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The coupling between mechanical and thermal properties due to thermal expansion complicates the problem
of measuring frequency-dependent thermoviscoelastic properties, in particular for highly viscous liquids. A
simplification arises if there is spherical symmetry where—as detailed in the present paper—the thermovis-
coelastic problem may be solved analytically in the inertia-free limit, i.e., the limit where the sample is much
smaller than the wavelength of sound waves at the frequencies of interest. As for the one-dimensional ther-
moviscoelastic problem �Christensen et al., Phys. Rev. E 75, 041502 �2007��, the solution is conveniently
formulated in terms of the so-called transfer matrix, which directly links to the boundary conditions that can be
experimentally controlled. Once the transfer matrix has been calculated, it is fairly easy to deduce the equations
describing various experimentally relevant special cases �boundary conditions that are adiabatic, isothermal,
isochoric, etc.�. In most situations the relevant frequency-dependent specific heat is the longitudinal specific
heat, a quantity that is in between the isochoric and isobaric frequency-dependent specific heats.
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I. INTRODUCTION

Linear thermoviscoelasticity is the well-established disci-
pline dealing with the irreversible thermodynamics of
slightly perturbed systems where mechanical and thermody-
namic degrees of freedom couple to each other �1–4�. For
glass-forming liquids cooled toward the calorimetric glass
transition, relaxation times become very long compared to
phonon times, approaching and eventually exceeding sec-
onds. For such “ultraviscous” liquids, not only the mechani-
cal moduli become complex and frequency dependent �5–7�,
but so do standard thermodynamic linear-response properties
like the specific heat or the thermal expansion coefficient
�8–26�.

Of the 12 basic complex, frequency-dependent thermody-
namic linear-response coefficients only three are independent
�see, e.g., Ref. �25� and its references�. If one assumes sto-
chastic dynamics, which is believed to be realistic for vis-
cous liquids on time scales much longer than phonon times,
in fact only two thermoviscoelastic response functions are
truly independent �1,8,27,28�. No reliable measurements of a
full set of �three� thermoviscoelastic response function ap-
pear to exist for any highly viscous liquid. Part of the reason
for this may be the traditional focus in physics on phenom-
ena on the molecular scale, but part of the problem most
likely also comes from the considerable challenges associ-
ated with reliably measuring the thermoviscoelastic response
functions. The problem is that the coupling between mechan-
ics and thermodynamics caused by thermal expansion is non-
trivial when the mechanical shear modulus is a significant
fraction of the bulk modulus �29�. This is true for solids in
general, as well as for highly viscous liquids at frequencies
of order the inverse relaxation time. For solids, however,
because the isobaric and isochoric specific heats are almost
identical, the problem is not serious. For ultraviscous liquids,
on the other hand, the problem cannot be ignored. For such
systems it was recently shown that the thermomechanical
coupling implies that conventional methods fail to measure
the isobaric, frequency-dependent specific heat �23�. This is

because truly isobaric conditions are difficult to establish ex-
perimentally due to the thermal expansion upon heating; in
most experiments attempting to measure the frequency-
dependent specific heat the stress tensor is not proportional
to the unit tensor �i.e., there is not hydrostatic conditions�,
and shear stresses relax on the very time scale that one
wishes to monitor.

The purpose of this paper is to establish the theoretical
framework for measuring a complete set of thermoviscoelas-
tic response functions utilizing spherical symmetry. The ther-
momechanical equations describing the coupling of mechan-
ics to thermodynamics have been well known for many years
�1,2�. We recently �with Olsen� presented the full analytic
solution of the one-dimensional inertia-free case, i.e., where
all motion is restricted to one direction and the wavelength
of sound waves at the relevant frequencies is much larger
than the sample size �23�. The reader is referred to that paper
as an introduction to the reasoning and techniques used in
the present paper. Below, the spherically symmetric inertia-
free case is treated, where the effective one-dimensional na-
ture again allows the problem to be solved analytically. The
solution is cumbersome, but once it has been arrived at a
number of experimentally relevant special cases are fairly
easy to work out.

The solution is formulated in terms of the so-called trans-
fer matrix �23,30� that links infinitesimal variations at the
boundaries for the following four quantities: entropy �or
equivalently heat� input, volume displacement, pressure
change, and temperature change. The transfer matrix—not to
be confused with the transfer matrix of statistical mechanical
models—is useful because it directly describes how the sys-
tem interacts with its surroundings. These interactions are
conveniently pictured and described via the energy bond
technique �31–34�. An energy bond is characterized by a
displacement variable and an effort variable, generalizing the
concepts of charge and voltage. The product of an effort and
a differential displacement variable is a generalized work
that gives the �free� energy transferred into the system from
its surroundings.
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In standard thermodynamics there are two energy bonds,
one thermal and �if the shear modulus is negligible� one
mechanical; see Fig. 1�a�. The thermal energy bond is char-
acterized by entropy S as the displacement variable and tem-
perature T as the effort variable. For the mechanical energy
bond the displacement is the volume V, and the effort is the
negative pressure −p. The time derivatives of displacement
variables define flow variables, signaled by arrows in Fig. 1.
The two energy bonds of Fig. 1�a� represent the fundamental
thermodynamic identity

dE = T dS − p dV . �1�

In linear irreversible thermodynamics, small perturbations in
temperature and pressure are linear functionals of the volume
and entropy flows, or vice versa. The temperature perturba-
tion dT=T−T0 is around a reference temperature T0, and the
pressure perturbation dp= p− p0 is around a reference pres-

sure p0. The supplied heat dQ is related to the externally
supplied entropy, dSext=dQ /T. When the volume V0 is so
small that temperature and pressure can be assumed homo-
geneous throughout the volume, the relaxation is described
in the time domain by memory kernels of the form

dV�t�/V0 = − �
−�

t

�T�t − t��dp�t�� + �
−�

t

�p�t − t��dT�t�� ,

�2�

dSext�t�/V0 = − �
−�

t

�p�t − t��dp�t�� + �
−�

t 1

T0
cp�t − t��dT�t�� ,

�3�

where �T is the isothermal compressibility, �p the isobaric
expansion coefficient, and cp the isobaric specific heat per
unit volume. Instead of Eq. �1� we now have

dE = T dSext − p dV = dT dSext − dp dV + T0dSext − p0dV

�4�

or

d�E − T0Sext + p0V� = dT dSext − dp dV . �5�

The function E−T0Sext+ p0V is the imparted free energy,
which is not a state function since dissipation in the system
degrades this energy: During a cyclic process one has

� d�E − T0Sext + p0V� = − T0� dSext = T0� , �6�

where � is the entropy production in the system. Note that
the entropy production is quadratic in the perturbations, im-
plying that entropy is conserved to first order �3�, a fact that
is utilized below.

It follows from the above that the generic conjugated vari-
ables for a small system that relaxes mechanically and ther-
mally with no shear forces are �dT ,dSext� and �−dp ,dV�.
From an experimental point of view, however, it is not con-
venient only to consider an infinitesimal volume V0. If one
wishes to study relaxation on a time scale �expt, the volume
V0 may only be considered small if the heat diffusion time �D
across the volume is much smaller than �expt. This is a re-
striction that can be coped with only by analyzing the influ-
ence of heat diffusion on the response—an important pur-
pose of this paper. A further complication arises when the
shear modulus becomes comparable to the bulk modulus,
which is the case in the relaxation region of viscous liquids.
In this case heat diffusion and mechanical stresses couple
nontrivially. To keep the discussion below as simple as pos-
sible, we look at the situation with highest symmetry, that of
a sphere of inner radius r1 and outer radius r2, posing the
question: What is the relation between the thermal and me-
chanical variables at the boundaries of the system? In order
to take the shear forces properly into account, it is shown
below that pressure must be replaced by the “radial pressure”
�pr,1 at r1 and �pr,2 at r2. �V1 is the volume swept by the
surface at r1 as a consequence of a radial small displacement
u�r1�. Correspondingly, �V2 is the volume swept at r2 �both

