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Fluids of spherical molecules with dipolarlike nonuniform adhesion:
An analytically solvable anisotropic model
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We consider an anisotropic version of Baxter’s model of “sticky hard spheres,” where a nonuniform adhe-
sion is implemented by adding, to an isotropic surface attraction, an appropriate “dipolar sticky” correction
(positive or negative, depending on the mutual orientation of the molecules). The resulting nonuniform adhe-
sion varies continuously, in such a way that in each molecule one hemisphere is “stickier” than the other. We
derive a complete analytic solution by extending a formalism [M. S. Wertheim, J. Chem. Phys. 55, 4281
(1971)] devised for dipolar hard spheres. Unlike Wertheim’s solution, which refers to the “mean spherical
approximation,” we employ a Percus-Yevick closure with orientational linearization, which is expected to be
more reliable. We obtain analytic expressions for the orientation-dependent pair correlation function g(1,2).
Only one equation for a parameter K has to be solved numerically. We also provide very accurate expressions
which reproduce K as well as some parameters, A; and A,, of the required Baxter factor correlation functions
with a relative error smaller than 1%. We give a physical interpretation of the effects of the anisotropic
adhesion on the g(1,2). The model could be useful for understanding structural ordering in complex fluids

within a unified picture.

DOI: 10.1103/PhysRevE.78.021201

I. INTRODUCTION

Anisotropy of molecular interactions plays an important
role in many physical, chemical, and biological processes.
Attractive forces are responsible for the tendency toward par-
ticle association, while the directionality of the resulting
bonds determines the geometry of the resulting clusters. Ag-
gregation may thus lead to very different structures: in par-
ticular, chains, globular forms, and bi- or three-dimensional
networks. Understanding the microscopic mechanisms un-
derlying such phenomena is clearly very important both from
a theoretical and a technological point of view. Polymeriza-
tion of inorganic molecules, phase behavior of nonspherical
colloidal particles, building up of micelles, gelation, forma-
tion of a helices from biomolecules, DNA strands, and other
ordered structures in living organisms, protein folding and
crystallization, self-assembly of nanoparticles into composite
objects designed for new materials, are all subjects of con-
siderable interest, belonging to the same class of systems
with anisotropic interactions.

Modern studies on these complex systems strongly rely
upon computer simulations, which have provided a great
deal of useful information about many properties of molecu-
lar fluids. Nevertheless, analytic models with explicit expres-
sions for structural and thermodynamic properties still repre-
sent an irreplaceable tool, in view of their ability to capture
the essential features of the investigated physical systems.

At the lowest level in this hierarchy of minimal models on
assembling particles, lies the problem of the formation of
linear aggregates, from dimers [1,2] up to polymer chains.
This topic has been extensively investigated, through both
computer simulations and analytical methods. In the latter
case a remarkable example is Wertheim’s analytic solution of
the mean spherical approximation (MSA) integral equation
for dipolar hard spheres (DHS), i.e., hard spheres (HS) with
a point dipole at their center [3] (hereafter referred to as Ref.
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[1]). For the DHS model, several studies predict chain for-
mation, whereas little can be said about the existence of a
fluid-fluid coexistence line, since computer simulations and
mean field theories provide contradictory results [4—-8]. On
the other hand, for mesoscopic fluids the importance of com-
bining short-ranged anisotropic attractions and repulsions
has been well established [9,10], and hence the long range of
the dipolar interaction is less suited for the mesoscopic sys-
tems considered here, at variance with their atomistic coun-
terpart.

The aim of the present paper is to address both the above
points, by studying a model with anisotropic surface adhe-
sion that is amenable to an analytical solution, within an
approximation which is expected to be valid at significant
experimental regimes.

In the isotropic case, the first model with “surface adhe-
sion” was introduced a long time ago by Baxter [11,12]. The
interaction potential of these “sticky hard spheres” (SHS)
includes a HS repulsion plus a spherically symmetric attrac-
tion, described by a square well (SW), which becomes infi-
nitely deep and narrow, according to a limiting procedure
(Baxter’s sticky limit) that keeps the second virial coefficient
finite.

Possible anisotropic variations include “sticky points”
[13-21], “sticky patches” [10,22-27] and, more recently,
“Gaussian patches” [28,29]. The most common version of
patchy sticky models refers to HS with one or more “uniform
circular patches,” all of the same species. This kind of patch
has a well-defined circular boundary on the particle surface,
and is always attractive, with a “uniform” strength of adhe-
sion, which does not depend on the contact point within the
patch [22].

