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We demonstrate, using kinetic Monte Carlo simulations of submonolayer epitaxial growth, that long jumps
and reversible aggregation have a major impact on the evolution of island morphologies. Long jumps are
responsible for a supra-Arrhenius behavior of the effective diffusion coefficient as the attachment and detach-
ment kinetics give rise to a bimodal island size distribution that depends on temperature and long jump extent
limits. As the islands density increases with temperature, the average size of stable islands reaches a maximum
before decreasing. We have also observed that the diffusion coefficient cannot be used alone to predict the
evolution of island sizes and morphologies, the relative rate of each process having a major importance. Our
theoretical developments are of direct relevance for materials systems such as Au, Pd, Ag, Cu, Ni, H/Si,
H/W(110), Co/Ru, and Co/Ru(S), that are known for exhibiting a compensation effect that cannot be con-

tained within experimental uncertainties.
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I. INTRODUCTION

According to the transition state theory (TST), the rate of
activation of a diffusion event follows an Arrhenius behavior
in the harmonic approximation [1]. That is, if the activation
energy is E, the rate is

= Foe_E/kBT,

where I'j is the attempt frequency or prefactor, 7 is the tem-
perature, and kj is the Boltzmann constant.

In 1995, Boisvert et al. [2] have shown with an
embedded-atom-method molecular-dynamics study that the
compensation law or the Meyer-Neldel rule (MNR) could
describe self-diffusion rates on Au, Pd, Ag, Cu, and Ni. This
rule states that the diffusion rate of an event with an activa-
tion energy E; writes

= Fi,O(E[)E_Ei/kBT, "
with the prefactor I'; ; depending on the activation energy as
T;0(E;) = Tope“i¥sTio)”, (2)

Iy is the constant part of the prefactor, ¢ is a constant rang-
ing between 1/2 and 1 that depends on the nature of the
fundamental excitations [3], and T is the isokinetic tem-
perature at which all diffusion events should have an identi-
cal rate.

According to the multiple excitation entropy (MEE)
model [4], two conditions must be fulfilled to ensure that the
MNR applies. That is, the activation energy must be large
with respect to the (i) thermal and (ii) elementary excitation
energies. Since kpT,, is of the order of the elementary exci-
tation energies [4], we can write both conditions as E;
>kpT and E;>kgT;,,. The impacts of this law should be
more clearly observed in systems at temperatures near 7Tig,.
Indeed, as the temperature increases, the rate of high activa-
tion energy processes increases much more rapidly than that
for low energy processes. At high temperature near T, the
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high energy processes, such as the correlated long jumps in
epitaxial crystal growth, significantly contribute to the total
rate of processes. This behavior might considerably affect the
surface topography.

Many approaches are possible for understanding and pre-
dicting the long jumps phenomenon. Jacobsen et al. [5] de-
veloped a transition path theory to determine the path of long
jumps between second nearest neighbors. They used
molecular-dynamics to determine that the prefactor is a func-
tion of the temperature (proportional to VT in one dimen-
sional diffusion). Montalenti and Ferrando [6] linked long
jumps to the potential energy surface and could explain the
important differences in the behavior of long jumps observed
between (110) surfaces of Cu, Ag, and Au although the acti-
vation energies of single hops do not show a large variation
between the three surfaces. Long jumps can also be linked to
surface friction because adatoms exchange energy with the
surface. When the friction per unit mass 7 is small enough,
long jumps are more likely. Ferrando et al. established what
vibrational frequencies and activation energy conditions are
required to allow significant long jumps [7]. Assuming a
Brownian motion, Chen and Ying [8] solved the equation of
movement for an atom subject to friction and reacting to
stochastic forces (the Langevin equation) and determined the
probability of long jumps for a given friction coefficient,
assuming that kzT is much lower than the potential barrier
E,.

Since long jumps have been shown to have non-negligible
probabilities on several surfaces [9—11], their contribution
must be considered. For Ag and Au (100) and (111) surfaces,
Boisvert and Lewis [12] have shown, using molecular-
dynamics simulations within an embedded-atom approach,
that correlated long jumps contribute to increase the diffu-
sion coefficient, which then no longer exhibits an Arrhenius
behavior. Within a 1D analysis, they find that the diffusion
coefficient for long jumps of any extent € for a (100) surface
is
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where B=E,/kyT, with E,, the diffusion energy barrier. DéEI
is the 1D diffusion coefficient on the (100) surface when
only random walk, that is, between nearest neighbors (NNs),
is considered. The diffusion coefficient can be found with the
Einstein equation

2
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where (R,_,(¢)?) is the mean square displacement of an ada-
tom making a single hop after a time ¢, and v is the maxi-
mum number of in-plane NNs [e.g., four for a simple cubic
(100) surface]. While the 1D analysis gives some insight on
the overall trends, a 2D treatment needs to be considered to
completely describe the impact of long jumps on the evolu-
tion of island sizes and morphologies during growth. In ad-
dition to a greater contribution of long jumps to the total
process rates near the isokinetic temperature, the detachment
of adatoms, which is less likely to occur at low temperature,
can become sufficiently important near Ty, to cause a revers-
ible aggregation. Rate equations and kinetic Monte Carlo
(KMC) models have been used to study such a regime
[13,14]. Using a KMC model, Ratsch er al. [13] reproduce
experimental results for Au/Ru(0001) and Ni/Ni(100). They
observe an increasing density of islands, which is more pre-
cisely related to a larger number of small islands.

For simplicity purposes, the analysis performed to de-
scribe the evolution of island sizes and morphologies from
experimental or simulated crystal growth data is frequently
based on the following assumptions: aggregation is irrevers-
ible, diffusion coefficient follows an Arrhenius behavior, the
attempt frequency of a diffusion event is constant for every
process, and the rate of long jumps is so low with respect to
the single hop rate that they can be completely neglected.
While such assumptions might be relevant for growth at a
low temperature, a much different behavior might be ob-
served at high temperatures where the relative difference be-
tween the rates of the various processes decrease. This is
even more important when the MNR is taken into account.

The present paper focuses on the impact of high energy
processes—that may be enhanced by the MNR—on island
sizes and morphologies. Our main goal is not to support a
universal application of the MNR, but to concentrate on sur-
faces which have shown compensation effects, such as ho-
moepitaxy on Au, Pd, Ag, Cu, and Ni surfaces [2]. Similarly,
the growth of Co on Ru(0001) is a system in which the
important lateral interactions between adsorbed atoms [16]
can lead to important compensation effects [17]. Another ex-
ample concerns the growth of Co on a vicinal sulfided Ru
surface [18], where the diffusion preexponential factor along
terraces is more than two orders of magnitude higher than
that over the steps while the activation energy of the latter is
approximately twice that of the former. Adsorption of H on
Si [19] and isotopes of H on W(110) [20] also reveals com-
pensation effects.

Although it has been shown that other compensation ef-
fects can occur with the number of atoms involved in con-
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certed atomic processes [21], we concentrate our work on
single atomic motions (single atom diffusion) for simplicity.

We show that when the MNR applies, (i) the supra-
Arrhenius behavior predicted for the diffusion coefficient is
amplified, and (ii) a bimodal island size distribution is en-
hanced at high temperatures because of the reversible aggre-
gation regime.

II. MODEL

To observe the impact of high activation energy processes
when the temperature increases, we allow long jump events
and detachment in addition to free diffusion, edge diffusion,
and diffusion across steps. The relative energy of each pro-
cess is determined using a simple bond counting model. This
allows one to obtain general equations for long jump prob-
abilities and the diffusion coefficient. To observe their indi-
vidual impact, the MNR, long jumps, and detachment events
can be tuned off separately.

A. Long jumps

During the last decade, it has been theoretically [8,12] and
experimentally [22] shown that long jumps have an activa-
tion energy that increases linearly, at least in some cases,
with the length of the jump. Since we consider long jumps as
a combination of single hopping events, the activation en-
ergy should increase with the total jump path length. Our
model thus forbids backward hops (as part of long jumps)
because they require one to define an additional energy due
to their longer path. This phenomenon should therefore be
negligible with respect to straightforward jumps.

We then introduce the notion of extent, which is equiva-
lent to the path length when backward hops are forbidden.
While the length of a jump is the distance between the start-
ing and arrival points, the extent of the jump is the minimal
number of single hops required to reach the arrival point. On
a Cartesian grid within the solid-on-solid (SOS) approxima-
tion where the end point is located at coordinates (Ax,Ay)
from the starting point, the extent is €=|Ax|+|Ay|.

While the starting and arrival points are connected by a
single path for single hops, many paths are possible for long
jumps. This path multiplicity leads to a different arrival prob-
ability for each accessible site. If we note p; the probability
of a jump of extent i following a single path, the global
probability pattern for long jumps with an extent limit €,
[23] of four atomic units is illustrated in Fig. 1. For example,
in Fig. 1, the dotted arrows correspond to three different
paths connecting the same starting and arrival points. Each
of these long jump paths have a probability p; and the fotal
probability for this long jump is 3p; (the single path prob-
ability multiplied by the number of different paths). Our
model includes such an additional entropic contribution,
which is not in contradiction with the MEE model [4].