FIG. 1. Energy bond graphs �31–34�, a useful tool for modeling
linear thermoviscoelasticity. �a� The standard thermodynamic en-
ergy bonds, one thermal and one mechanical. In energy bond ter-
minology, the temperature and negative pressure, T and −p, are
so-called effort variables analogous to voltage, and the entropy flux

Ṡ=dS /dt and volume flux V̇=dV /dt are so-called flow variables
analogous to electrical current. In quasiequilibrium the product of
an effort variable and its flow variable is the energy flux into the
system from its surroundings; more generally it gives the flux of
free energy—in the sense of available work—into the system. �b�
Symbolic figure of the energy bonds of linear irreversible thermo-
dynamics for the spherically symmetric situation. For the thermal
energy bonds the efforts are the temperature variations �T1 and �T2

at radius r1 and r2, respectively, and the flows are the entropy fluxes

�Ṡ1 and −�Ṡ2 into the system �fluxes are in the positive radial di-
rection�. For the mechanical energy bonds the flows are the volume

fluxes −�V̇1 and �V̇2 into the system, respectively, whereas pressure
is now the “radial pressure,” �pr,1 and �pr,2, respectively, defined in
Eq. �44�. The four energy bonds define eight variables. As shown in
this paper, the fundamental physical equations provide four con-
straints among these eight variables. Thus there is a linear relation
between the four “outer” and the four “inner” energy bond vari-
ables. This relationship is expressed in terms of the 4�4 transfer
matrix calculated below that provides all information needed to
interpret any experimental situation characterized by specific
boundary conditions.
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in the positive radial direction�. The net volume change is
dV=−�V1+�V2. The temperature perturbations at the two
surfaces are denoted by �T1 and �T2, respectively, and the
entropy fluxes in the positive radial direction by �S1 and �S2,
respectively. The net entropy influx is dSext=�S1−�S2. Now
Eq. �5� becomes

d�E − T0Sext + p0V� = �T1�S1 − �T2�S2 + �pr,1�V1 − �pr,2�V2.

�7�

As illustrated in Fig. 1�b�, this gives rise to four energy
bonds, two referring to the outer radius r2 and two to the
inner radius r1.

The transfer matrix T�r2 ,r1� is by definition the 4�4 ma-
trix that links the �generally complex and frequency-
dependent, see below� infinitesimal variations of the four en-
ergy bond variables at radius r1 with the four energy bond
variables at radius r2. Switching notation such that �pr,1 is
denoted by �pr�r1�, etc., the transfer matrix is thus defined by

�
�pr�r2�
�T�r2�
�V�r2�
�S�r2�

� = T�r2,r1��
�pr�r1�
�T�r1�
�V�r1�
�S�r1�

� . �8�

The transfer matrix is related to the response matrix ��r2 ,r1�
that by definition links the four effort variables to the four
displacement variables:

�
�pr�r1�
�T�r1�
�pr�r2�
�T�r2�

� = ��r2,r1��
�V�r1�
�S�r1�

− �V�r2�
− �S�r2�

� . �9�

From the fluctuation-dissipation theorem the response matrix
is known to be symmetric, a fact that is explicitly confirmed
below.

In the next section fundamentals are summarized. In Sec.
III the full dynamic equations are formulated and brought
into dimensionless form by scaling with complex units. In
Sec. IV the equations are solved, and the transfer and re-
sponse matrices are calculated. In Sec. V several experimen-
tally relevant special cases are considered. Finally, Sec. VI
gives a brief discussion.

II. DEFINITIONS AND CONSTITUTIVE RELATIONS

The energy bond variables of standard thermodynamics
give rise to a number of dc �i.e., static� linear-response coef-
ficients as follows. If the variables of interest are those of the
two thermodynamic energy bonds of Fig. 1�a�, �T , p ,S ,V�,
there are altogether 24 thermodynamic coefficients of the
form ��a /�b�c with a, b, and c chosen among T, p, S, and V
�25,35,36�. These coefficients form 12 pairs that are trivially
related by inversion ���a /�b�c=1 / ��b /�a�c, etc.�. As is well
known, the 12 coefficients are not independent, but related
by Maxwell relations. This leaves the following eight basic
linear-response coefficients �where the specific heats here
and throughout the paper are per unit volume�:

Isochoric specific heat cV 	
T

V

 �S

�T
�

V

, �10�

Isobaric specific heat cp 	
T

V

 �S

�T
�

p

, �11�

Isothermal compressibility �T 	 −
1

V

 �V

�p
�

T

, �12�

Adiabatic compressibility �S 	 −
1

V

 �V

�p
�

S

, �13�

Isobaric expansion coefficient

�p 	
1

V

 �V

�T
�

p

= −
1

V

 �S

�p
�

T

, �14�

Adiabatic contraction coefficient

�S 	 −
1

V

 �V

�T
�

S

=
1

V

 �S

�p
�

V

, �15�

Isochoric pressure coefficient 	V 	 
 �p

�T
�

V

= 
 �S

�V
�

T

,

�16�

Adiabatic pressure coefficient 	S 	 
 �p

�T
�

S

= 
 �S

�V
�

p

.

�17�

Some well-known relations between the thermodynamic co-
efficients are summarized in the Appendix for reference,
where relations are simplified somewhat by letting the heat
capacities be represented by the related variables 
V

	 1
V � �S

�T �V and 
p	 1
V � �S

�T �p.
In systems with relaxing degrees of freedom the thermo-

dynamic coefficients generally become complex and fre-
quency dependent. Suppose, for instance, that the system is
subjected to an infinitesimal periodic pressure variation with
angular frequency � described as p�t�= p0+Re��p exp�st��,
where s= � i�, depending on convention �23�, is the so-
called Laplace frequency. The volume then varies periodi-
cally as V�t�=V0+Re��V exp�st��, where both �p and �V
are generally complex and frequency dependent. If this
takes place at constant temperature, the complex frequency-
dependent isothermal compressibility is defined via �T
	−�V / ��pV0�, where V0 is the average volume. According
to a basic theorem of linear irreversible thermodynamics,
the Maxwell relations among the dc linear-response quanti-
ties in Eqs. �14�–�17� translate into Onsager relations for the
frequency-dependent coefficients, which reflect time revers-
ibility. This is a special case of the so-called correspondence
principle �1,2,6�: Any �dc� thermodynamic relation or equa-
tion involving linear thermodynamic and/or mechanical
quantities applies unchanged when constitutive properties
are replaced by the corresponding complex, frequency-
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dependent quantities. These frequency domain functions are
related to the corresponding memory kernels like, e.g.,

�T�s� = s�
0

�

�T�t�e−stdt , �18�

where we adhere to the ordinary �sloppy� notation of physics
that it is to be read from the context whether �T refers to a
time or frequency domain function. In the following we stay
in the frequency domain, though.

Thermoviscoelasticity describes the coupling between
thermal and mechanical deviations from equilibrium. This
paper deals with the linear case that is well understood as
regards fundamentals. Linearity means that the system is as-
sumed to be infinitesimally close to equilibrium. Deviations
from equilibrium are quantified in terms of the infinitesimal
displacement field u=u�r , t�, temperature variation field
�T�r , t�=T�r , t�−T0, etc. In this approximation the radial
heat displacement is given by �Q�r�=�S�r� /T0; we switch to
Q simply because heat capacity traditionally is defined via
this quantity.

The isothermal bulk modulus KT �inverse isothermal com-
pressibility� is defined by

KT 	 − V
 �p

�V
�

T

=
1

�T
. �19�

If �i is the derivative with respect to the ith spatial coordinate
xi �where �x ,y ,z�= �x1 ,x2 ,x3�� and ui is the ith component of
the infinitesimal displacement vector u, the strain tensor 
��
=
ij is defined �3� by


ij =
�iuj + � jui

2
. �20�

The relative volume change is given by the trace of the strain
tensor:

�V

V
= tr�
��� = � · u . �21�

Denoting the stress tensor by ��� =�ij, the shear modulus G is
defined �3� as follows �the isothermal and adiabatic shear
moduli are always identical�:

�ij −
1

3
tr���� ��ij = 2G

ij −

1

3
tr�
����ij� . �22�

If there are both infinitesimal displacements and spatial tem-
perature variations, this is generalized into the so-called
Duhamel-Neumann relation �3,4� that is the following con-
stitutive relation linking mechanical and thermodynamic
properties:

�ij = KT tr�
����ij + 2G

ij −
1

3
tr�
����ij� − 	V�T�ij . �23�

For relaxing systems, KT, G, and 	V are complex and fre-
quency dependent, and for periodically varying boundary
conditions both strain and stress tensors are generally com-
plex. By the correspondence principle the Duhamel-
Neumann relation applies also for the frequency-dependent
case.

