a molecule as a result of its
anisotropic interactions with its neighbors. The potential of
mean torque is restricted to second rank—that is, to quadru-
polar terms—and takes the form �14,17–20�

U = − u0�q · Q + ��q · B + b · Q� + �b · B� , �2�

where the molecular orientation with respect to the directors
is given by the two traceless, orthogonal tensors

1The scalar order parameters collected and classified in �15� are
all quadrupolar in nature—that is, associated with a second-rank
order tensor. All ordered phases formed by biaxial molecules are
characterized by at most four such second-rank scalar order param-
eters. Clearly, a more accurate description could be gained by also
calling upon scalar order parameters of higher rank. For example,
this attitude was recently taken in �29� for the possible biaxial
phases of uniaxial molecules, for which second- and fourth-rank
scalar order parameters together add up to five, although, in general,
there are four second-rank and nine fourth-rank scalar order
parameters.

2The term molecular field is used here to distinguish theories such
as that of Maier and Saupe for nematics which have a clear molecu-
lar basis from mean-field or Landau theories which involve phe-
nomenological expansions of scalar invariants of the relevant order
tensors characterizing the phases.
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q ª ez � ez −
1

3
I, b ª ex � ex − ey � ey .

Here I is the identity tensor and �ex ,ey ,ez� are orthonormal
unit vectors parallel to the molecular symmetry axes. The
tensors Q and B in Eq. �2� are related to the orientational
order parameters by

Q = S�eZ � eZ −
1

3
I� +

1

3
P�eX � eX − eY � eY� ,

B = D�eZ � eZ −
1

3
I� +

1

3
C�eX � eX − eY � eY� ,

where �eX ,eY ,eZ� is the laboratory eigenframe shared by both
tensors. The potential U in Eq. �2� clearly appears as an
extension of that in the Maier-Saupe theory �21� through the
addition of the terms in � and �. It is a major purpose of this
paper to show that the latter is indeed the dominant term
according to a criterion that we develop below. Our other
important aim is to compare the predicted order parameters
with those measured for a tetrapode �8�.

The paper is organized as follows. In Sec. II, we show by
which criterion the biaxial contribution in � to the potential
of mean torque in Eq. �2� can indeed be considered as domi-
nant. Our dominance criterion will also suggest a natural
way to compare our mathematical model with experiment;
such a comparison is presented in Sec. III. Finally, in Sec. IV
we summarize our work and comment on the outcomes of
our comparison with experiment.

II. DOMINANT CONTRIBUTION

In the potential of mean torque in Eq. �2�, the positive
parameter u0 is related to the molecular anisotropy and is
used to scale the absolute temperature T. The relative mo-
lecular biaxiality is related to both � and �, the model pa-
rameters of the theory, subject to the inequalities

� � 0, 1 − 	2�	 + � � 0, �3�

which ensure the stability of the ground state where the in-
teracting molecules lie parallel to one another. However, not
all points in the fan-shaped region of the �� ,�� plane defined
by Eqs. �3� correspond to physically distinguished molecular
states: by properly exchanging the roles of the molecular
axes �20,22�, all inequivalent states can be represented by
points within the essential triangle with vertices at the points
O= �0,0�, I= �0, 1

3 �, and V= � 1
2 ,0� of the �� ,�� plane �see

Fig. 1�. Similar symmetry transformations apply to the scalar
order parameters �S ,D , P ,C�, so that multiple representa-
tions are possible for one and the same condensed phase
�20�. Here we adopt the representation in which a uniaxial
state possesses S�D�0 and P=C=0, which is the usual
choice in describing experimental data.

The theory, already presented in �14,19,20,23�, builds the
molecular-field free energy F from the potential of mean
torque, U:

F =
u0

3

S2 +

1

3
P2 + 2��SD +

1

3
PC� + ��D2 +

1

3
C2�

−
3

�
ln� Z

8�2�� , �4�

where

Z ª �
0

2�

d��
0

2�

d��
0

�

d� sin � exp��g� �5�

is the partition function. The molecular orientation with re-
spect to the laboratory frame �eX ,eY ,eZ� is described by the
Euler angles �� ,� ,�� in the y notation �15�. In Eq. �5�,
�ªu0 /kBT, kB is the Boltzmann constant and

g ª q · Q + ��q · B + b · Q� + �b · B

= �cos2 � −
1

3
��S + �D�

+ sin2 �
1

3
�P + �C�cos 2� + ��S + �D�cos 2��

+
1

3
��1 + cos2 ��cos 2� cos 2� − 2 cos � sin 2� sin 2��

	��P + �C� .