Owing to their dependence on surface friction, Chen et al.
conclude that indirect long jumps experience more friction
and are less likely to occur than direct jumps [24], the former
being retrapped more easily. That is, performing a long jump
with [Ax|,]Ay| <€ should be less favorable than a jump with
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FIG. 1. Jump probabilities pattern for a single adatom in the
center of the grid. Each square is an accessible site according to the
SOS model. Sites from light gray to black represent sites accessible
by jumps of 1, 2, 3, or 4 extent atomic units, respectively. p; is the
probability of a long jump of extent i for a single path. The arrows
show the path multiplicity for two different sites.

|Ax|=¢ or |Ay|=€. However, considering the path followed
by long jumps of Ir or W on W(110), Antczak and Ehrlich
observed experimentally that the rates of direct and indirect
jumps were of the same order [10]. Therefore, to keep our
model simple, we define long jumps as a combination of
single hops so that p, is the same for every path of a given
jump of extent €.

B. Bond counting

To simplify the theoretical treatment of different pro-
cesses, we use a simple bond counting model, assuming that
energy barriers vary with the number of in-plane NNs before
(n;) and after (ny) the diffusion event, which is a widely used
approach in bond counting KMC simulations [25]. The dif-
ference n;—n, allows one to favor attachment at high coordi-
nation sites (e.g., kinks compared to flat step edges) and to
prevent detachment from those sites. We further assume that
the energy barriers can be derived from the following equa-
tion:

AE=niE0+(nl-—nf)EA+ €E€+nTET+nlEES’ (3)

where ¢ is the extent of the jump in atomic units, n; is the
number of atomic height steps to climb from the initial to the
final state, and n| is the number of times a step of any height
an adatom has to descend to get to the final state. E, and E
favor the attachment of adatoms to the islands, E, is the
additional energy needed to increase the extent of the long
jump by one atomic unit, E; is the energy needed to climb
over a monolayer step, and Egg is the Ehrlich-Schwoebel
barrier [26,27]. A minimal energy of Ej,=E,—vE, is asso-
ciated to every event, where v is the maximum number of
NNs in the plane of the atom in the final state [the same
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value as the one used in Eq. (3)] and the energy of diffusion
between NNs is E;=E,. This model thus establishes a differ-
ence between diffusion on a terrace and diffusion across
steps. The attachment of adatoms to islands is favored with
respect to the detachment, and the probability of single hop-
ping events is larger than that for long jumps.

When Eq. (3) is applied integrally, the reversible aggrega-
tion (RA) mode is modeled. We define some other levels of
aggregation reversibility following two conditions with re-
spect to the bond counting model parameters. The first con-
dition is that if ni>n?, atoms cannot detach from islands.
The second condition is that if n[>n?, attached atoms can
only move along island edges. With those conditions, we
associate n?=1 with the first level of reversibility (RA1
mode) and n?=2 with the second (RA2 mode). In the third,
n?=3, which is the case for the reversible aggregation mode
(RA mode) on a Cartesian grid using the SOS approxima-
tion. When n)=0, the irreversible aggregation (IA) mode is
modeled. That is, for the IA mode, once an atom is attached
to an island, it cannot detach from it. For the RA1 (RA2)
mode, atoms surrounded by two (three) NNs or more cannot
detach from an island. In the RA mode, atoms must have
four NNs to be fixed. The critical island size is not fixed in
our study since we treat every island edge in a microstruc-
tural way by counting the in-plane NNs. Therefore, when-
ever the aggregation mode allows it, atoms can detach from
islands of every size.

C. Long jump probabilities and diffusion coefficient

Our bond counting model allows one to write equations
for (i) the relative probability of performing long jumps with
respect to single hopping events and (ii) the diffusion coef-
ficient of a single adatom on a flat surface.

For an adatom centered on the Cartesian grid shown in
Fig. 1, the probability P of presence at (Ax,Ay) after one
diffusion event is

(|Ax| +|Ay])!
Ax| 1] Ay[! D(|ax|+ay))

with p, [where €=(]Ax|+|Ay|)] being the probability of a
jump of extent € following a single path as defined earlier.

We can rewrite this equation noting that the right-hand-
side ratio, which corresponds to the path multiplicity, is a
binomial coefficient,

|Ax| +[Ay| ¢
P(ALA)’): |A.X| Pe= |Ax| Pe-

P(Ax,Ay) =

Therefore, the total probability for a long jump of extent €
to occur is

(-1
14
Pi=42 ( )P€=4(2(—1)Pe» (4)
Ax=0 |A)C|
where the fact that
P(Ax,Ay) = P(- Ax,— Ay) = P(Ay,— Ax) = P(- Ay,Ax)

was used to simplify the summation in Eq. (4).
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The normalization of Eq. (4) implies that

4 max

> Pe=1. (5)
(=1

We consider explicitly the MNR as expressed in Eq. (2)
and assume e=1, which represents elementary excitations
originating from electrons and optical phonons [3]. Other
values of & can easily be included in the model. For the bond

1
4'1_‘00(26"‘”4'1 - €max - 2)
2€max

<t ™) ATgp(2 [ €y — 11+ 1)
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counting model defined by Eq. (3), the energy barrier for
adatom diffusion over an extent € becomes AE,={E, and
the single path probability is

where a= k—é(lT— %) and k¢, is a proportionality constant
that depends on the jump extent limit. In this case, Eq. (5)
allows one to define kesemax as follows:

if a=0

if @=1In(2)

e“(1-e (1 -2e™)

and

b o (1-e(1-2e"7
b= 4F00€_a ’

if @>1n(2).

Since we restrict the simulation domain of « to be coher-
ent with the MEE model, the condition a>In(2) will always
be fulfilled and we will omit to recall this condition in the
following. We briefly mention that k., is discontinuous for
a=1In(2) because the total probability of performing long
jumps would increase with the extent of the jump.

We can now write an explicit equation for the total prob-
ability of performing a jump of extent € as follows:

2= De D1 =) (1 = 2¢79)

Po= , (6
7 = e max(2fmact [ ] — 9] = [1 = 2¢7%]) (©)
P (1-e")(1 =27
P(=(11m P,=(2-1) =y ) (7)

‘max

Equations (6) and (7) consider the MNR and the path
multiplicity of long jumps. However, if such parameters are
neglected, the results of Boisvert and Lewis [12], and of
Chen and Ying [8], which give P}=(ef-1)e ‘%, are repro-
duced.

When the extent limit €,,,, is finite, the cumulated prob-
ability &, o of neglected jumps with respect to an infinite
extent is an éxplicit function of €,,,, according to

€

max . (zemax"'l _ 1) _ (2€max+1 _ 2)€_a
Si=t,, =1 2 P{= ot :
=1 e

max max

(8)

The 5€S€max parameter allows one to determine the differ-
ence on the total number of jumps due to the finite extent of
jumps. For a>1n(2), &<, decreases with €.

[ 4Too(1 - e~ max[ 2 lmat ] — o=@} — {1 —2¢79])

elsewhere,

We show in Appendix A that Dy<¢_ ., the diffusion coef-
ficient for a finite jump extent limit, can be written with
respect to D,_;, the diffusion coefficient for single hopping
events (random walk). That is,

De=¢  =De=ive=, > )

with D,_;=a*Tje”®, and Ve=¢, @ scaling factor that de-
pends on €, and « [see Egs. (A1) and (A3)—(A7) in Ap-
pendix Al.

Since the diffusion coefficient is one of the dominant fac-
tors that determine the topography of a surface, we evaluate
the relative difference between finite and infinite long jump
extent limits

Vo<o = Ve=g

(10)
Vi<oo

We end this section by recalling that our model is two-
dimensional and considers a path multiplicity. In the absence
of a path multiplicity, the diffusion coefficient increases less
rapidly with increasing temperature. If only one dimensional
diffusion is allowed, we obtain the theoretical results of
Boisvert and Lewis [12] with the difference that our model
considers explicitly the MNR [28]. We emphasize the fact
that the results presented here are valid even for systems
where MNR does not apply, except that the evolution of the
diffusion coefficient would be closer to the Arrhenius behav-
ior.

This similitude between results considering or not the
MNR is due to the fact that there exist temperature and flux
conditions which give the same surface evolution in both
cases. Those conditions are derived in Appendix B. More
precisely, all surface evolutions of simulations that do not
consider the MNR are reproduced by simulations that do
consider the MNR, but the reverse is not true.
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III. METHODOLOGY AND COMPUTATIONAL DETAILS

The theoretical developments of Sec.II C and Appendix A
assume a single adatom diffusing on a flat surface. To evalu-
ate the validity of those developments when many adatoms
and islands are present on the surface, we use the kinetic
Monte Carlo method (KMC) as formulated by the Bortz,
Kalos, and Lebowitz (BKL) model [30]. The KMC code al-
lows to simulate the evolution of simple cubic (100) surfaces
using the SOS approximation.