The isothermal longitudinal modulus MT is defined �3� by

MT = KT +
4

3
G . �24�

Similarly, the adiabatic longitudinal modulus MS is defined
by MS=KS+ �4 /3�G where KS=1 /�S is the adiabatic bulk
modulus. As shown in detail in Ref. �23� �but implicit al-
ready in Ref. �3��, a useful quantity for the description of
one-dimensional thermoviscoelasticity is the “longitudinal
specific heat” defined by

cl 	 cV + T0
	V

2

MT
. �25�

An important result of the present paper is that the longitu-
dinal specific heat also plays a significant role for the spheri-
cally symmetric case. Again, cl is frequency dependent for
relaxing systems. A useful identity �23� follows from Eqs.
�A1� and �A7�:

cl = cV
MS

MT
= cV

KS + 4
3G

KT + 4
3G

. �26�

From this one finds that cl may be interpreted as a generally
complex convex combination of cp and cV:

cl =
3KT

3KT + 4G
cp +

4G

3KT + 4G
cV. �27�

This shows that the longitudinal heat capacity is effectively
in between the isobaric and isochoric heat capacities. In anal-
ogy to the standard abbreviation

� 	
cp

cV
, �28�

we define �l, a quantity that is also generally complex and
frequency dependent, as follows �23�:

�l 	
cl

cV
. �29�

If the heat-current density is denoted by j, the heat conduc-
tivity � is defined via Fourier’s law,

j = − � � �T . �30�

The heat conductivity is generally assumed to be frequency
independent, an assumption that was recently confirmed
�37,38�. The solution below, however, applies also if � were
to depend on frequency.

III. THE COUPLED EQUATIONS FOR THE
TEMPERATURE AND DISPLACEMENT FIELDS

A. The frequency-independent case

As mentioned, entropy conservation always applies to
first order, a fact that in Ref. �3� is referred to as “the equa-
tion of continuity for heat.” In terms of the infinitesimal
displacement field u�r , t� and the infinitesimal temperature
field �T�r , t�, for a volume element dV at average mass den-
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sity �0, the basic thermoviscoelastic equations of motion re-
flecting entropy conservation and Newton’s second law
�0dV d2ui /dt2=dV� j� j�ij �2–4,23� are �utilizing Eq. �23��

�0
�2u

�t2 = MT � �� · u� − G � � �� � u� − 	V � �T

�31�

and

cV
��T

�t
+ T0	V

�

�t
�� · u� = ��2�T . �32�

We shall be concerned only with the inertia-free limit, i.e.,
the limit where the sample is much smaller than the wave-
length of sound waves at the frequencies of interest. In this
limit the acceleration term is negligible; thus

MT � �� · u� − G � � �� � u� − 	V � �T = 0 , �33�

cV
��T

�t
+ T0	V

�

�t
�� · u� = ��2�T . �34�

Before proceeding we note that the identity 	V=�pKT �Eq.
�A5�� implies that, if there is no thermal expansion upon
heating, then 	V=0. In this case the two equations decouple
and reduce to the ordinary elastic equation of motion in the
inertia-free limit and the heat-conduction equation, respec-
tively. Thus the coupling between mechanics and thermody-
namics arises only when the thermal expansion coefficient is
nonzero, as is indeed intuitively obvious.

The pressure variation �p is defined by �assuming here
and henceforth that the average stress tensor is zero�

�p = −
1

3
tr���� � . �35�

This definition applies also for nonhydrostatic conditions,
i.e., when ��� is not proportional to the unit tensor. When the
specific heat or the expansion coefficient is termed isobaric,
it refers to a situation where the trace of the stress tensor is
constant, not necessarily its individual diagonal components.
The relative volume change of Eq. �21� is related to changes
in pressure, �p, and temperature, �T, by the following equa-
tion �see, e.g., Ref. �23��:

� · u = −
1

KT
�p + �p�T . �36�

Using Eqs. �36� and �A1� one finds that under isobaric con-
ditions T0	V� ·u=T0	V�p�T= �cp−cV��T. Thus Eq. �34� be-
comes the standard heat-diffusion equation

��T

�t
= Dp�

2�T , �37�

where the heat-diffusion constant Dp involves the isobaric
specific heat Dp=� /cp. In general, isobaric conditions do not
apply and the full coupled system Eqs. �33� and �34� must be
solved.

If ��u=0, Eq. �33� simplifies considerably. This applies
for the spherically symmetric case, u=u�r�r̂, where Eq. �33�
reduces to

��MT � · u − 	V�T� = 0 . �38�

This is immediately integrated to

� · u =
	V

MT
�T + a1. �39�

Here a1 is an integration constant that is a function of time
determined by the boundary conditions. Substituting Eq. �39�
into Eq. �34� yields

cl
��T

�t
+ T0	V

�a1

�t
= ��2�T . �40�

B. The case of spherical symmetry and periodically varying
fields

We now assume that all fields depend only on radius r and
that their time dependence is harmonic, i.e., proportional to
exp�st� �s= � i��. Henceforth u and �T refer to the complex
frequency-dependent amplitudes of the infinitesimal radial
displacement and temperature fields, respectively.

With these assumptions, if differentiation with respect to r
is denoted by a prime, using the identity � ·u=r−2�r2u�� Eqs.
�39� and �40� become

r−2�r2u�� =
	V

MT
�T + a1 �41�

and

cls�T + T0	Vsa1 = �r−2�r2�T���. �42�

Throughout the paper it is important to remember that not
only are the field amplitudes u and �T generally complex
functions of s, but so are all constitutive properties like 	V,
MT, etc. For simplicity of notation, however, the frequency
dependence will usually not be explicitly indicated.

We need two further equations for two auxiliary fields.
One is the “radial pressure”

�pr 	 − �rr, �43�

i.e., the normal force per unit area in the negative radial
direction exerted on a spherical surface of radius r from the
outside. The radial pressure is generally different from the
pressure �p of Eq. �35�; the relation between the two follows
from the definition of the shear modulus Eq. �22�:

�pr = �p − 2G

rr −
1

3
� · u� . �44�

If G=0—in particular for any liquid at zero frequency—the
radial pressure equals the pressure. Since 
rr=u�, where 
rr is
the rrth component of the strain tensor in spherical coordi-
nates �3�, Eq. �44� and the Duhamel-Neumann relation Eq.
�23� imply
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�pr = − 
KT +
4

3
G�u� − 
KT −

2

3
G�2

r
u + KT�p�T . �45�

The other auxiliary field to be introduced is the time-
integrated heat-current density �q. Invoking Fourier’s law of
heat conduction Eq. �30�, we get

�q =
1

s
j = −

�

s
�T�. �46�

C. Scaling to dimensionless variables

The solution of the thermoviscoelastic equations in
spherical symmetry is extremely involved when expressed in
terms of the original variables. We solve the equations below
by proceeding in analogy to the solution of the one-
dimensional problem detailed in Ref. �23�, where consider-
able simplification was obtained by scaling with suitable
variables. One is free to scale by a characteristic length, time,
temperature, and mass, or other combinations of these four
fundamental dimensions. We choose pressure instead of
mass as the fourth fundamental dimension. There is no math-
ematical requirement that scaling variables must be real; in
the frequency domain they may well be complex and fre-
quency dependent.