To obtain the order parameter profiles for a choice of � and
�, we perform a bifurcation analysis of the equilibrium equa-
tions for F with the aid of MATCONT �24�, a free software
package which is integrated into MATLAB �25�. In our param-
etrization, the equilibrium equations for F, yielding the states
compatible with the molecular field, read as

FIG. 1. �Color online� The essential triangle OVI in the �� ,��
plane with a pseudocolor map of the ratio 
ªTNB-NU

/TNU-I between
the biaxial-to-uniaxial and uniaxial-to-isotropic transition tempera-
tures. A colorbar is added on the right side of the graph to illustrate
the scale. The triple line is the upper �red� line bounding the colored
region. When 
�1 the two transition temperatures are close to one
another and the corresponding points are, therefore, close to the
triple line where 
=1; when 
�0, the biaxial-to-uniaxial transition
tends to disappear and the corresponding points are close to the
base OV of the essential triangle.
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2

3
�S + �D� −

ZS

Z
= 0,

2

3
��S + �D� −

ZD

Z
= 0,

2

3
�P + �C� −

ZP

Z
= 0,

2

3
��P + �C� −

ZC

Z
= 0,

where ZX denotes the partial derivative of Z with respect to
the corresponding order parameter, X.

In the numerical bifurcation analysis, a continuation in the
parameter � is started from the isotropic state, characterized
by the vanishing of all order parameters �see Fig. 2�. By
using MATCONT with a specifically designed code, we iden-
tify a bifurcation point on the isotropic branch; we label this
point UP: it is the point where the isotropic solution loses its
stability. A second equilibrium solution branches off from
UP at �=�UP; this solution branch has nonzero S �and, cor-
respondingly, nonzero D�, but P=C=0: it describes nematic
uniaxial states. In general, moving along the uniaxial branch
one first encounters unstable equilibrium points and then
stable ones. By monitoring the free energy of the stable
states, we identify the transition value �=�NU-I, yielding
TNU-I: the transition is marked by the free energy of the nem-
atic uniaxial state crossing zero, the value for the isotropic
phase according to Eq. �4�. We label this point on the bifur-

cation graph as ZC. On the uniaxial branch, stability is then
lost at a second bifurcation point, labeled as BP, from which
a solution branches off with all four order parameters differ-
ent from zero. This is a biaxial nematic branch, and a tran-
sition onto it from the uniaxial branch occurs when the free
energy is equal on the two branches: this is the condition
identifying the value �=�NB-NU

, which yields TNB-NU
. While

the uniaxial-to-isotropic �NU-I� transition is always first or-
der, the biaxial-to-uniaxial �NB-NU� transition can be either
first or second order, depending on the profile of the bifur-
cating biaxial branch. Thus, the NB-NU transition line in the
phase diagram may bear a tricritical point �17,19,20,23,26�.
Correspondingly, a tricritical line can be drawn in the essen-
tial triangle, which divides it into two regions, according to
whether the secondary biaxial-to-uniaxial transition is first or
second order �see Fig. 3�. Moreover, a triple line can be
drawn corresponding to the points where the isotropic,
uniaxial, and biaxial phases are in equilibrium �see Figs. 1
and 3�: above the triple line, a direct transition occurs be-
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FIG. 2. �Color online� Bifurcation diagrams for �=�A=0.174
and �=�A=0.193, corresponding to the point in the �� ,�� plane
designated by a star in Fig. 3. Solid �red� lines represent stable
equilibria. Dashed �blue� lines represent unstable equilibria. �a� S
against �. UP is the point where an unstable uniaxial branch bifur-
cates from the isotropic line. ZC is the point where the free energy
of the stable uniaxial equilibrium is equal to zero—that is, to the
free energy of the isotropic state. The point ZC occurs at
�=�NU-I=6.43. BP is the point on the uniaxial branch where a
biaxial branch bifurcates with exchange of stability. The primary,
uniaxial-to-isotropic transition is first order, whereas the secondary,
biaxial-to-uniaxial transition is second order. �b� C against �. These
branches illustrate the same solutions as in �a�. The BP points in the
two bifurcation diagrams correspond to one another; they occur at
one and the same value of �, �NB-NU