In KMC, events are considered as Poisson processes.
Therefore, the average time between two successive events is

(At)=1/R(1), (11)

where R(t)=[F(t)abL.L,+=T";] is the total rate of possible
events on the surface at a given time. F(f) is the uniform
adatom flux (in 1/m?s) on the surface, L, X L, are the SOS
grid dimensions, and a and b are the surface atomic units for
a Cartesian grid. I'; values are the rates of all possible pro-
cesses on the surface at a given time. Two uniform random
number generators are used in our KMC simulations: one
integer [31] to choose the location of a deposition event and
one real from a Mersenne Twister algorithm [32] to choose
the event to perform. The former has a 6r<<2.3 X 107! res-
olution.

Our simulations were done for a simple cubic (100) sur-
face (b=a) with a global flux of Fa?=0.1 ML/s and periodic
boundary conditions. Simulations were stopped at a coverage
of #=0.2 ML (total simulation time of #,,;= 6/ Fab=2 s). The
size of the simulation grid was L, X L,=250X250. We also
make use of normalized coordinates in the simulation by
setting a=1.

In Sec. II C, we have derived a set of equations for the
diffusion coefficient of a single adatom on a flat surface. In
the KMC simulations, more than one adatom is diffusing
simultaneously and the application of the Einstein equation
is not straightforward. In order to evaluate an effective diffu-
sion coefficient in the presence of many atoms, we perform a
linear regression on adatoms following

ER(ti)zti
i
- v 2
i

D’ (12)

where #; and R(1;)? are, respectively, the diffusion time and
the square distance of diffusion before the attachment of ada-
tom i. The prime symbol is used to distinguish the effective
diffusion coefficient from the theoretical one.

The parameters of the preceding equation are collected as
follows. When an adatom is created (by deposition or by
detachment from an island), its original position and the
simulation time are recorded. Just before the attachment to
an island, the total distance of diffusion and the correspond-
ing simulation time are recorded. Therefore, only the contri-
bution of adatoms that attach to an island edge or nucleate is
compiled to find the effective diffusion coefficient.

While Eq. (12) allows one to find a good approximation
of the real diffusion coefficient, some discrepancies appear in
many situations. Among others, let us mention the compact-
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ness and average size of islands, the time the simulation time
step takes to stabilize from the beginning of the simulation,
the total number of diffusion events, and the average number
of steps an adatom takes to attach to an island or to nucleate.
We emphasize on one case relevant to our results. When
many islands or adatoms are present on the surface, adatoms
that diffuse many times before attaching to an island or
nucleating are on average nearer to their starting point than
adatoms diffusing on a flat surface since most of those that
diffused farther are already part of islands and do not con-
tribute to the effective diffusion coefficient anymore. This
results in an effective diffusion coefficient lower than the
theoretical diffusion coefficient. Conversely, if most of ada-
toms that contribute to the effective diffusion coefficient dif-
fuse few before attaching, the effective diffusion coefficient
will come nearer to the theoretical diffusion coefficient.

In our KMC simulations, desorption, cluster diffusion,
and concerted multiatomic events are not allowed. When an
adatom arrives on the surface, it sticks to the arrival point.
An adatom surrounded by four in-plane NN is considered as
immobile, and no overhangs are allowed. Process rates are
computed according to the bond counting model of Eq. (3)
with one of the previously defined aggregation modes, the
MNR, when considered, as described by Egs. (1) and (2)
with e=1, and the long jump model and path multiplicity as
described by Eq. (4) and Fig. 1. The numerical parameters of
the bond counting model are taken as E;=0.2eV, E,
=03 eV, E;=Egs=0.2 €V, and E,=0.05 eV, which are typi-
cal experimental activation energies for metals
[11,15,33-35]. That is, we are modeling metal homoepitaxy
for simplicity reasons, although heteroepitaxy might lead to a
lower surface friction needed for frequent long jumps. For
this reason, we show in Appendix B that the activation ener-
gies can be shifted without changing the global trends.

In order to compare simulations that apply the MNR with
others that do not, we need to fix a simulation parameter
(other than the flux and the total coverage) that will be the
same in every simulation. Since the most frequent process in
the MNR simulations we performed is the free diffusion one
(n;j=ny=n;=n,=0 and £=1), we gave an equivalent prefactor
to this process in all simulations. That is, for a same simula-
tion temperature, the rate of the free diffusion process will
always be the same whether the MNR applies or not. When
the MNR does not apply, the prefactor in Eq. (1) does not
depend on the activation energy and the common prefactor
of all processes is therefore I'y=I"ye E¢/* 8 iso,

We set ['o=10% s™! to cover many orders of magnitude in
the range of prefactors when the MNR applies, as can be
observed in many systems [4]. Moreover, T, is fixed to
348.13 K. We recall the conditions that warrant that the
MNR applies according to the MEE model: the activation
energies are much larger than (i) kzT;,, and (ii) kzT. More-
over, the MNR often fails above Tj, [4] so that we set T
< T, To fulfill those conditions, the highest simulation tem-
perature is fixed to 7,,,,=280 K. This also ensures that the
isokinetic temperature is near the experimental range as fre-
quently observed [4].

We draw the reader’s attention to the fact that the value of
T, is somewhat arbitrary since few data are available in the
literature. Moreover, our simulations are set for E;/kzT
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TABLE I. Difference between finite and infinite long jump extent limits (€,,,,) for the total number of
jumps (5€Semax)and the diffusion coefficient (Y(sgmax). These values are derived from Egs. (8) and (10).

T=250 K T=265 K T=274 K T=280 K
5€S€max Yesemax 5€S€max Yesfmax 5€S€max st(max 5€S€max stfmax
Cmax (%) (%) (%) (%) (%) (%) (%) (%)
1 5.84 9.56 12.65 20.19 19.16 29.84 2478 37.74
2 0.27 113 1.27 4.86 2.95 10.31 4.98 16.12
3 0.01 0.09 0.12 0.83 0.42 2.66 0.93 5.35
4 0.00 0.01 0.01 0.12 0.06 0.58 0.17 1.51
5 0.00 0.00 0.00 0.01 0.01 0.1 0.03 0.39

=E kgl =124, while long jumps and other concerted
motions should be non-negligible for E;/kzT=<4 [29]. How-
ever, as shown in Appendix B, our results can be transposed
to almost any Ty, value without losing global trends. That is,
the temperature values we used are not absolute and should
always be considered relatively to T,. For instance, Appen-
dix B shows that multiplying T}, by 10 results in values of
E,/kgT ranging from 3.4 to 4.9 that give the same surface
morphology as those with E;/kzT=12.4.

A complete KMC treatment would require a simulation of
jump extents up to infinity. However, such a treatment is far
from being computationally realistic. A cutoff must be made
in the long jump extent limit. To do so, we recall that the
highest simulated temperature is 7=280 K. This allows us to
give in Table I the relative difference between finite and
infinite long jump extent limits on the number of jumps and
the diffusion coefficient according to Egs. (8) and (10). We
clearly see that considering only single hops can lead to a
significant underestimate of the overall diffusion coefficient,
especially at higher temperatures. Table I also reveals that
using a jump extent limit of four atomic units is sufficient to
ensure that the total number of jumps and the overall diffu-
sion coefficient are within 1.5% of their saturation values for
an infinite extent limit for the temperatures considered in this
study. We therefore limit the jump extent to four atomic units
in our simulations.

IV. RESULTS

Throughout this section, we present island size distribu-
tions and average island sizes in the submonolayer regime to

0.8
2 0.6
D T .
w044

£0.2

IN
0.0

FIG. 2. Island size distributions for simulations with €, =1 in
the TA mode and €,,,,=4 in the RA mode. Data associated to tem-
peratures of 250, 265, 274, and 280 K are shown. The data sets are
averages of up to 100 simulations. The theoretical curve of Amar
and Family [36] for the IA mode is shown as a solid line. A broken
vertical line indicates the average value of the distribution
(s/{s)=1). The MNR is not considered.

evaluate the impact of the aggregation mode, the long jumps,
and the MNR. We do not make use of scaling laws of the
form

s F . E(i)/(i+2)kgT
Ny~ 0 D e ,

where n,y is the density of islands, i is the critical size of
islands, and E_(i) is the cohesion energy of islands of size i,
because such laws are relevant only if one of the two follow-
ing conditions are fulfilled. First, the temperature is held con-

stant, so that
F\ii+2)
nad -~ (B) ’

or second, the cohesive energy E (i) is known so that

F i/(i+2)
P (_) oED/(i+2kgT
W\ p '

None of those conditions are fulfilled here and i is not fixed
in our study, so we rely on the previously mentioned analysis
methods.