The scaling units are chosen as follows. The unit of time
is the inverse complex Laplace frequency, s−1. The unit of
length is the �complex and frequency-dependent� heat-
diffusion length

lD 	
 �

cls
. �47�

It is occasionally convenient to use the �complex and
frequency-dependent� wave number k	1 / lD,

k =
cls

�
. �48�

The unit of temperature is the average temperature T0, and
the unit of pressure is the �complex and frequency-
dependent� isothermal bulk modulus KT. With these units we
define the following dimensionless variables:

t̃ 	 st , �49�

r̃ 	 r/lD, �50�

ũ 	 u/lD, �51�

�T̃ 	 �T/T0, �52�

�p̃r 	 �pr/KT, �53�

�q̃ 	 �q/�KTlD� , �54�

c̃ 	 T0cl/KT, �55�

g̃ 	 4G/�3KT� , �56�

�̃ 	 T0�p. �57�

It should once again be emphasized that all thermodynamic
and mechanical constitutive quantities are generally complex
and frequency dependent, although for simplicity of notation
this fact is rarely explicitly indicated below.

The scaled problem involves only the three independent
frequency-dependent response functions c̃, g̃, and �̃. Never-
theless, it is convenient to introduce two further dimension-
less frequency-dependent parameters � and �l of Eqs. �28�
and �29�, which are functions of c̃, g̃, and �̃. Before proceed-
ing we note that via the above definitions and Eqs. �A1�,
�A4�, and �A5�, the parameters � and �l obey

1

�l
= 1 −

�̃2

c̃�1 + g̃�
, �58�

�

�l
= 1 +

�̃2g̃

c̃�1 + g̃�
. �59�

These equations imply the following identity that turns out to
be useful:

� + g̃ = �l�1 + g̃� . �60�

When rewritten in terms of the above dimensionless vari-
ables, Eqs. �42�, �41�, �45�, and �46� become �where the
prime now implies differentiation with respect to r̃�

r̃ −2�r̃2�T̃��� = �T̃ +
�̃

c̃
a1, �61�

r̃ −2�r̃2ũ�� =
�̃

1 + g̃
�T̃ + a1, �62�

�p̃r = − �1 + g̃�ũ� − �2 − g̃�r̃ −1ũ + �̃�T̃ , �63�

�q̃ = − c̃�T̃�. �64�

These are the fundamental dimensionless thermoviscoelastic
equations of spherical symmetry to be solved.

IV. SOLUTION IN TERMS OF THE TRANSFER MATRIX

Equation �62� leads to

ũ� =
�̃

1 + g̃
�T̃ + a1 − 2r̃ −1ũ , �65�

by which Eq. �63� is simplified as follows:

�p̃r = − �1 + g̃�a1 + 3g̃r̃ −1ũ . �66�

Equation �61� implies �2 / r̃��T̃�+�T̃�=�T̃+ ��̃ / c̃�a1, which is

readily solved by substituting �T̃= f�r̃� / r̃. The solution is

TAGE CHRISTENSEN AND JEPPE C. DYRE PHYSICAL REVIEW E 78, 021501 �2008�

021501-6



�T̃ = −
�̃

c̃
a1 + r̃ −1er̃a3 + r̃ −1e−r̃a4, �67�

where a3 and a4 are integration constants. Substituting this
into Eq. �62� and solving for ũ gives �where a2 is a further
integration constant�

ũ =
1

3

1 −

�̃2

�1 + g̃�c̃
�r̃a1 + r̃ −2a2

+
�̃

1 + g̃
��r̃ −1 − r̃ −2�er̃a3 − �r̃ −1 + r̃ −2�e−r̃a4� . �68�

Now Eq. �66� becomes

�p̃r = − 
1 +
g̃

1 + g̃

�̃2

c̃
�a1 + 3g̃r̃ −3a2

− 3
g̃

1 + g̃
�̃r̃ −3��1 − r̃�er̃a3 + �1 + r̃�e−r̃a4� . �69�

Finally we have

�q̃ = c̃r̃ −2��1 − r̃�er̃a3 + �1 + r̃�e−r̃a4� . �70�

The solution is summarized in the form

�
�p̃r�r̃�

�T̃�r̃�

�Ṽ�r̃�

�Q̃�r̃�
� = M̃�r̃��a1

a2

a3

a4
� . �71�

Here, if �Q�r� is the time-integrated heat current through the
spherical surface of radius r, we have introduced

�Ṽ 	 r̃2ũ =
�V

4�lD
3 , �72�

�Q̃ 	 r̃2�q̃ =
�Q�r�

4�KTlD
3 . �73�

The matrix M̃�r̃� is given by

M̃�r̃� =�
− 
1 +

g̃

1 + g̃

�̃2

c̃
� 3g̃ r̃ −3 − 3

g̃

1 + g̃
�̃r̃ −3�1 − r̃�er̃ − 3

g̃

1 + g̃
�̃r̃ −3�1 + r̃�e−r̃

−
�̃

c̃
0 r̃ −1er̃ r̃ −1e−r̃

1

3

1 −

�̃2

c̃�1 + g̃�
�r̃3 1 −

�̃

1 + g̃
�1 − r̃�er̃ −

�̃

1 + g̃
�1 + r̃�e−r̃

0 0 c̃�1 − r̃�er̃ c̃�1 + r̃�e−r̃

� . �74�

Defining the transfer matrix by

T̃�r̃2, r̃1� 	 M̃�r̃2�M̃−1�r̃1� �75�

allows one to express the fields at r̃2 in terms of those at r̃1 as
follows:

�
�p̃r�r̃2�

�T̃�r̃2�

�Ṽ�r̃2�

�Q̃�r̃2�
� = T̃�r̃2, r̃1��

�p̃r�r̃1�

�T̃�r̃1�

�Ṽ�r̃1�

�Q̃�r̃1�
� . �76�

In this way the inner and outer boundary conditions of Fig.
1�b� are linked by a matrix containing all relevant informa-

tion about the physics of the system. The transfer matrix is
4�4, reflecting the fact that out of the eight variables of the
four energy bonds of Fig. 1�b�, four may be externally con-
trolled. Via the transfer matrix the remaining four are deter-
mined by the four basic equations �33� and �34�. Once the
transfer matrix has been calculated, various experimentally
relevant special cases may be worked out with modest efforts
�Sec. V�.

By explicit calculation, e.g., via a computer program, one

finds that T̃�r̃2 , r̃1� has the form

T̃�r̃2, r̃1� = T̃0�r̃2, r̃1� + T̃−�r̃2, r̃1�e−�r̃2−r̃1� + T̃+�r̃2, r̃1�er̃2−r̃1,

�77�

where
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T̃0�r̃2, r̃1� =�
� + g̃r̃1