=6.64.
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FIG. 3. �Color online� �a� Contour map of the ratio

ªTNB-NU

/TNU-I between the biaxial-to-uniaxial and uniaxial-to-
isotropic temperatures as a function of the parameters �� ,�� in the
potential of mean torque in Eq. �2�, restricted to the essential tri-
angle. The solid lines meeting at the point C on the oblique side of
the essential triangle are the triple �above� and the tricritical �below�
black lines. The thin lines correspond to values of 
 equally spaced
between 0.1 and 0.9. The thick lines correspond to the tetrapodes A
�solid line, 
A=0.969� and B and C �dashed line, 
B=
C=0.999�.
The isoratio line for tetrapodes B and C is hardly distinguishable
from the triple line. The isoratio lines are traversed by the lines with
equal SNU-I, the value of S at the NU-I transition, here chosen as 0.4,
0.3, 0.2, and 0.1 �from left to right�. The curves with equal SNU-I are
defined up to the triple line, as there the intermediate uniaxial phase
ceases to exist. A star marks the point ��A ,�A�= �0.174,0.193� on
the isoratio line for tetrapode A; with this choice of parameters in
the potential of mean torque in Eq. �2�, SNU-I matches the value
measured experimentally. The color code for the thin contour lines
is the same as in Fig. 1. �b� Magnification of �a�. The isoratio line
for tetrapode A is mostly below the tricritical line, whereas the
isoratio line for tetrapodes B and C is mostly above the tricritical
line.
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tween the isotropic and biaxial phases. For �=0, the tricriti-
cal and triple lines are separate, but they merge in a point C
on the IV side of the essential triangle �20� �see Fig. 3�.

The quantitative criterion we propose to judge the relative
importance of the two biaxial terms in the potential of mean
torque in Eq. �2� is computing the ratio 
ªTNB-NU

/TNU-I

=�NU-I /�NB-NU
, which, being independent of u0, is only a

function of �� ,�� within the essential triangle in Fig. 1. Since
only the direct biaxial-to-isotropic transition occurs on and
above the triple line and along the IV side, 
 is not defined
there. Similarly, only the uniaxial-to-isotropic transition oc-
curs on the base OV, and so 
 is equally undefined there
�19�. In Fig. 1, a pseudocolor map of 
 is reported in the
essential triangle; the color code, illustrated by the colorbar,
ranges from yellow for 
=0 to red for 
=1.

It is remarkable that 
 is so weakly dependent on �, while
it exhibits a strong dependence on �. Figure 1 makes it vi-
sually evident that setting �=0 in Eq. �2� would not appre-
ciably affect the ratio 
 between the transition temperatures,
though it affects some other properties of the condensed
phases, such as the rebound of the uniaxial scalar order pa-
rameter D at the biaxial nematic transition studied in �23�.
This indirectly supports the choice made in �27� of basing a
Landau theory for biaxial nematic liquid crystals upon the
potential with �=0.

III. COMPARISON WITH EXPERIMENT

The independence of 
 upon u0 also makes it a parameter
of choice for comparing theory with experiment.

To this end, in Fig. 3 we build the contour plot of 
,
drawing the isoratio lines for equally spaced values of 
 in
the range �0.1, 0.9�. In general, every isoratio line hits the
segment CV on the IV side of the essential triangle in a
different point, making it possibile to extend by continuity
the definition of 
 up to the triple line, CV, and OV. In
particular, 
→1 on approaching the triple line and 
→0 on
approaching the base OV.