A. Simulations without consideration of the MNR

We begin by comparing two sets of simulations that do
not include the MNR. Figures 2 and 3 show the island size
distributions (n,(s)?/ @ as a function of s/(s), where n, is the
density of islands of size s and (s) is the average island size)
and the evolution of the average island size with temperature
in the IA mode with €,,,,=1 and in the RA mode with €,
=4. All results of Fig. 2 are well described by the theoretical

38
36 émax =1 T
34 gmax =4 T

32+ -+

=30+ © 4
281 1
26—+ -+
24 | | | | |

250 260 270 280

FIG. 3. Average size of islands for simulations with €, =1 in
the TA mode and ¢, ,=4 in the RA mode. The MNR is not
considered.

max
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RA1

FIG. 4. Typical surface mor-
phologies for various aggregation
modes and €,=1. All islands
with s<(s) are colored in black
while others are illustrated in gray.

RA2

Only a portion of size 75X 75 of
the original 250X 250 simulated
grid is illustrated. The MNR is
considered.

curve (full line) of Amar and Family [36], developed for the
IA mode.

Since the island size distributions and average island size
are all superimposed in Figs. 2 and 3, no matter the aggre-
gation mode or the extent limit, the detachment and long
jump processes play no significant role on the shapes of the
islands. This is due to the fact that detachment and long jump
processes have low rates of less than 0.3 s™! since the pref-
actor was fixed to a value of I'j=2.203 X 10° s™! to be co-
herent with simulations that consider the MNR (Sec. IV B).
Hence, for the temperature range  considered,
max(D€S4/D€=1)=max(v€mxs4)=1.000 02, where we apply
Egs. (9) and (A1) with Ty, — .

Therefore, we will apply the MNR for the rest of the
paper, although it should always be kept in mind that simple
relations involving temperatures and fluxes can be used to
obtain similar results to those presented here even when the
MNR does not apply (see Appendix B).

B. Simulations with consideration of the MNR
1. Impact of the aggregation mode

We now focus on the impact of aggregation for simula-
tions that consider the MNR with €., =1. We obtain the
typical surfaces shown in Fig. 4, where the black color is
associated to islands with s<<(s) (including adatoms), and
the gray color is associated to other larger islands. For a
given mode, we clearly see that the size of gray islands in-
creases with temperature. While no visual distinction can be

seen between the largest black islands and the smallest gray
ones in the IA mode, this distinction becomes clearly appar-
ent for the other modes from 7=265 K. Indeed, increasing
the temperature contributes to decreasing the size of the
black islands while the gray islands increase in size. This
trend is a clear signature of a bimodal island distribution
which is enhanced when passing from one aggregation mode
to the other (in the following order: IA, RA1, RA2, and RA).
In order to quantify this bimodal behavior, Figs. 5 and 6
show the associated island size distributions and the average
island size.

It is important to note that even if the specific representa-
tion of the bimodal distribution of Fig. 5 concentrates on the
large islands, the distribution is fundamentally centered at
s/{s)=1 since

> sn(s)/0
=
> n(s)40

The theoretical island size distribution of the IA model of
Amar and Family [36] is illustrated by a solid line in Fig. 11
to highlight the impact of the aggregation mode on the island
size distribution. While this model can describe relatively
well the distributions of all modes at 7=250 K and of the A
mode at any other temperature, it completely fails to describe
the data points for Figs. 5(b)-5(d) in the RA1, RA2, and RA
modes. For an increasing temperature (from (b) to (d)), the
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FIG. 5. Island size distributions for the four different aggrega-
tion modes (IA, RA1, RA2, and RA) for temperatures of (a) 250,
(b) 265, (c) 274, and (d) 280 K. The data sets are averages of up to
2800 simulations. The theoretical curve of Amar and Family [36]
for the IA mode is shown as a solid line. A broken vertical line
indicates the average value of the distribution (s/{s)=1). The MNR
is considered.

size distributions associated with the different aggregation
modes broaden, and become progressively separated from
each other. This clearly shows that for those aggregation re-
gimes, two growth modes are present, one for small islands
and a second one for large islands.

Figure 6 emphasizes the bimodal island size distribution.
Indeed, while the average size of islands increases with tem-
perature for the IA mode, it decreases at a high temperature
for every other mode. This tendency is enhanced when pass-
ing from the RA1 to the RA2 and then to the RA mode. On

FIG. 6. (a) Average size of islands and (b) most frequent size of
large islands for the IA, RA1, RA2, and RA modes. The MNR is
considered.

PHYSICAL REVIEW E 78, 021604 (2008)

10000

1 (541)

1000+

/
4

D

40 42 4‘4 4‘6 4‘8 50 52 54
1/kpT (eV™h)

100 f f f

FIG. 7. Effective diffusion coefficient for the different aggrega-
tion modes when the MNR is considered. The data associated with
RA1, RA2, and RA modes are essentially superimposed. The dotted
line corresponds to the theoretical diffusion coefficient (D,
=a’Tye™®) and the two other full lines are fits of the equation
D}_,=Aa’T e (see the text for more details).

the other hand, the most frequent size of large islands [37]
(Smoa) increases monotonically with temperature for any
mode.

The number, the size, and the shape of islands vary with
temperature, in a way that differs significantly from one ag-
gregation mode to the other. For instance, the island edges in
Fig. 4 pass from rough to nearly flat and rough again when
going from the TA to the RA1 modes, and then to the RA2
mode.

We computed the effective diffusion coefficient given by
Eq. (12) and compared it with the theoretical diffusion coef-
ficient (Dy_;=a’Tyye™®), valid for single adatoms on a flat
surface. We show in Fig. 7 results for all the aggregation
modes (circle symbols). The dotted line is the theoretical
diffusion coefficient and the full lines are found by fitting A
in the equation In D;_;=In(Aa’T"y))— @ with the least mean
square method. Only two fitted lines are visible on Fig. 7
since all data points of RA1, RA2, and RA modes are essen-
tially superimposed. While the Arrhenius behavior of the ef-
fective diffusion coefficient is quite clear when we compare
the dotted line with data sets, we note some discrepancies
between data sets and fitted lines. Indeed, for the IA mode,
the effective diffusion coefficient tends to lie lower than the
fitted line as the temperature increases, whereas we observe
the opposite behavior for all other modes. For the IA mode,
the adatoms that remain near their starting point of diffusion
contribute to lower D;_, and this phenomenon gets more
important as the temperature increases. For all other modes,
the high number of adatoms newly detached from an island
that can reattach in few steps compensate the effect observed
for the IA mode. As the temperature increases, the number of
adatoms increases. This explains why the effective diffusion
coefficient lies higher than the fitted lines for the RA1, RA2,
and RA modes.

2. Impact of long jumps

Table I shows that even when long jumps appear negli-
gible with respect to single hop (5€S€maxparameter), the im-
pact on the diffusion coefficient can be significant
(Y= gmaxparameter). Indeed, since a long straightforward
jump of extent € travels a distance that can only be achieved
by the relatively rare case when ¢ single successive hops all
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I
280

FIG. 8. Average size of islands in the IA mode for long jump
extent limits from 1 to 4. The MNR is considered.

occur in the forward direction, its contribution on the diffu-
sion coefficient is significant. Therefore, Ygsgmaxgives a bet-
ter indication than 5gsgmaxon the impact of long jumps on
surface morphologies.

When the MNR applies and long jumps are possible in the
IA mode, the island size distributions are superimposed, and
are relatively well described by the theoretical curves of
Amar and Family [36]. The average island size (Fig. 8) in-
creases with the temperature and the long jump extent limit.
At T=250 K, the average island sizes are almost equal for
every long jump extent limit. This is consistent with Table I,
where we see that, at 7=250 K, increasing the long jump
extent limit induces only small changes on an already low
Y= ¢, At higher temperatures, the variations on Y= ¢, for
various long jump extent limits are more important. This is
responsible for the differences in the average island sizes at a
given temperature on Fig. 8. We see that for the highest
simulated temperature (7=280 K), €,,.x=4 is largely suffi-
cient to describe the surface topography evolution since the
contribution of long jumps has an asymptotic behavior with
the jump extent limit. This confirms the choice of the cutoff
performed in the long jump extent limit in our KMC simu-
lations.

While the island size distributions are all superimposed as
is the case for simulations that do not apply the MNR, the
average size changes significantly when the long jump extent
limit increases. This is due to the increase in the diffusion
coefficient. We computed the effective diffusion coefficient
for various jump extent limits and normalized it by D;_, as
given in Fig. 7. This normalization allows one to compare
directly Dy, /Dy_y with ve=,  (full lines) and clearly
identifies suprmaafArrhenius behaviors for the effective diffu-
sion coefficients as predicted by Egs. (9) and (A1). This re-
sult emphasizes the fact that long jumps become more im-
portant with increasing the temperature. This trend is also
supported by the values reported in Table I. The factor re-
sponsible for the data points lying lower than Ve=e, in Fig.
7 is responsible for the equivalent behavior in Fig. 9.