3r̃2
−3

� + g̃
0

3�g̃�r̃2
−3 − r̃1

−3�
� + g̃

3�̃g̃r̃2
−3

c̃�1 + g̃�
�̃

c̃�1 + g̃�
0 −

3�̃g̃r̃1
−3

c̃�1 + g̃�
0

r̃1
3 − r̃2

3

3�� + g̃�
0

� + g̃r̃2
3r̃1

−3

� + g̃

�̃

c̃�1 + g̃�
0 0 0 0

� , �78�

T̃−�r̃2, r̃1� =�
3�̃2g̃�1 + r̃2��r̃1 − 1�

2c̃�1 + g̃�2r̃2
3

3�̃g̃�1 + r̃2��1 − r̃1�
2�1 + g̃�r̃2

3

9�̃2g̃2�1 + r̃2��1 − r̃1�
2c̃�1 + g̃�2r̃2

3r̃1
3 −

3�̃g̃�1 + r̃2�
2c̃�1 + g̃�r̃2

3r̃1

�̃�1 − r̃1�
2c̃�1 + g̃�r̃2

r̃1 − 1

2r̃2

3�̃g̃�r̃1 − 1�
2c̃�1 + g̃�r̃2r̃1

3

1

2c̃r̃2r̃1

�̃2�1 + r̃2��r̃1 − 1�
2c̃�1 + g̃�2

�̃�1 + r̃2��1 − r̃1�
2�1 + g̃�

3�̃2g̃�1 + r̃2��1 − r̃1�
2c̃�1 + g̃�2r̃1

3 −
�̃�1 + r̃2�

2c̃�1 + g̃�r̃1

�̃�1 + r̃2��1 − r̃1�
2�1 + g̃�

c̃�1 + r̃2��r̃1 − 1�
2

3�̃g̃�1 + r̃2��r̃1 − 1�
2�1 + g̃�r̃1

3

1 + r̃2

2r̃1

� , �79�

and

T̃+�r̃2, r̃1� =�
3�̃2g̃�1 − r̃2��1 + r̃1�

2c̃�1 + g̃�2r̃2
3

3�̃g̃�r̃2 − 1��1 + r̃1�
2�1 + g̃�r̃2

3

9�̃2g̃2�r̃2 − 1��1 + r̃1�
2c̃�1 + g̃�2r̃2

3r̃1
3

3�̃g̃�1 − r̃2�
2c̃�1 + g̃�r̃2

3r̃1

−
�̃�1 + r̃1�

2c̃�1 + g̃�r̃2

1 + r̃1

2r̃2

3�̃g̃�1 + r̃1�
2c̃�1 + g̃�r̃2r̃1

3 −
1

2c̃r̃2r̃1

�̃2�1 − r̃2��1 + r̃1�
2c̃�1 + g̃�2

�̃�r̃2 − 1��1 + r̃1�
2�1 + g̃�

3�̃2g̃�r̃2 − 1��1 + r̃1�
2c̃�1 + g̃�2r̃1

3

�̃�1 − r̃2�
2c̃�1 + g̃�r̃1

�̃�r̃2 − 1��1 + r̃1�
2�1 + g̃�

c̃�1 − r̃2��1 + r̃1�
2

3�̃g̃�1 − r̃2��1 + r̃1�
2�1 + g̃�r̃1

3

r̃2 − 1

2r̃1

� . �80�

Although the expression for the transfer matrix is cumber-

some, T̃ has a number of simple mathematical features. First,

explicit calculation shows that det�M̃�r̃��=2c̃�1+ g̃� indepen-
dent of radius. This implies that

det�T̃� = 1. �81�

Moreover, the definition of T̃ immediately implies that

T̃�r̃ , r̃�=E where E is the unit matrix, and that the inverse is
given by

T̃−1�r̃2, r̃1� = T̃�r̃1, r̃2� . �82�

More generally, by its definition the transfer matrix clearly
obeys the functional equation

T̃�r̃3, r̃1� = T̃�r̃3, r̃2�T̃�r̃2, r̃1� . �83�

This gives rise to a number of relations between T̃0, T̃−, and

T̃+:

T̃0�r̃3, r̃1� = T̃0�r̃3, r̃2�T̃0�r̃2, r̃1� ,

T̃−�r̃3, r̃1� = T̃−�r̃3, r̃2�T̃−�r̃2, r̃1� ,

T̃+�r̃3, r̃1� = T̃+�r̃3, r̃2�T̃+�r̃2, r̃1� , �84�

and

T̃0�r̃3, r̃2�T̃+�r̃2, r̃1� = 0, T̃0�r̃3, r̃2�T̃−�r̃2, r̃1� = 0,

T̃+�r̃3, r̃2�T̃0�r̃2, r̃1� = 0, T̃−�r̃3, r̃2�T̃0�r̃2, r̃1� = 0,

T̃+�r̃3, r̃2�T̃−�r̃2, r̃1� = 0, T̃−�r̃3, r̃2�T̃+�r̃2, r̃1� = 0. �85�

The dimensionless transfer matrix T̃�r̃2 , r̃1� given by Eq. �76�
is related to the dimensionless response matrix �̃�r̃2 , r̃1� de-
fined by the relation
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�
�p̃r�r̃1�

�T̃�r̃1�
�p̃r�r̃2�

�T̃�r̃2�
� = �̃�r̃2, r̃1��

�Ṽ�r̃1�

�Q̃�r̃1�

− �Ṽ�r̃2�

− �Q̃�r̃2�
� . �86�

If T̃ and �̃ are split into four blocks of �2�2� matrices as
follows:

T̃ = 
T̃1 T̃2

T̃3 T̃4

� �87�

and

�̃ = 
�̃1 �̃2

�̃3 �̃4

� , �88�

one finds

�̃1 = − T̃3
−1T̃4, �̃2 = − T̃3

−1, �89�

�̃3 = − T̃1T̃3
−1T̃4 + T̃2, �̃4 = − T̃1T̃3

−1. �90�

Calculating �̃ from T̃ gives

�̃11�r̃2, r̃1� =
3

r̃2
3 − r̃1

3
� + g̃
 r̃2

r̃1
�3� , �91�

�̃12�r̃2, r̃1� =
3�̃�l

c̃�r̃2
3 − r̃1

3�
, �92�

�̃13�r̃2, r̃1� =
3�� + g̃�
r̃2

3 − r̃1
3 , �93�

�̃22�r̃2, r̃1� =
3��l − 1�
c̃�r̃2

3 − r̃1
3�

+
r̃2 cosh�r̃2 − r̃1� − sinh�r̃2 − r̃1�

c̃r̃1��r̃2 − r̃1�cosh�r̃2 − r̃1� + �r̃1r̃2 − 1�sinh�r̃2 − r̃1��
,

�94�

�̃24�r̃2, r̃1� =
3��l − 1�
c̃�r̃2

3 − r̃1
3�

+
1

c̃��r̃2 − r̃1�cosh�r̃2 − r̃1� + �r̃1r̃2 − 1�sinh�r̃2 − r̃1��
.

�95�

All off-diagonal elements of the four block matrices are
identical, i.e.,

�̃14 = �̃21 = �̃23 = �̃32 = �̃34 = �̃41 = �̃43 = �̃12. �96�

Furthermore,

�̃31�r̃2, r̃1� = − �̃13�r̃1, r̃2� = �̃13�r̃2, r̃1� , �97�

�̃33�r̃2, r̃1� = − �̃11�r̃1, r̃2� , �98�

�̃42�r̃2, r̃1� = − �̃24�r̃1, r̃2� = �̃24�r̃2, r̃1� , �99�

�̃44�r̃2, r̃1� = − �̃22�r̃1, r̃2� . �100�

The response matrix �̃ is symmetric, i.e., �̃1= �̃1�, �̃2= �̃3�,

and �̃4= �̃4�. These Onsager relations follow also from gen-
eral arguments �the fluctuation-dissipation theorem�. Interest-

ingly, �̃ has an even higher symmetry:

�̃1�r̃2, r̃1� = − �̃4�r̃1, r̃2�, �̃2�r̃2, r̃1� = − �̃3�r̃1, r̃2� .

�101�

These relations follow from Eq. �82� and the connection be-

tween �̃ and T̃. On the other hand, the symmetry relation

�̃= �̃� implies that

T̃4T̃3� = T̃3T̃4�, T̃3�T̃1 = T̃1�T̃3, E = T̃1�T̃4 − T̃3�T̃2,

�102�

and that

T̃1T̃2� = T̃2T̃1�, T̃4�T̃2 = T̃2�T̃4, E = T̃1T̃4� − T̃2T̃3�.

�103�

V. SOME CASES OF EXPERIMENTAL RELEVANCE

A. A massive sphere

In this first application of the formalism �Fig. 2� we in-
quire into how a solid sphere responds to a compression −�V
and a heat supply −�Q �39� applied at radius r2 �the trans-
ferred heat is positive when �Q�0 because �Q refers to the
heat flow in the positive radial direction�. This is calculated
from the transfer matrix by putting r1=0. If r2� �lD�, we
expect the response matrix G0 to be given by the constitutive
equations �13�, �15�, and �10� generalized to frequency-
dependent coefficients �where all variables refer to the outer
radius r2�:

FIG. 2. Compression −�V and heat input −�Q at the surface of
a sphere give rise to changes �pr and �T in radial pressure and
temperature, respectively, at the surface. For a finite sphere, the
response �Eq. �107�� is given by the constitutive properties KS, �S,
and cV, as well as by heat diffusion. Eight kinds of input-output
relations are discussed in the text.
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�pr

�T
� = G0
− �V

− �Q
� =

1

V�KS
1

T0�S

1

�S

1

cV

�
− �V

− �Q
� .