We shall focus attention on the isoratio lines correspond-
ing to compounds that in the literature have been claimed
capable of exhibiting thermally driven biaxial-to-uniaxial
transitions. A specific experimental value of 
 allows us to
select a single isoratio line, which thus identifies all possible
values of �� ,�� in Eq. �2� compatible with the measured
transition temperature ratio. In particular, the data for tetra-
pode A of �8� show a first-order NU-I transition at the tem-
perature TNU-I=320 K and a second-order NB-NU transition
at the temperature TNB-NU

=310 K. We take TNB-NU
to be the

temperature at which either P or C first becomes strictly
nonzero, within experimental error. Accordingly, in Fig. 3 we
report the curves for the two organosiloxane tetrapodes �A
and B� explored in �8�, as well as for the similar germanium
compound studied in �10� �tetrapode C�. Infrared spectros-
copy measurements indicate for tetrapode A a ratio

A=0.969, with a second-order NB-NU transition, and for tet-
rapode B a ratio 
B=0.999, with a weakly first-order NB-NU
transition. Similarly, dynamic light-scattering measurements
performed on a sample of tetrapode C yield 
C=
B, also
revealing a weakly first-order NB-NU transition. As can be

seen from Fig. 3�b�, both the corresponding isoratio lines
cross the tricritical line, and so each of them would be com-
patible with either a first- or a second-order NB-NU transition,
though the isoratio line corresponding to 
A is mostly below
the tricritical line, whereas the isoratio line corresponding to

B=
C is mostly above the tricritical line, which makes the
biaxial-to-uniaxial transition more likely to be second-order
for tetrapode A and first-order for tetrapodes B and C.

Only by using extra experimental data can we single out a
point ��0 ,�0� on the isoratio line that describes a specific
compound. In particular, the value SNU-I of the primary order
parameter S at the onset of the uniaxial phase for T=TNU-I

proved especially fit for this purpose. The lines with equal
SNU-I are superimposed onto the isoratio lines in Fig. 3 in the
region of the essential triangle below the triple line, where
they are both defined. These families of lines determine a
grid capable of mapping unambiguously pairs �
 ,SNU-I� and
�� ,�� into one another. Thus, when an isoratio line 
 crosses
the tricritical line, the knowledge of SNU-I can decide whether
for a specific compound the theory predicts the secondary
NB-NU transition to be first or second order. For example, for
tetrapode A we can read off from Fig. 3 of �8� that SNU-I

�0.20; the corresponding point ��A ,�A�= �0.174,0.193� is
marked in Fig. 3 with a star; it lies below the tricritical line,
and so the NB-NU transition is predicted to be second order,
as actually observed.

For �=�A and �=�A, u0 can be determined from either
�NU-I or �NB-NU

, since both TNU-I and TNB-NU
are known. Fig-

ure 4�a� shows the equilibrium order parameters �S ,D , P ,C�
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b)

FIG. 4. �Color online� �a� Plots of the order parameters
�S ,D , P ,C� against the absolute temperature T for �=0.174 and
�=0.193. Color code: S �red�, D �green�, P �blue�, and C �black�.
�b� Measured order parameters as shown in Fig. 3 of �8�.
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predicted by theory as functions of the absolute temperature
T; for comparison, we show in Fig. 4�b� their experimental
counterparts measured for tetrapode A �8�.

In the uniaxial nematic phase there is reasonably good
agreement between the predicted and measured values of the
nonzero order parameters S and D. Thus, in both cases the
profiles for the major order parameter S are comparable in
magnitude and have the same strong temperature depen-
dence. Similarly, D, the molecular biaxial order parameter, is
observed and predicted to be small as well as essentially
independent of temperature. Within the biaxial nematic phase
the major order parameter S continues to grow with decreas-
ing temperature as predicted by the theory. In contrast, how-
ever, the observed behavior of the remaining order param-
eters D, P, and C deviates to different extents from that
predicted. The most striking of these is found for the major
biaxial order parameter C. Below about 308 K this is pre-
dicted to be the largest of the order parameters, but for the
tetrapode it is the smallest. Indeed at the lowest temperature
for which measurements are available its value is only about
0.09, whereas the predicted value at the same temperature is
1.4. The behavior of the other biaxial order parameter P also
deviates, but less dramatically, from that predicted. Thus ex-
perimentally P grows continuously from zero at the NB-NU
transition to about 0.25 at the lowest temperature. The pre-
dicted behavior is different, with a weak temperature depen-
dence and a value at the lowest temperature of just 0.11. The
deviation of the experimental behavior of the order param-
eter D from that given by theory is relatively minor. Thus it
is predicted to decrease very slightly with decreasing tem-
perature in the biaxial nematic phase and to have a value of
about 0.11. Experimentally D is observed to increase more
rapidly with decreasing temperature and to reach a value of
0.13 at the lowest temperature. However, we should note that
careful examination of the predicted behavior of D does re-
veal a slight increase on entering the biaxial nematic phase,
but this is far smaller than the increase shown by the experi-
mental data. In summary, the behavior of S in both nematic
phases is in good agreement with theory and so, to a lesser
extent, is that of D. In contrast C is observed to be signifi-
cantly smaller than predicted, while the behavior of P devi-
ates, but to a lesser extent, from the theoretical predictions.