3. Combined impact of the reversible aggregation mode and
long jumps

From now on, only the RA mode will be simulated since
we want to study the impact of aggregation reversibility
combined to long jumps. Up to now, results indicate that the
global impact of the aggregation reversibility is to create a
bimodal island size distribution that spreads out as the tem-
perature increases. Moreover, the diffusion coefficient in-
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FIG. 9. Relative effective diffusion coefficient with respect to
the value found when €,,=1 for the IA mode when the MNR is
considered. The prime symbol on Deq is used to distinguish
the effective diffusion coefficient from the theoretical one. The
fitted lines show Ve=¢, - AN effective diffusion coefficient with
an Arrhenius behavior would have a constant value of
Diy IDj=1.

creases with long jumps and results in a larger average island
size. We therefore want to investigate what happens when
aggregation reversibility and long jumps are considered in a
same KMC simulation.

When we study the impact on the effective diffusion co-
efficient, we obtain essentially the same results as shown in
Fig. 9. In fact, the agreement of theoretical and experimental
curves is even better when long jumps and aggregation re-
versibility are combined. This is due to the increased number
of detached adatoms that only need few diffusion steps to
reattach. The contribution of those adatoms counterbalances
the adatoms that stay near their starting point of diffusion
and gives an effective diffusion coefficient near the predic-
tion of Egs. (9) and (Al). This clearly indicates that for
€ max > 1, the diffusion coefficient has a supra-Arrhenius be-
havior.

We now concentrate on the temperature range for which
the contribution of long jumps to the diffusion coefficient is
the most important. Typical surface morphologies are pre-
sented in Fig. 10 where the black color is associated to is-
lands with s <(s) (including adatoms), and gray is associated
to other larger islands. Starting from 7=250 K and ¢,,,=1,
we clearly see that black islands get smaller while gray is-
lands get larger as the temperature or the jump extent limits
increase. Again, this is characteristic of a bimodal distribu-
tion and the island size distributions of Fig. 11 can be used to
quantify this behavior. The vertical broken line in Fig. 11
identifies the average point for all distributions (s/{s)) and
illustrates how the distributions spread out. We can compare
the results obtained in Fig. 5 in which € ,,=1 and the ag-
gregation mode was variable with results presented in Fig.
11. Indeed, the broadest distributions in Fig. 5 are the nar-
rowest distributions in Fig. 11. We draw the reader’s atten-
tion to the fact that the curves associated to €,,,=1 in Fig.
11 are identical to the RA curves of Fig. 5 although the data
are presented on a different scale in order to focus on the
large island mode. We show in Appendix C that synergistic
effects are observed between the reversible aggregation
mode and long jumps.

Figure 12 presents a close-up of the island size distribu-
tion for €,,,, =4 in order to emphasize the growth of small
islands (note the relative scale used in Figs. 11 and 12). As
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FIG. 10. Typical surface mor-

phologies obtained for several ex-
tent limits (€,,,,=1,2,3,4) at T
=250, 265, 274, and 280 K. All
islands with s<({s) are black
while the others are gray. For clar-
ity, only a portion (75 X 75) of the
original 250X 250 simulated grid
is shown. The MNR is considered.

the temperature increases, the small island density increases
(see Fig. 12). This results in a decrease of the average size of
stable islands (s.) (such that s =2) [38] (see Fig. 13). Indeed,
this figure reveals that the average size of stable islands has a
nonmonotonically increasing behavior with increasing tem-
peratures. In Fig. 13, (s.) is used instead of (s) because the
latter is so much influenced by the adatom density that val-
ues are nearly superimposed for all jump extent limits. We
mention briefly that we do not present the s,,,4 values be-
cause their precise numerical determination requires one to
average a very large number of simulations, and because
they reproduce essentially the results of Fig. 6(b). That is, the
most frequent size of large islands increases with tempera-
ture.

We see in Figs. 11 and 13 that for simulations that com-
bine long jumps and the RA mode, the cutoff performed on
the jump extent limit (that is, €,,,,, =4) is justified because of
the observed asymptotic behavior.

Since the jump extent limit can have a major impact on
the island size distribution, we have tried to compensate such
an effect by modifying the temperature. Hence, we have
fixed the effective diffusion coefficient to its maximal value
when €, =1, that is, D’ =8300a?/s. To obtain this constant
diffusion coefficient, temperatures of 280.0 K, 274.5 K,
273.1 K, and 272.8 K were used for jump extent limits going
from 1 to 4, respectively. The resulting evolution of the av-
erage island size, and adatom and island densities are pre-
sented in Fig. 14, and the associated surface morphologies
are shown in Fig. 15. First, Fig. 14 shows significant density
shifts within the different jump extent limits considered, an

asymptotical convergence being observed for large €,,,, val-
ues. We see that the data points for €,,,,=4 essentially repro-
duce the results obtained with €,,,=3. For a fixed value of
the equivalent diffusion coefficient, the following features
are observed as the jump extent limit decreases.

(1) The coalescence is retarded because the attachment
and detachment kinetics favors the formation of new small
islands from coalesced islands, and this compensates at least
partially the coalescence [Fig. 14(a)].

(2) The adatom density increases more rapidly and stays
higher, which indicates the importance of the attachment and
detachment kinetics as the temperature increases [Fig. 14(a)].

(3) The island densities (for s=2) increase more rapidly
and remain higher, which is due to the important adatom
density that can form small islands [Fig. 14(a)].

(4) The average size of stable islands, (s.), is lower be-
cause of the higher island density [Fig. 14(b)].

(5) Each branch of the bimodal distribution becomes nar-
rower (Fig. 15); that is, small islands become larger and large
islands become smaller.

These results are due to the fact that the diffusion coeffi-
cient itself is insufficient to explain the surface morphologies
observed. Indeed, the temperature is really important because
a small change of temperature can induce a major change in
the relative rate of the different events, in particular, detach-
ment events here.

V. DISCUSSION

In this section, we concentrate on three main conse-
quences of considering a contribution from long jumps or the
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FIG. 11. Island size distribution for €,,,, =4 and temperatures of
(a) 250 K, (b) 265 K, (c) 274 K, and (d) 280 K. These figures were
scaled to emphasize the large island mode. The scaling factor is
indicated in parentheses at the left of each subplot. A broken verti-
cal line indicates the average value of the distribution (s/{(s)=1). A
maximum of 7000 simulations were performed for each tempera-
ture and the figures show the average distribution. The theoretical
curve of Amar and Family [36] for the IA mode is only shown in (a)
because it does not apply well to other data sets. The MNR is
considered.

reversible aggregation mode, whether the MNR applies or
not: (i) a supra-Arrhenius diffusion coefficient, (ii) a bimodal
island size distribution, and (iii) the corresponding island
morphologies.

A. Supra-Arrhenius diffusion coefficient

We observed in Fig. 9 that the supra-Arrhenius trend pre-
dicted for the diffusion coefficient of single adatoms diffus-

FIG. 12. Close-up on the small island mode [size below 0.25(s)]
of the island size distribution for € ,,, =4. The fitted curves are only
guidelines. The MNR is considered.
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FIG. 13. Average stable island size evolution with temperature
for €, =4. Only islands with s=2 are considered. The MNR is
considered.

ing on a flat surface can also describe rather well the sub-
monolayer growth regime.

To verify this, we used the effective diffusion coefficient
as described by Eq. (12). While this parameter depends on
many factors such as the compactness and average size of
islands, the time the simulation time step takes to stabilize
from the beginning of the simulation, the total number of
diffusion events, and the average number of steps an adatom
takes to attach to an island or to nucleate, it still provides a
reliable way to compare the diffusion coefficient in simula-
tions with similar temperatures and adatom densities. Thus,
even though the effective diffusion coefficient in Fig. 7 does

0.011
0.010+ 1
0.009-} 1
0.008
0.007 1
0.006
0.005

Nisl, Nad

FIG. 14. Evolution (as a function of ¢, the simulation time) of
adatom density [circles in (a)], island density [triangles in (a)], and
average size of stable islands with s =2 [(b)] for a fixed value of the
effective diffusion coefficient (D'=8300a>/s, the highest value ob-
tained when €,,,,=1). The data points are averaged over 30 simu-
lations for each set. The MNR is considered.
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FIG. 15. Typical surface morphologies for a constant diffusion
coefficient D=8300a%/s. All islands with s<<{s) are colored in
black while others are illustrated in gray. Only a portion of size
75 X775 of the original 250 X 250 simulated grid is illustrated. The
MNR is considered.

not exactly have an Arrhenius behavior, the value of
Dégmax/Dé=1 is almost identical to the theoretical vo=
values in Fig. 9.