�104�

In general, the relation is


�p̃r

�T̃
� = G̃
− �Ṽ

− �Q̃
� �105�

with

G̃ = − T̃1�r̃2,0�T̃3
−1�r̃2,0� = �̃4�r̃2,0� . �106�

This follows from Eqs. �76� and �87� via the boundary con-

ditions �Ṽ�r̃1=0�=0 and �Q̃�r̃1=0�=0. Returning to dimen-
sional variables, Eqs. �105� and �106� yield


�pr

�T
� =

1

V�KS
1

T0�S

1

�S

1

cV
fD
�
− �V

− �Q
� , �107�

where fD is a function of frequency defined by

fD = 1 +
1

�l

1

3

x2 sinh�x�
x cosh�x� − sinh�x�

− 1�, x = r2/lD.

�108�

The frequency dependence of fD derives primarily from that
of lD. Note that fD→1 for �→0 and fD→� for �→�.
Asymptotically, one has fD=r2 / �3�llD� for �→�. The func-
tion fD describes how heat diffusion affects the measurement
of the thermal and mechanical properties of a massive sphere
that can only, of course, be accessed at the surface.

Below, several different thermoviscoelastic experiments
on a massive sphere are considered. In principle there are 24
such experiments �25�, corresponding to the 24 coefficients
discussed at the beginning of Sec. II: One may choose any of
the four variables �pr, �T, −�V, or −�Q at the outer radius r2
as the controlled input, any of the three remaining variables
as the measured output, and either of the last two to be fixed.
Since there are only three independent functions of fre-
quency in the matrix of Eq. �107�, it is superfluous to discuss
all 24 experiments. It does make sense, however, to discuss
more than just three cases, because the experimental chal-
lenges may vary from case to case.

We discuss eight cases, corresponding in the low-
frequency limit to the eight frequency-dependent thermody-
namic response functions �T, �S, cV, cp, �p �S, 	V, and 	S.
These cases are detailed below where, occasionally, relations
from the Appendix are utilized.

(a) Compression with isothermal boundary

− 
�pr

�V
�

T
= G11 −

G12G21

G22
=

KS

V
�1 −

1

fD

1 −

1

�
�� .

�109�

At low frequencies this converges to KT /V. This result shows
how one is limited upward in frequency when attempting to
do isothermal bulk modulus measurements. Because fD→�
at large frequencies, the equation also describes the transition
to the adiabatic bulk modulus above the characteristic heat-
diffusion frequency �D defined by �D	D /r2

2, where D is the
heat diffusion constant and r2 the sample size.

The bulk modulus can be measured in the frequency
range 1 Hz–50 kHz by the so-called piezoelectric bulk
modulus gauge �PBG� �16�. This is a piezoelectric ceramic
hollow sphere that may be filled with liquid. The ceramic
shell has electrodes on the inside and outside and thus con-
stitutes an electrical capacitor. Due to the piezoelectric effect
the frequency-dependent capacitance—which can readily be
measured—depends on the bulk modulus of the liquid which
can be found after a calibration of the PBG. This device has
a radius of 10 mm, and since typical liquid heat diffusivities
are of order 0.1 mm2 /s, the characteristic heat diffusion fre-
quency becomes 10−3 s−1. Thus experiments performed with
the PBG above 0.1 Hz can safely be said to be adiabatic,
despite the fact that no special measures are taken to make
the boundary conditions adiabatic.

(b) Adiabatic compression

− 
�pr

�V
�

Q
= G11 =

KS

V
. �110�

Ironically, this boundary condition is difficult to achieve ex-
perimentally, whereas the isothermal experiment gives KS at
most frequencies. Thus KS is easier to measure than KT �16�.

(c) Isochoric heating


 �T

− �Q
�

V

= G22 =
fD

VcV
. �111�

The low-frequency limit is 1 / �VcV� giving the isochoric
frequency-dependent specific heat. The high-frequency limit,
however,


 �T

− �Q
�

V

�
1

4�r2
 s

cl�
for � → � , �112�

involves the longitudinal specific heat. Note that in this
limit—even though the overall volume is constant—it is cl
that appears, not cV.

(d) Heating into a free mechanical surface


 �T

− �Q
�

pr

= G22 −
G21G12

G11
=

1

Vcp
�1 + ��fD − 1�� .

�113�

The low-frequency limit is 1 / �Vcp�, giving the isobaric
frequency-dependent specific heat. The high-frequency limit,
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 �T

− �Q
�

pr

�
1

4�r2
 s

cl�
for � → � , �114�

is identical to the isochoric high-frequency limit. Note that it
is the longitudinal specific heat that enters into Eq. �114�, not
cp. This is similar to the fact that the frequency-dependent
specific heat obtained from plane-wave effusivity measure-
ments is not the isobaric specific heat, but the longitudinal
�23�. In that case nonisotropic stresses could be conceived as
arising from the special kind of mechanical boundary condi-
tions needed in order to keep the model of the plane-plate
setup one dimensional. Here we see, however, that noniso-
tropic stresses may arise in the liquid itself, not necessarily
coming from clamping the boundaries. This substantiates a
conclusion of Ref. �23�, namely, that it is not possible to
probe the isobaric specific heat directly by effusivity mea-
surements. Note also that the thermal admittance per unit
area is the same as for the planar geometry �23�:

Y 	 −
j

�T
= −

s

4�r2

�Q

T
= 
scl� . �115�

Recently, radial heat effusion from the surface of a spherical
cavity inside an infinite medium was shown also to involve
the longitudinal specific heat �40�.

(e) Expansion by a controlled temperature oscillation at a
free surface

1

V

�V

�T
�

pr

=
1

V

G12

G12G21 − G11G22
=

�p

1 + ��fD − 1�
.

�116�

At low frequencies this approaches �p, whereas its high-
frequency asymptotic form is given by

1

V

�V

�T
�

pr

�
3

	Ssr2
Y for � → � . �117�

From Eq. �107� it follows that

1

V

�V

�T
�

pr

= −
1

VT0

 �Q

�pr
�

T
. �118�

This is a radial version of the Onsager relation that corre-
sponds to the Maxwell relation Eq. �14�. If an experiment
were conceived where one measures the heat flux −�Q
needed to keep the temperature constant at the surface while
applying a periodically varying radial pressure, one would
find the same response function Eq. �116�, including the dif-
fusion dependence. Similar radial versions of Onsager rela-
tions corresponding to the Maxwell relations Eqs. �15�–�17�
hold for the last three response functions.

(f) Radial pressure in response to heating at constant vol-
ume


 �pr

− �Q
�

V

=
1

VT0�S
. �119�

Thus �S can be measured without interference from heat dif-
fusion. This is not trivial, since the penetration depth �lD� of
the temperature field into the sphere is frequency dependent,

and it is the temperature field that creates the pressure varia-
tion.

(g) Radial pressure in response to a controlled tempera-
ture oscillation at constant volume. This case leads to


�pr

�T
�

V
=

	V

fD
. �120�

In contrast to case �f�, this response function is diffusion
influenced. It approaches 	V at low frequencies, whereas

1

V

�pr

�T
�

V
�

3

�Ssr2
Y for � → � . �121�

(h) Volume expansion in response to heating for a free
surface


 �V

− �Q
�

pr

=
1

T0	S
. �122�

As for case �f� we get a simple result that is independent of
heat diffusion.

In summary, the important role played by the longitudinal
frequency-dependent specific heat is evident. Moreover,
there is now an exact description of the transition from the
adiabatic to the isothermal regime of bulk modulus measure-
ments utilizing the PBG �16�.