In the present paper we consider a “dipolarlike” SHS
model, where the sum of a uniform surface adhesion (isotro-
pic background) plus an appropriate dipolar sticky
correction—which can be both positive or negative, depend-
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a) Isotropic adhesion

b) Anisotropic adhesion:
parallel configuration

c) Anisotropic adhesion:
antiparallel configurations

FIG. 1. (Color online) Illustration of the dipolarlike adhesion. In
the top panel (a) the adhesion is isotropic, with €(1,2)=1. In the
two other cases the adhesion is anisotropic and (i) stronger and
maximum in the head-to-tail parallel configuration (b), where
€(1,2)=1+2a; and (ii) weaker and minimum in the two antiparallel
configurations (c) [head-to-head and tail-to-tail orientations, both
with €(1,2)=1-2a].

ing on the orientations of the particles—yields a nonuniform
adhesion. Although the adhesion varies continuously and no
discontinuous boundary exists, the surface of each molecule
may be regarded as formed by two hemispherical “patches”
(colored red and blue, respectively, in the online Fig. 1). One
of these hemispheres is ‘stickier’ than the other, and the en-
tire molecular surface is adhesive, but its stickiness is non-
uniform and varies in a dipolar fashion. By varying the di-
polar contribution, the degree of anisotropy can be changed,
in such a way that the total sticky potential can be continu-
ously tuned from very strong attractive strength (twice the
isotropic one) to vanishing adhesion (HS limit). The physical
origin of this model may be manifold (nonuniform distribu-
tion of surface charges, or hydrophobic attraction, or other
physical mechanisms), one simple realization being as due to
an “extremely screened” attraction. The presence of a solvent
together with a dense ionic atmosphere could induce any
electrostatic interaction to vanish close to the molecular sur-
face, and—in the idealized sticky limit—to become trun-
cated exactly at contact.

For this model, we solve analytically the molecular
Ornstein-Zernike (OZ) integral equation, by using a trun-
cated Percus-Yevick (PY) approximation, with orientational
linearization (PY-OL), since it retains only the lowest order
terms in the expansions of the correlation functions in angu-
lar basis functions. This already provides a clear indication
of the effects of anisotropy on the adhesive adhesion.

The idea of an anisotropic surface adhesion is not new. In
a series of papers on hydrogen-bonded fluids such as water,
Blum and co-workers [30-32] already studied models of
spherical molecules with anisotropic pair potentials, includ-
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ing both electrostatic multipolar interactions and sticky ad-
hesive terms of multipolar symmetry. Within appropriate clo-
sures, these authors outlined the general features of the
analytic solutions of the OZ equation by employing a very
powerful formalism based upon expansions in rotational in-
variants. In particular, Blum, Cummings, and Bratko [32]
obtained an analytic solution within a mixed MSA/PY clo-
sure (extended to mixtures by Protsykevich [34]) for mol-
ecules which have surface adhesion of dipolar symmetry and
at most dipole-dipole interactions. From the physical point of
view, our model—with “dipolarlike” adhesion resulting from
the sum of an isotropic plus a dipolar term—is different and
more specifically characterized with respect to the one of
Ref. [32], whose adhesion has a simpler, strictly “dipolar,”
symmetry. From the mathematical point of view, however,
the same formalism employed by Blum e al. [32] could also
be applied to our model. Unfortunately, the solution given in
Ref. [32] is not immediately usable for the actual computa-
tion of correlation functions, since the explicit determination
of the parameters involved in their analytical expressions is
lacking.

In the present paper we adopt a simpler solution method,
by extending the elegant approach devised by Wertheim for
DHS within the MSA closure [3], and, most importantly, we
aim at providing a complete analytic solution—including the
determination of all required parameters—within our PY-OL
approximation.

The paper is organized as follows. Section II defines the
model. In Sec. III we recall the molecular OZ integral equa-
tion and the basic formalism. In Sec. IV we present the ana-
lytic solution. Numerical exact results for some necessary
parameters, as well as very accurate analytic approximations
for them, will be shown in Sec. V. Some preliminary plots
illustrating the effects of the anisotropic adhesion on the lo-
cal structure are reported in Sec. VI. Phase stability is briefly
discussed in Sec. VII, while final remarks and conclusions
are offered in Sec. VIII.