According to our model, a supra-Arrhenius diffusion co-
efficient behavior should be observed every time long jumps
are present, at least in the submonolayer regime. This effect
is even stronger when the MNR is taken into account. As
indicated previously, the Arrhenius form of the rate of acti-
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FIG. 16. [(a)-(c)] Weight of detachment events (Nnﬁ,,f) with
respect to the total number of events (N,) throughout the whole
simulation for RA1, RA2, and RA modes. (d) Ratio between the
number of free diffusion events (n;=n;=n;=n =0) of RAl, RA2,
and RA modes, and the IA mode.
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vation of the diffusion process is derived from an harmonic
approximation from the TST. Thus other phenomena such as
multiatomic concerted motions or anharmonic effects may
also modify the Arrhenius behavior, especially at high tem-
perature [39]. Thermal expansion [34] and finite-barrier cor-
rections [40] have also been shown to affect the rate of acti-
vation of diffusion events and thus the Arrhenius behavior of
the diffusion coefficient. Finally, memory effects, related ei-
ther to an insufficient time of relaxation of the surface during
the diffusion of particles or to the influence of other particles
on the surface might also result in deviation from the Arrhen-
ius behavior [29].

Nevertheless, few experimental evidences clearly show
such supra-Arrhenius behavior. This could simply be related
to the fact that experimental uncertainties are large enough
for an Arrhenius relation to correctly describe the data points
even though the best fit would be a supra-Arrhenius behav-
ior. This is supported by the theoretical results of Boisvert
and Lewis [12] that predict a supra-Arrhenius behavior as
well. Such a behavior in the evolution of the diffusion coef-
ficient with temperature leads to a faster increase in the size
of large islands than when an Arrhenius behavior is present.
The layer-by-layer transition should then appear at a lower
temperature.

At its most (T=280 K), the supra-Arrhenius behavior we
predict is 61% higher than what a model that forbids long
jump would give since Dy—o,/Dy-1=Vp~-.=1.61. To achieve
a 61% uncertainty on Dy_;, E, or I'y, should have uncertain-
ties of 19% or 61%, respectively. Even though those uncer-
tainties are relatively small compared to some experimental
uncertainties, the theoretical supra-Arrhenius behavior re-
mains. We also believe that understanding the impact of long
jumps on the diffusion coefficient is important enough to
discard multiatomic concerted events, anharmonic effects,
thermal expansion, finite-barrier corrections, and memory ef-
fects that could affect the Arrhenius behavior.

B. Bimodal island size distribution

In the IA mode or when detachment events are not fre-
quent (as we saw in Fig. 2 with the conditions we used when
the MNR does not apply), the island size distribution is
clearly unimodal as predicted by the theoretical model of
Amar and Family [36]. However, as soon as the detachment
events become important, the island size distribution be-
comes bimodal. Still, at a temperature of 250 K, the distinc-
tion between the size of islands above and below the average
size is difficult at any aggregation mode (as we saw in Fig. 4)
because one of the island size distribution modes is almost
centered on s=(s) (see Fig. 5). The distribution spreads out
as atoms surrounded by a greater number of NN are allowed
to detach and the temperature increases. When atoms are
allowed to detach, they can leave low coordination sites to
attach to higher ones. This explains why the most frequent
size of large islands in Fig. 6(b) increases when going from
the IA to the RA2 modes. For the RA mode, we obtain a s,,,4
lower than that for the RA2 mode. However, we do not know
if this result is due to the imprecision in the technique used
to find the most frequent size of large islands. The average
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island size is a more precise value and has a somewhat dif-
ferent behavior. Indeed, as soon as atoms can detach from
islands, (s) is no longer monotonically increasing with tem-
perature as shown in Fig. 6(a). Moreover, as atoms can de-
tach from higher coordination sites, the average island size
decreases more rapidly with increasing temperatures.

To understand the behavior of s,,,4 and (s), we show, in
Figs. 16(a)-16(c), the relative number of detachment events
(N, 0, where the subscript indicates that events such that the
initial and final number of in-plane NNs are n; and 0 are
performed) with respect to the total number of events
throughout a simulation (N,,). In the RA mode, n; can range
from 1 to 3 for detachment events. For the RA1 (RA2) mode,
this value can only take the value 1 (can range from 1 to 2),
and for the IA mode, no detachment events are possible. In
Fig. 16(d), we show the number of diffusion events of all
aggregation modes with respect to the number of diffusion
events of the TA mode.

We see that even N|_/N,, increases when going from
the IA to the RA mode. Indeed, adatoms surrounded by more
than one in-plane NN that detach from an island potentially
leave more atoms surrounded by only one in-plane NN in the
island edge, which explains the increase in N;_ /Ny, In-
creasing Enanﬁo/ N, 1s responsible for an increase of the
adatom density, and therefore the island density. The global
impact is to lower the average island size.

Moreover, as a greater number of atoms detach, the num-
ber of diffusion events can increase significantly. For in-
stance, the number of diffusion events at 7=280 K is more
than 30 (12) times more important in the RA and RA2 modes
(RA1 mode) than it is in the IA mode [see Fig. 16(d)]. This
enhanced number of random walk steps allows adatoms to
find more stable sites and explains the increased value of
Smod S adatoms can detach from higher coordination sites.

Similarly, when long jumps are allowed, the diffusion co-
efficient increases and the size of large islands is expected to
increase. This results in a broader island size distribution (see
Fig. 11), where the broadest distribution in each of Figs.
5(a)-5(d) subfigures is exactly the same as the narrowest in
Figs. 11(a)-11(d) subfigures. As the temperature increases,
the detachment of adatoms from islands increases and the
small island mode becomes more important (see Fig. 12). In
this sense, the small island mode emerges from the large
island one. Thus, the island size distributions spread and be-
come strongly bimodal [see Fig. 11(b)-11(d) scaled to em-
phasize the large island mode]. We show in Appendix C that
synergistic effects are found between the RA mode and long
jumps. Above 250 K, the most important mode, illustrated in
Fig. 12, is centered on small islands even though small is-
lands form and fragment frequently enough to be considered
metastable. Moreover, while the mode associated with larger
islands is the smallest, most of the atoms are in large islands.
Nevertheless, some temperatures should exist at which this
small islands mode would be the less representative of the
distribution, and where coarsening would be very important.

We now need to compare our finding of a bimodal island
size distribution with the distributions reported in the litera-
ture. Bimodal distributions have already been claimed in the
presence of (i) cluster diffusion [41], (ii) adatom exchange
with a surface atom [42], and (iii) thermodynamic equilib-
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rium in a strained system [43]. The (i) bimodal distribution
obtained by Kuipers and Palmer [41] is due to the increase in
the island mobility with respect to adatom mobility. This
higher mobility lowers the number of islands, and small is-
lands (including adatoms) are less likely to find a larger one
to attach to. The bimodal distribution (ii) observed by Zang-
will and Kaxiras [42] arises from the increase in stable nuclei
after an exchange process between an adatom and a substrate
atom. Finally, the distribution (iii) was obtained by Meixner
et al. [43] from a KMC simulation of self-organized growth
in strained systems. In their simulations, the system was al-
lowed to reach a thermodynamic equilibrium after deposition
where kinetic processes are dominating. During initial ki-
netic steps, the island size increases with temperature be-
cause a high temperature favors the diffusion and the ada-
toms reach existing islands much more frequently than they
nucleate into new islands. Then, when the system evolves to
reach a thermodynamic equilibrium, entropy favors the is-
land sizes that decrease with the temperature. An additional
study, considering reversible aggregation [13], resulted in a
bimodal distribution. Although the authors did not mention
explicitly a bimodal island size distribution, they admitted
that the data associated to small islands did not collapse on
the island size distribution scaling curve. Their distribution is
much narrower than those shown in Fig. 11. The set of acti-
vation energies and the low temperature (compared to those
activation energies) used in their study is sufficient to explain
this difference. In every way, the bimodal distributions we
obtained are much more pronounced than the distributions
described above.

We want to emphasize that while we do not explicitly
allow the surface to reach a thermodynamic equilibrium in
our simulations, an analysis of a given process event rate at
high temperature reveals that the probability of performing
an event associated to a process with (n,«,n_f,f,nT,nQ is
practically the same as performing one of a process with
(ng,n;, € ,ny,n)) during the whole simulation. That is, the
surface arranges rapidly in such a way that the number of
possible events for a given process multiplied by its rate is
approximately equal to the number events of the reverse pro-
cess times the rate of this process. Thus, at high temperature
(around 250 K and above) our system reaches a quasiequi-
librium state during growth. However, unlike the results of
Meixner et al. [43], our island size distribution spreads out
with increasing temperature. This fundamental difference is
due to the causes of the bimodal island size distribution.
Indeed, the KMC results of Meixner et al. are due to a com-
petition between cohesion and strained energy while our re-
sults are due to a competition between attachment and de-
tachment of adatoms. This quasiequilibrium state leads to a
coarsening process that is almost inexistent. On average, ada-
toms attach to large islands at the same rate they detach and
the same is true for small islands.