B. The “thermally thick limit” �lD�™r2 when r1™r2

We now proceed to discuss the case where the inner ra-
dius is small and the sample is much larger than lD. This
section prepares the theoretical basis of ongoing experiments
where a small spherical thermistor placed in the center of the
PBG should make it possible to simultaneously measure the
frequency dependences of �S, KS, and cl on the same sample.
Supplemented by shear modulus measurements �24�, this
provides a complete set of thermoviscoelastic response func-
tions of a liquid. Below we determine the reduced transfer

matrix X̃ for a situation where a mechanical boundary con-
dition at rl and a thermal boundary condition at r2 are stipu-

lated. That is, X̃ gives the linear relationship


�T̃�r̃1�

�Q̃�r̃1�
� = X̃
�p̃r�r̃2�

�Ṽ�r̃2�
� . �123�

There are four possibilities for X̃, denoted below by Ã, B̃, C̃,

and D̃, depending on the different boundary conditions:

X̃ = Ã for �Ṽ�r̃1� = 0, �Q̃�r̃2� = 0, �124�

X̃ = B̃ for �Ṽ�r̃1� = 0, �T̃�r̃2� = 0, �125�

X̃ = C̃ for �p̃r�r̃1� = 0, �Q̃�r̃2� = 0, �126�

X̃ = D̃ for �p̃r�r̃1� = 0, �T̃�r̃2� = 0. �127�

If P̃ is the inverse of T̃�r̃2 , r̃1�, i.e., P̃= T̃�r̃1 , r̃2�, one finds
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Ã =
1

P̃32


P̃21P̃32 − P̃22P̃31 P̃23P̃32 − P̃22P̃33

P̃41P̃32 − P̃42P̃31 P̃43P̃32 − P̃42P̃33

� , �128�

B̃ =
1

P̃34


P̃21P̃34 − P̃24P̃31 P̃23P̃34 − P̃24P̃33

P̃41P̃34 − P̃44P̃31 P̃43P̃34 − P̃44P̃33

� , �129�

C̃ =
1

P̃12


P̃21P̃12 − P̃22P̃11 P̃23P̃12 − P̃22P̃13

P̃41P̃12 − P̃42P̃11 P̃43P̃12 − P̃42P̃13

� , �130�

D̃ =
1

P̃14


P̃21P̃14 − P̃24P̃11 P̃23P̃14 − P̃24P̃13

P̃41P̃14 − P̃44P̃11 P̃43P̃14 − P̃44P̃13

� . �131�

These expressions imply �41� that

det�Ã� = det�B̃� = det�C̃� = det�D̃� = 1. �132�

The explicit expressions for Ã, B̃, C̃, and D̃ are rather in-

volved. We give only the components of the simplest one, Ã:

Ã11 =
�r̃1

3 + 3��l − 1��r̃1
2 − r̃1� − r̃2

3��r̃2 + 1�exp�− �r̃2 − r̃1�� + �r̃1
3 − 3��l − 1��r̃1

2 + r̃1� − r̃2
3��r̃2 − 1�exp�r̃2 − r̃1�

3�̃r̃1�l��r̃1 − 1��r̃2 + 1�exp�− �r̃2 − r̃1�� + �1 − r̃2��r̃1 + 1�exp�r̃2 − r̃1��
,

Ã12

=−
�g̃�r̃1

3 + ��l − 1��3r̃1
2 − 3r̃1 + r̃2

3�� + �lr̃2
3��r̃2 + 1�exp�− �r̃2 − r̃1�� + �g̃�r̃1

3 − ��l − 1��3r̃1
2 + 3r̃1 − r̃2

3�� + �lr̃2
3��r̃2 − 1�exp�r̃2 − r̃1�

r̃2
3�̃r̃1�l��r̃1 − 1��r̃2 + 1�exp�− �r̃2 − r̃1�� + �1 − r̃2��r̃1 + 1�exp�r̃2 − r̃1��

,

Ã21 =
c̃�r̃2

3 − r̃1
3�

3�̃�l

,

Ã22 =
c̃�g̃r̃1

3 + �r̃2
3�

�̃�lr̃2
3 . �133�

The transfer matrix Ã becomes much simpler when r1�r2
and �lD��r2. In terms of the scaled variables we seek the
limits r̃1 / r̃2→0 and �r̃2�→�. In these limits one finds from

Eq. �133� that Ã→�̃, where

�̃ =�
r̃2

3

3�l�̃r̃1�1 + r̃1�
�

�l�̃r̃1�1 + r̃1�

c̃r̃2
3

3�̃�l

c̃�

�̃�l

� . �134�

By explicit calculation one finds that B̃ and C̃, as well as

D̃, all converge to �̃ in the same limits. That is, in these
limits the linear connection between the thermal response at
the inner radius and the mechanical stimulus at the outer
radius is independent of the mechanical boundary condition
at the inner radius or the thermal boundary condition at the

outer radius. If one inverts Ã, B̃, C̃, and D̃ and goes to the
same limits, the inverse matrices all converge to the matrix

�̃ given by

�̃ =�
c̃�

�̃�l

−
�

�l�̃r̃1�1 + r̃1�

−
c̃r̃2

3

3�̃�l

r̃2
3

3�̃�lr̃1�1 + r̃1�
� . �135�

In order to make the above results more transparent we re-
turn to dimensional variables. Thus, introducing the sphere
volume

V2 =
4�

3
r2

3, �136�

and the quantity Zth to be identified below with a thermal
impedance,

Zth =
1

4��r1�1 + 
sr1
2cl/��

, �137�

Eq. �123� with Eq. �134� implies


�T�r1�
�Q�r1�

� = 
sZthV2T0�S sZthT0	S

V2T0�S T0	S
�
�pr�r2�

�V�r2�
� ,

�138�

and Eq. �135� leads to


�pr�r2�
�V�r2�

� = 
 T0	S − sZthT0	S

− V2T0�S sZthV2T0�S
�
�T�r1�

�Q�r1�
� .

�139�

Three results may be inferred. �1� The adiabatic frequency-
dependent bulk modulus is given by the normal-stress re-
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sponse to a compression at the outer surface independent of
the other three boundary conditions:

− V2
�pr

�V
��r2� =

	S

�S
= Ks. �140�

�2� The temperature response on the inner surface to a ther-
mal current s�Q is the thermal impedance involving the lon-
gitudinal specific heat. This again holds independent of the
other three boundary conditions:


 �T

s�Q
��r1� = Zth. �141�

�3� The relation between the heat displacement at radius r1
and the volume and negative normal-stress variations at ra-
dius r2 does not involve any “delay” caused by thermal dif-
fusion:

�Q�r1� = T0V2�S�pr�r2� + T0	S�V�r2� . �142�

C. Mechanical boundary conditions

If we control the boundary conditions solely via isobaric

or isochoric constraints, there is a thermal transfer matrix Ỹ
connecting heat and temperature variations at the inner and
outer radii:


�T̃�r̃2�
�q̃�r̃2�

� = Ỹ�r̃2, r̃1�
�T̃�r̃1�
�q̃�r̃1�

� . �143�

Depending on boundary conditions, we define �42�

Ỹ�r̃2, r̃1� = H̃�r̃2, r̃1� for �Ṽ�r̃1� = 0 and �Ṽ�r̃2� = 0,

�144�

Ỹ�r̃2, r̃1� = K̃�r̃2, r̃1� for �Ṽ�r̃1� = 0 and �p̃r�r̃2� = 0,

�145�

Ỹ�r̃2, r̃1� = L̃�r̃2, r̃1� for �p̃r�r̃1� = 0 and �Ṽ�r̃2� = 0,

�146�

Ỹ�r̃2, r̃1� = Ñ�r̃2, r̃1� for �p̃r�r̃1� = 0 and �p̃r�r̃2� = 0.

�147�

It can be shown �41� that in all four cases one has

det�Ỹ� = 1. �148�

The following identities follow trivially:

H̃−1�r̃2, r̃1� = H̃�r̃1, r̃2� , �149�

K̃−1�r̃2, r̃1� = L̃�r̃1, r̃2� , �150�

Ñ−1�r̃2, r̃1� = Ñ�r̃1, r̃2� . �151�

Motivated by an experimental setup studying a liquid drop

on a thermistor bead �20�, we calculate K̃ explicitly �see

Figs. 3 and 4�. In analogy to the calculation leading to Eq.