That among the biaxial scalar order parameters C always
prevails over P we have no formal proof as yet. A numerical
exploration has been performed for all points �� ,�� coinci-
dent with the nodes of the grid determined below the triple
line in the essential triangle of Fig. 3 by the isoratio lines and
the lines with equal SNU-I. For all these explorations, C was
found to prevail over P, qualitatively in the same way as in
Fig. 4�a�.

IV. DISCUSSION

Within the molecular field theory of thermotropic biaxial
nematic liquid crystals governed by the generalized quadru-
polar potential of mean torque in Eq. �2�, we have computed
the ratio 
 of the biaxial-to-uniaxial and uniaxial-to-isotropic
transition temperatures. We found that 
 is almost indepen-
dent of the parameter �, and we interpreted this as a quanti-

tative indication that the term in � is the dominant biaxial
interaction. However, a close comparison between this
theory and the experimental data for the order parameters of
tetrapode A in �8� showed a degree of disagreement.

Different reasons could explain such a disagreement,
among which are the theoretical techniques and model em-
ployed to extract the order parameter profiles from the pri-
mary experimental data. Indeed the determination of the pri-
mary data in �8� is in itself a remarkable achievement, still
unequaled in other experimental explorations of thermotro-
pic biaxial nematics. Of course, another reason for the dis-
agreement could rest with the theory; however we do not
believe that this is the case. First, the generalized quadrupo-
lar potential of mean torque developed in the theory is com-
pletely consistent with that obtained from a variational
analysis using the four second-rank orientational order pa-
rameters and excluding higher-rank order parameters. Thus,
although fourth-rank tensors could be included in the poten-
tial of mean torque, it seems unlikely that they would have
any significant influence on the general behavior of the pre-
dicted order parameters. Second, computer simulations of a
relatively realistic model of biaxial particles based on an ex-
tension of the Gay-Berne �GB� potential �28� have produced
orientational order parameters in good qualitative agreement
with the molecular-field theory. In Fig. 5 we compare the
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FIG. 5. �Color online� Order parameters �S ,D , P ,C� obtained in
�28� for biaxial GB particles compared with the predictions of the
theory based on the generalized quadrupolar potential of mean
torque in Eq. �2�. The point characterizing this biaxial GB interac-
tion on the �� ,�� plane occurs for �=�GB=0.134 and
�=�GB=0.172; it lies along the isoratio line for 
=
GB=0.906.
Here the temperature has been scaled arbitrarily so as to place the
nematic-to-isotropic transition at T=320 K as in Fig. 4. In this tem-
perature scale, the smectic-to-biaxial transition observed in �28�
would occur at T=275 K. The color code is the same as in Fig. 4,
and simulation data are represented through different symbols ac-
cording to the legend.
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data obtained in �28� for biaxial GB particles with the pre-
dictions of the theory illustrated here.3 Again, the parameters
�GB and �GB describing the biaxial GB interaction through
the generalized quadrupolar potential of mean torque in Eq.
�2� were determined by locating along the isoratio line for

GB=0.906, the point corresponding to the value of S for the
uniaxial-to-isotropic transition, SNU-I=0.33, reported in �28�.
Thus, the minor order parameters D and P are indeed small
and weakly temperature dependent, whereas the major order

parameters S and C are both found to be large and to vary
significantly with temperature.

At present, we are not in a position to resolve the apparent
inconsistency between theory and experiment described in
Sec. III; however, we believe that this problem certainly mer-
its further consideration at both theoretical and experimental
levels.
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