C. Island morphology

The attachment and detachment kinetics have a strong
impact on the morphologies of islands in the bimodal distri-
bution. Indeed, the edge roughness varies a lot from one
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aggregation mode to the other (see Fig. 4). In the RA1 mode,
when only atoms surrounded by one in-plane NN can detach,
the island edges are almost flat, even at 280 K. Thus, the
edge diffusion and the detachment of low coordination num-
ber atoms both contribute to decrease the roughness of is-
lands. In the IA mode, as soon as an adatom reaches an
island, it sticks to it and only edge diffusion can contribute to
flatten the island edges. In the RA2 mode, the edge diffusion
contributes to lower the island edge roughness, but the de-
tachment of atoms surrounded by two in-plane NNs counter-
balances this behavior. The island edge roughness is even
more important in the RA mode since more atoms can detach
from islands. Hence, the RA1 mode leads naturally to the
flattest island edges. Conversely, the TA at low temperature
and the RA at high temperature lead to the roughest island
edges.

Similarly, the island edge roughness increases with tem-
perature since the rate of detachment events increases (see
Figs. 4 and 10). This process is, however, stabilized by the
large number of attachment sites and the attachment and de-
tachment equilibrium that occurs. When the detachment from
small islands is important, the attachment cannot compensate
and the islands are generally broken apart to form small
metastable islands. This is a direct consequence of the bond
counting model for which the detachment of an atom be-
comes more difficult when the number of in-plane NN is
large. The atoms that are the most likely to detach from
islands are those with only one in-plane NN. Indeed, we
observe that when detachment is possible, the islands con-
taining atoms attached by only one edge are less stable than
others. This can be confirmed by oscillations in the island
size distributions of small islands which are not monotoni-
cally decreasing.

We showed in Figs. 14 and 15 that the diffusion coeffi-
cient alone is insufficient to predict the surface and island
morphologies. This is due to the fact that the events associ-
ated with each process are performed with a different relative
probability at different temperatures, independently of the
diffusion coefficient. Indeed, the diffusion coefficient is a
function of the process rates but not the reverse. As the long
jump extent limit increases, the diffusion coefficient in-
creases but the detachment frequency remains essentially
constant. Hence, as €, increases, islands become larger
while maintaining a similar edge roughness. In brief, the
island size depends on the temperature and ¢,,,,, while the
island roughness is mostly a function of the temperature. As
revealed in Fig. 13 for stable islands, the observed bimodal
distribution is responsible for a nonmonotonic increase of the
average island size. This evolution presents a maximum near
the point where the increasing diffusion coefficient is still
able to compensate for the detachment of adatoms from is-
land edges.

VI. SUMMARY AND CONCLUDING REMARKS

We have considered the impact of long jumps and revers-
ible aggregation on a simple cubic (100) surface growth
when process rates are subject to compensation effects. We
compared our theoretical results for a single adatom diffus-
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ing on a flat surface with KMC results for more complex
surfaces involving many adatoms and islands in the sub-
monolayer regime. We found that there is a great agreement
between our theoretical and KMC results for the supra-
Arrhenius behavior of the diffusion coefficient. Our KMC
simulations also show a clear bimodal island size distribution
at high temperatures or long jump extent limits. In this bi-
modal distribution, the most important mode is the small
island’s one, while most of the atoms are in large islands.
This is due to the competition between the increasing diffu-
sion coefficient that favors large islands and the raising rate
of detachment of atoms from islands, which favors small
islands. At the same time, adatom attachment and detach-
ment processes are responsible, as the temperature increases,
for the large island’s edge roughness and the metastability of
small islands.

We have restricted our studies to the effect of long jumps
and detachment processes on island sizes and morphology
evolutions. However, other diffusion events with a high ac-
tivation energy could have an important impact on island
evolution, especially when the MNR applies. For instance,
cluster and vacancy diffusion should be considered. Indeed,
studying the surface Cu(100) with ab initio static relaxation
methods and semiempirical molecular-dynamics simulations,
Boisvert and Lewis have found that some compensation ef-
fects were observed for adatoms, dimers, and vacancy self-
diffusion, and that the same MNR parameters (I'yy and T},)
could describe the compensation observed for all those pro-
cesses [44]. In the same way, compensation effects have been
observed in many more cases of cluster diffusion [45,46].
Moreover, many surfaces for which Boisvert and Lewis have
shown clear compensation effects [2] also present cluster dif-
fusion barriers of the same order of magnitude as adatom
diffusion energies [47] that could benefit from additional
compensation effects related to the number of atoms in-
volved in the concerted motion [21].

While our results were obtained for an explicit application
of the MNR, we emphasize the fact that a supra-Arrhenius
diffusion coefficient behavior and a bimodal distribution
with the island morphologies presented earlier are to be seen
for every surface with significant long jump rates and attach-
ment and detachment kinetics, whether compensation effects
are observed or not.
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APPENDIX A: DIFFUSION COEFFICIENT FOR LONG
JUMPS

To compute the statistical distance that an adatom can
travel with respect to time, we start by assuming that the
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time step between each of its diffusion events is constant on
a flat isotropic surface with zero flux. We can thus write the
diffusion coefficient with respect to the number of diffusion
events. After N diffusion steps, a single adatom located at the
grid point (i, /) with respect to the starting point of diffusion
(0,0) will statistically be at a squared distance
o L
2 .. . .
By (1)=42 pe S (m )(ﬂ + 2+ m 4 [0=m])
=1

£ m=0
=a* (P + )+ ve=g,
with
B a’e(1 —e (1 =2¢9)
P = (1 = [ 2Omat {1 — e~} — {1 - 2¢7}])
(a2 4 0) =262

X E ea(

=1

(A1)

We note ny=ny(i,j) the probability of an adatom to be
located at a grid point (i,j) after N diffusion events. Natu-
rally, if we sum over all sites, Ei,jnN(i, j)=1. Therefore, the
average squared distance of diffusion after N time steps is

2 nyd* (i + )
(R(N)) = =

E ny
ij

= > nyd (2 + %)
i.j

_ E &P ..

= < Nn-y esemﬂx(ld)
ij

=2 nyi ([ + ] + Veq, )
i

=2 (i + ) + Ve=e, .
i,

= D nyd (P + 2 + 2vp<e
i

R
= 2 noa’(i> + j%) +NV€$€maX.
ij

(A2)

The previous sums are made over all i and j grid points of
the surface. However, because many sites are out of range
after a finite number of steps, many ny(i,j) are equal to zero.
Since we began this demonstration by assuming that a single
adatom was located at the grid point (0,0),
3 jno(i,j)a*(i*+j%)=0. Consequently, we find, by recur-
rence,

(R*(N))=Nv=¢ .

Thus, (R*(N))/N is constant if the temperature and the
jump extent limit €, are fixed. We give below some results
for Eq. (Al).

(A3)

2
Vo1 =a,
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valid only if @ > In(2). (A7)

We briefly mention that if we take the limit &« — — in the
equations above, except Eq. (A7) which does not allow this
condition, we obtain Veg, o that is, when only jumps of the
maximum extent are allowed.

From the Einstein equation, we can find the diffusion co-
efficient, remembering that the jump extent is not strictly
equivalent to the jump length,

R(1)?
D{/ngax:hm< () > = lim

t—ow Ul N—»

Nvp<¢ Ve<¢
max — max , (AS)
vNT vT

where 7 is the uniform time between each diffusion step. In
our KMC simulations, diffusion events are modeled as Pois-
son processes. Therefore, the diffusion time step is not con-
stant. Substituting the average time step (Af) to 7in Eq. (A8)
we can have an approximation of the diffusion coefficient for
which the precision will increase with the number N of steps
considered.

As established in Eq. (11), we can find the diffusion time
step, noting that R(r)=2,I"; since there is no flux. That is,
(An)=1/ZT; and

§Fi:4€§x§(€.

=1 j=0 \J

)F( _ 4L goe™ (1 = Sp<¢ ) '
(1-2e9(1=e)
This gives
(1-2e(1-e9
T 4l (1 - Si=e, )

(Ar) (A9)

If we focus on the number of neighbors considered by one
diffusion event v, we note that while only four neighbors are
accessible by a single hopping event on a cubic simple (100)
surface, this number increases when long jumps are consid-
ered. Indeed, the nearest neighbor concept must be redefined
since more than four sites are accessible. We must then con-
sider all accessible neighbors, and weigh their contribution
with respect to the standard four nearest neighbors. Thus, we
can write

(A10)

emax -1 € 1
P
vafmaX = 42 _ez ( j )

¢=1 P1j=0 \J  Toe (A’

Substituting the values of (Afr) and v¢=, in Eq. (A8),
the diffusion coefficient becomes
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5/(s)

FIG. 17. Corrected island size distributions in the RA mode at
T=280 K when the MNR applies. The correction was made by
replacing the small island density by a linearly projected density
from the left part of the distribution (thick lines in the figure). The
theoretical curve of Amar and Family [36] for the IA mode is shown
by a full light line. A broken vertical line indicates the average
value of the distribution (s/{s)=1).