II. HARD SPHERES WITH ADHESION OF DIPOLARLIKE
SYMMETRY

Let the symbol i=(r;,);) (with i=1,2,3,...) denote both
the position r; of the molecular center and the orientation ();
of molecule i; for linear molecules, ;= (6;, ¢;) includes the
usual polar and azimuthal angles. Translational invariance
for uniform fluids allows one to write the dependence of the
pair correlation function g(1,2) as

(1 »2) = (rIZ»QI»‘Q‘Z) = (r"Q’l"Q‘Z’fIZ) = (erbQ%Qr)’

with rj,=r,—r, r=|r},|, and €, being the solid angle asso-
ciated with f’12=r12/r.

In the spirit of Baxter’s isotropic counterpart [11,39], our
model is defined by the Mayer function given by

F5(1,2) = f5(r) + 1e(1,2)08(r - o), (1)

where f15(r)=@(r—0)-1 is its HS counterpart, ® is the
Heaviside step function [@(x<0)=0, O(x>0)=1] and
8(r—o) is the Dirac delta function, which ensures that the
adhesive interaction occurs only at contact (o being the hard
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sphere diameter). An appropriate limit of the following par-
ticular square-well potential of width R—o,

+ 00, o<r<o
@SW(I,Z): _kBTln[1+te(1,2)RL}, o<r<R
-0

0, r>R,

can be shown to lead to Eq. (1).
The angular dependence is buried in the angular factor

e(1,2)=1+aD(1,2), (2)
including the dipolar function
D(1,2) =D(Q,Q,,Q,) =3(u; - F)(uy - £) —u; - vy,

which stems from the dipole-dipole potential ¢iP-4iP(1,2)
=—u>D(1,2)/7® (i is the magnitude of the dipole moment)
and is multiplied by the tunable anisotropy parameter «. In
the isotropic case a=0, one has €(1,2)=1. Here and in the
following, T coincides with t'j,=-1,;, while u; is the versor
attached to molecule  (drawn as the yellow arrow in Fig. 1),
which completely determines its orientation ();. Note the
symmetry D(2,1)=D(1,2).

The condition €(1,2)=0 must be enforced in order to
preserve a correct definition of the sticky limit, ensuring that
the total sticky interaction remains attractive for all orienta-
tions, and the range of variability —2<D(1,2) <2 yields the
limitation 0 < aS% on the anisotropy degree. The stickiness
parameter +—equal to (127)~! in Baxter’s original notation
[11]—measures the strength of surface adhesion relative to
the thermal energy kT (kg being the Boltzmann constant, T
being the absolute temperature) and increases with decreas-
ing temperature.

If we adopt an “intermolecular reference frame” (with
both polar axis and Cartesian z axis taken along r,,), then the
Cartesian components of ¥ and w; are (0, 0, 1) and
(sin 6; cos ¢;,sin 6; sin ¢;,cos 6;), respectively, and thus

D(1,2) =2 cos 6, cos 6, —sin 6, sin 6, cos(@; — ¢,). (3)

The strength of adhesion between two particles 1 and 2 at
contact depends—in a continuous way—on the relative ori-
entation of u; and u, as well as on the versor r, of the
intermolecular distance. We shall call parallel any configu-
ration with u;-u,=1, while antiparallel configurations are
those with u;-u,=—1 (see Fig. 1). For all configurations with
D(1,2) >0, the anisotropic part of adhesion is attractive and
adds to the isotropic one. Thus, the surface adhesion is maxi-
mum, and larger than in the isotropic case, when u;=u,
=F, and thus €(1,2)=1+2« [head-to-tail parallel configura-
tion, shown in Fig. 1(b)]. On the contrary, when D(1,2)
<0 the anisotropic contribution is repulsive and subtracts
from the isotropic one, so that the total sticky interaction still
remains attractive. Then, the stickiness is minimum, and may
even vanish for a=1/2, when u;=-u,=f|, and thus
€(1,2)=1-2a [head-to-head or tail-to-tail antiparallel con-
figurations, reported in Fig. 1(c)]. The intermediate case of
orthogonal configuration (u, perpendicular to w;) corre-
sponds to D(1,2)=0, which is equivalent to the isotropic
SHS interaction.
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TABLE I. Angular convolutions of the basis functions 1, A, and
D,.

° 1 A Dk

1 1 0 0

A 0 A/3 D,/3
D, 0 Dy/3 (D+2A)/3

It proves convenient to “split” f5H5(1,2) as

F(1,2) = fo(r) + fux(1,2), (4)
fo(r) = f8(r) + tod(r — o) = f585(p),

fex(1,2) = (an)od(r — 0)D(1,2), &)

where the spherically symmetric f,(r) corresponds to the
“reference” system with isotropic background adhesion,
while f.,(1,2) is the orientation-dependent “excess” term.