�128�, we find in terms of the matrix elements of T̃ �where

all T̃ matrix elements are evaluated at �r̃2 , r̃1��

K̃�r̃2, r̃1� =
1

T̃11


T̃22T̃11 − T̃21T̃12 T̃24T̃11 − T̃21T̃14

T̃42T̃11 − T̃41T̃12 T̃44T̃11 − T̃41T̃14

� .

�152�

Switching to real units, K is defined via


�T�r2�
�Q�r2�

� = K
�T�r1�
�Q�r1�

� , �153�

and related to K̃ by �where k=1 / lD�

K11�r2,r1� = K̃11�kr2,kr1� , �154�

K12�r2,r1� =
T0k3

4�KT
K̃12�kr2,kr1� , �155�

K21�r2,r1� =
4�KT

T0k3 K̃21�kr2,kr1� , �156�

FIG. 3. ac calorimetry in spherical geometry �20�. A liquid drop-
let of diameter 0.7 mm is placed onto a strongly temperature-
dependent negative temperature coefficient �NTC� resistor of radius
0.3 mm. By the so-called 3� technique the apparent heat capacity
Capp=�Q1 /�T1 was found. At low frequencies in a narrow fre-
quency range this gives to a good approximation the isobaric spe-
cific heat via Eq. �160�. At higher frequencies, heat diffusion makes
the extraction of the frequency-dependent specific heat more
involved.

FIG. 4. Energy bond graph diagram �33� of the physical inter-
actions between the thermistor, liquid, and thermal leak to the cry-
ostat, modeling the setup of Fig. 3. The thermistor acts as both heat
source and thermometer. The liquid is described by the transfer
matrix K for the case with mechanical clamping at the thermistor
and a free outer surface.
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K22�r2,r1� = K̃22�kr2,kr1� . �157�

We shall not explicitly give the components for the general
case, but limit ourselves to the thermally thin limit r2� �lD�
�i.e., �kr2��1� where the results simplify considerably. In this
limit one finds �20� after Taylor expanding the matrix ele-

ments of T̃ that

K = 
 1 − Rs

− C 1
� , �158�

where, if V= �4� /3��r2
3−r1

3� is the volume,

R =
1

4��

 1

r1
−

1

r2
� �159�

and

C = cVV
KS�r2/r1�3 + 4

3G

KT�r2/r1�3 + 4
3G

�160�

play the role of thermal resistance and capacitance, respec-
tively. These results imply that in the thermally thin limit cp
is measured if r2�r1, whereas cl is measured if r2�r1. We
finally note that the above formulation is easily incorporated
into a model taking into account the thermal heat loss to the
surroundings �20�.

D. No thermomechanical coupling

As mentioned in the beginning of Sec. III, if the isobaric
thermal expansion coefficient �p is zero, one has 	V=0 and
there is no thermomechanical coupling. In this case, the com-

ponents T̃21, T̃23, T̃41, and T̃43 vanish, implying that heat and
temperature variations at r̃2 depend only on heat and tem-

perature variations at r̃1. Also, T̃12, T̃14, T̃32, and T̃34 vanish,
implying that pressure and volume variations at r̃2 depend
only on pressure and temperature variations at r̃1. Note that
when there is no thermomechanical coupling, all specific
heats are identical:

cp = cV = cl. �161�

This is often a good approximation for solids, but rarely for
liquids.

When there is no thermomechanical coupling, heat diffu-
sion is described by a 2�2 thermal transfer matrix Tth de-
fined �43� as follows:


�T�r2�
�Q�r2�

� = Tth�r2,r1�
�T�r1�
�Q�r1�

� . �162�

The components of Tth are found by substituting �p=0 into
Eq. �77�. The results are as follows �where k=1 / lD�

T11
th =

r1

r2
cosh�k�r2 − r1�� +

1

kr2
sinh�k�r2 − r1�� , �163�

T12
th = −

s

4��

sinh�k�r2 − r1��
kr1r2

, �164�

T21
th =

4�cl

k3 ��1 − k2r1r2�sinh�k�r2 − r1��

− k�r2 − r1�cosh�k�r2 − r1��� , �165�

T22
th =

r2

r1
cosh�k�r2 − r1�� −

1

kr1
sinh�k�r2 − r1�� . �166�

Interestingly, the same purely thermal 2�2 transfer matrix
describes a low-viscosity liquid �g̃→0� even when �p�0, if
either the inner or the outer surface is free, i.e., if �pr�r1�
=0 or �pr�r2�=0. In these two cases, however, not all three
specific heats are identical, only cp=cl applies. This is con-
sistent with the above remark regarding the validity of the
standard heat diffusion equation �37�.

VI. CONCLUDING REMARKS

Thermoviscoelastic response functions are notoriously
difficult to measure. This paper establishes the theoretical
framework necessary for developing experimental methods
that utilize spherical symmetry for measuring such response
functions. From the complete solution of the problem in the
form of the transfer matrix the equations describing any re-
alistic experimental situation may be derived, as exemplified
in the last section.

The thermoviscoelastic response functions are important
to determine for liquids approaching the glass transition �still
in metastable equilibrium above the transition�. For such ul-
traviscous liquids all thermodynamic coefficients become
complex and frequency dependent for frequencies in the
range of the inverse Maxwell relaxation time. To the best of
our knowledge there are yet no reliable measurements of a
complete set �i.e., three �1,2,4,25,28�� of thermoviscoelastic
response functions for any such liquid. The determination of
such complete sets, from which all other thermoviscoelastic
response functions are easily calculated, serves the obvious
purpose of elucidating the macroscopic dynamics and ther-
modynamics of ultraviscous liquids. Very recent theoretical
developments even further stress the importance of develop-
ing reliable methods for measuring thermoviscoelastic re-
sponse functions. It now appears that the class of van der
Waals liquids �possibly supplemented by some liquids form-
ing bulk metallic glasses� have particularly simple proper-
ties: Liquids like these with nondirectional chemical bonds
exhibit strong correlations between equilibrium pressure and
energy fluctuations �28,44�. For such “strongly correlating
viscous liquids” it has been shown that there is basically only
one independent thermoviscoelastic response function �25�.
It would be interesting to have this prediction subjected to
experimental tests. Moreover, for strongly correlating vis-
cous liquids there are indications from computer simulations
that thermoviscoelastic measurements can determine the ex-
ponent of the so-called density scaling that collapses the re-
laxation time’s pressure and temperature dependence onto a
master curve �45�.

As regards the above results, it is notable that the longi-
tudinal specific heat cl plays a dominant role. It is perhaps
not surprising that cl enters repeatedly into the equations
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describing the one-dimensional case �23�—after all, this is
what it was defined to do—but it is less obvious that cl also
plays a dominant role for the case of spherical symmetry.
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APPENDIX

If 
p	cp /T0 and 
V	cV /T0, several standard thermody-
namic relations between the eight linear-response functions

p ,
V ,�T ,�S ,�p ,�S ,	V ,	S are summarized below. Via the
correspondence principle all relations apply also for the cor-
responding complex frequency-dependent linear-response
properties. Note that the inverse of the isothermal bulk
modulus KT is the compressibility, 1 /KT=�T, and similarly
for the adiabatic bulk modulus, 1 /KS=�S.


p − 
V =
�p

2

�T
= �T	V

2 = �p	V, �A1�

1


V
−

1


p
=

�S

�S
2 =

1

�S	S
2 =

1

�S	S
, �A2�

�T − �S =
�p

2


p
=


p

	S
2 =

�p

	S
, �A3�

1

�S
−

1

�T
=


V

�S
2 =

	V
2


V
=

	V

�S
, �A4�

	V =
�p

�T
=


V

�S
, �A5�

	S =
�S

�S
=


p

�p
, �A6�

� =

p


V
=

�T

�S
= 1 +

�p

�S
=

1

1 − 	V/	S
. �A7�
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