_ —a
Desemax - Fooe V€5€max-

We can write the diffusion coefficient for a jump extent
limit with respect to the diffusion coefficient for single hop-
ping events

Do<¢, =De=1ve=,,

where v, can be found from Eq. (A1). When there is no

limit to the extent of a jump, the diffusion coefficient writes
[28]

l—e =63+ 86‘4‘)‘)

Dy.ow=D,_
= “( [1—e 1 -2

APPENDIX B: EQUIVALENCE BETWEEN SIMULATIONS
WITH DIFFERENT INITIAL PARAMETERS

In order to compare different simulations with the ones
we performed and because the parameters used in Egs. (1)
and (2) are not well documented, we establish in this section
conditions to obtain equivalent simulations. We begin by
writing the rates of processes in two ways.

T, = T ypebiks o EiksT
and
’ ’ ! ’
Fl/ — F(/)OgEi/kBTisoe_Ei lkgT ,

where the prime symbol is used to distinguish the two dif-
ferent simulations and we fixed e=¢’=1 for two main rea-
sons. (i) The assumption e=1 is the most frequent in the
literature, and (ii) equivalence conditions between simula-
tions are by far more restrictive when & # 1.

We demonstrate below that there exist conditions of tem-
peratures and fluxes such that the nature and the order of the
performed events would be exactly the same in both simula-
tions if the same set of random numbers were used. If this is
the case, the surface evolves identically in both cases even
though the simulation time might be different, and we clas-
sify the simulations as “equivalent.”

For simulations to be equivalent, the relative rates must be
the same in both cases. Thus, I';/T';=I"//T’ for any i and j.

PHYSICAL REVIEW E 78, 021604 (2008)

TABLE 1I. Equivalent temperatures for simulations with T},
=10Tis()'

T (K) 7' (K)
250 707
265 841
274 939
280 1014

This can only be achieved if E{ - E;=w(E;~E;) and yields a
relation between T and T as follows:

UT=1/Tygo= o(1/T' = 1T}, (B1)
where w is a constant.

We then adjust the simulation time to allow the same
number of events during the whole simulation in both cases.
This number of events is the total simulation time divided by
the average time between events. According to Eq. (11), we
can write

o (A = 1, /{AL"),

O(F'abL,L,+ 2, T})
= . (B2
F F' (B2)

O(FabL,L,+ >, T)

When we use temperatures according to Eq. (B1), we can
derive the relationship between F and F' from Eq. (B2) as
follows:

FIT = F'/F(')Oe(“’Ei‘Ei’)/kB(”Ti’so_”T,), for any i. (B3)

We then analyze three precise cases: equivalence (i) be-
tween simulations with and without consideration of the
MNR, (ii) between simulations with different isokinetic tem-
peratures, and (iii) between simulations with proportional ac-
tivation energies. We emphasize the fact that our definition of
equivalence generally does not allow one to directly compare
the results which depend on the time of simulation because
this parameter is not the same from one simulation to the
other.

1. Equivalence between simulations with and without
consideration of the MNR

When the MNR is not considered, the isokinetic tempera-
ture is infinitely high, that is, T}, — . If the activation en-

TABLE 1III. Equivalent temperatures for simulations with E]
=1.5E; for any i of the bond counting model given by Eq. (3) and
parameters of Sec. III.

T (K) T' (K)
250 276
265 288
274 295
280 300
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ergies are the same for both simulations, we obtain the two
equivalence relations from Egs. (B1) and (B3).

UT=UT +1/Ty, (B4)

and

F/FO():F,/F(I)O. (BS)

Thus, simulations for which the MNR applies or not, are
equivalent when Eqs. (B4) and (B5) are verified. Equation
(B4) indicates that in order to achieve equivalence, 7’ must
rise much more rapidly than 7. Therefore, many simulations
which are not performed because the temperature is thought
to be near some phase transition could become accessible
when the MNR applies. In the rare case when the MNR is
still valid above Tj, the equivalence fails because 7" must
be negative.

With simulations that do not consider the MNR and use a
prefactor I'(,;=2.203 X 10° s as in Sec. IV A, we can obtain
equivalent surfaces to those shown in Sec. IV B using the
following parameters: F'a?=2203 ML/s, T'=887, 1110,
1287, and 1431 K (instead of Fa?=0.1 ML/s, T=250, 265,
274, and 280 K).

2. Equivalence between simulations with different isokinetic
temperatures

When the MNR applies in both simulations with the same
I'yo value and identical activation energies, Eqs. (B1) and
(B3) become

UT=1UT + 1T, — 1T,

180

(B6)
and
F=F".

In this particular case, equivalent simulations also share
an equivalent simulation time because I';=I"/ for any i.
Moreover, for expressions of the form ¢’ such as the ones
found in the diffusion coefficient equation, the global impact
of Eq. (B6) is only a shift by the constant value e?(!/Tiso=!/iso),
For instance, if we had used an isokinetic temperature of
Tl ,=10T;, (with T},=348.13 K as given in Sec. III), we
would have obtained the same values of & and vy, for the

temperatures listed in Table II.
3. Equivalence between simulations with proportional
activation energies

When the MNR applies in both simulations with the same
Iy value, the same isokinetic temperature and activation en-
ergies that respect a direct proportional relation (E; = wE; for
all i), Egs. (B1) and (B3) become

UT=w/T' +(1 - w)1/T,
and
F=F".

Again, in this case, equivalent simulations also share an
equivalent simulation time because I';=I"/ for any i. As an
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FIG. 18. Evolution of the average size of large islands normal-
ized with respect to the value obtained for ¢,,,,=1. The circles are
associated to the IA mode (in which case (s)=(s*) since there is
only one mode in the island size distribution) while the squares are
related to the RA mode results where we corrected the density of
small islands to discard an important effect due mostly to reversible
aggregation. The solid lines are guidelines to the eye. The MNR is
considered.

example, for activation energies 1.5 times those used in this
study [Sec. IIT and Eq. (3)], equivalent temperatures that give
the same a and Ve=g, values are listed in Table III.

APPENDIX C: SYNERGISTIC EFFECTS BETWEEN
REVERSIBLE AGGREGATION AND LONG JUMPS

Let us study a particular case to show that synergistic
effects are found between reversible aggregation and long
jumps. At 7=280 K in the RA mode when the MNR applies,
we have shown that we obtain a bimodal island size distri-
bution (see Fig. 11). The small island mode is mainly af-
fected by the RA mode since little variation is found when
the jump extent limit varies. Thus, we can eliminate an im-
portant part of the effect of the RA mode by making a linear
regression on the large island mode. We can perform this
task by retracting the small island mode and replacing it by a
linear projection of island density towards small densities as
shown in Fig. 17.

This procedure, while approximative, can give some in-
sight on the large island size distribution. In Fig. 17, (s) is
the average size of large islands found with the corrected
distribution. Since some atoms were eliminated through this
correction, the coverage € has been modified accordingly
(we note 6* this effective coverage). When €, passes from
1 to 4, 6* takes the following values (in ML): 0.187, 0.188,
0.188, and 0.188. We readily see that most of the adatoms are
found in the large island mode since §=0.2 ML.

We see, in Fig. 17, that the island size distributions for
€ max ranging from 1 to 4 are mostly superimposed and are
coherent with the model of Amar and Family [36]. If linearly
additive effects between the reversible aggregation and long
jumps are to be observed, we expect the corrected average
size of those new distributions ((s*)=(s)6/ 6*) to be mainly
affected by the jump extent limit. That is, we expect (s*) to
evolve as (s) evolves in the IA mode (see Fig. 8). Figure 18
compares those two evolutions (a normalization is made with
respect to the corrected average island size for €,,,=1).

We clearly see that increasing the jump extent limit from
1 to 4 implies an increase of 20% of the average island size
in the IA mode, while this increase is more than 56% in the
RA mode. Therefore, some synergistic effects happen be-
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tween the reversible aggregation and long jumps. We can
explain this by the fact that the larger diffusion coefficient
due to long jumps allows detached atoms to reach large is-
lands and increase their size. Because of the strong RA

PHYSICAL REVIEW E 78, 021604 (2008)

mode, other adatoms detach frequently enough from island
edge to compensate this attachment. Note that we observe
the same trend if we compare the evolution of the large is-
land modes instead of the large island correct average sizes.
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