We remark that, as shown in Ref. [1] (see also Table I in
Appendix A of the present paper), convolutions of 575 func-
tions generate correlation functions with a more complex
angular dependence. Therefore, in addition to D(1,2), it is
necessary to consider also

A(1,2)=u, - u, =cos 6, cos 6, +sin 6, sin 6, cos(@, — ¢,),
(6)

where the last equality holds true in the intermolecular
frame. The limits of variation for A(1,2) are clearly —1
<A(1,2)<1.

II1. BASIC FORMALISM

This section, complemented by Appendix A, presents the
main steps of Wertheim’s formalism, as well as its extension
to our model.

A. Molecular Ornstein-Zernike equation

The molecular OZ integral equation for a pure and homo-
geneous fluid of molecules interacting via nonspherical pair
potentials is

h(1,2)=c(1,2) + pf dr3(c(1,3)h(3,2)>93, (7)

where A(1,2) and ¢(1,2) are the total and direct correlation
functions, respectively, p is the number density, and g(1,2)
=1+h(1,2) is the pair distribution function [36-38]. More-
over, the angular brackets with subscript {) denote an aver-
age over the orientations, i.e., {...)o=(4m)71[dQ)....

The presence of convolution makes this equation conve-
nient to Fourier transform (FT), by integrating with respect
to the space variable r alone, according to

F(k,Q,,Q,) = f dr F(r,Q;,Q,)exp(ik - r). (8)

The r-space convolution becomes a product in k space, thus
leading to
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71, 1,0) = 60, Q1,0) + p(é(k, 01, Q3)(k, 03, ))q
©)

As usual the OZ equation involves two unknown functions &
and ¢, and can be solved only after adding a closure, that is,
a second (approximate) relationship among ¢, h, and the po-
tential.

B. Splitting of the OZ equation: Reference and excess part

The particular form of our potential, as defined by the
Mayer function of Eq. (1), gives rise to a remarkable exact
splitting of the original OZ equation. Using diagrammatic
methods [36-38] it is easy to see that both ¢ and & can be
expressed as a graphical series containing the Mayer function
f as a bond function. If fSHS=f,+f., is substituted into all
graphs of the above series, each diagram with n f-bonds will
generate 2" new graphs. In the cluster expansion of c, the
sum of all graphs having only f,-bonds will yield cy(r)
=cSHS() j.e., the direct correlation function (DCF) of the
reference fluid with isotropic adhesion. On the other hand, all
remaining diagrams have at least one f,,-bond, whose ex-
pression is given by Eq. (5). Thus, in the sum of this second
subset of graphs it is possible to factorize «af, and we can
write

SUS(1,2) = ¢(r) + cei(1,2), (10)
co(r) = cSH(p),
cer(1,2) = (ar)c'(1,2). (11)

Similarly, for & we get

hSP8(1,2) = hy(r) + hey(1,2), (12)
ho(l’) - hiso—SHS(r)’

hey(1,2) = (at)h'(1,2). (13)

Note that this useful separation into reference and excess
parts may also be extended to other correlation functions,
such as y(1,2)=h(1,2)-c(1,2), g(1,2)=1+h(1,2), and the
“cavity” function y(1,2)=g(1,2)/e(1,2). The function vy co-
incides with the OZ convolution integral, without singular &
terms. Similarly, y is also “regular,” and its exact expression
reads y(1,2)=exp[y(1,2)+B(1,2)], where the “bridge”
function B is defined by a complicated cluster expansion
[36-38].

From Egs. (10)—(13), which are merely a consequence of
the particular form of f,, in the splitting of fS%5, one imme-
diately sees that, if the anisotropy degree « tends to zero,
then

lim ¢ (1,2) = lim Ay (1,2) = lim y.(1,2)=0. (14)
a—0 a—0 a—0

Note that the spherically symmetric parts ¢y and /i, must
be related through the OZ equation for the reference fluid
with isotropic adhesion (reference OZ equation)
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ho(r) = co(r) + p f drs co(ry3)ho(rsy). (15)

Thus, substituting ¢ and i of Eq. (7) with ¢y+ce and hy
+h., respectively, and subtracting Eq. (15), we find that c.,
and h,, must obey the following relation:

hex(laz) = Cex(lsz) + pf drS[CO(r]3)<hex(3’2)>Q3

+ <Cex(l73)>ﬂ3h0(r32) + <Cex(l’3)hex(372)>ﬂ3]7
and when
<Cex(1’3)>ﬂ3 = <hex(3’2)>ﬂ3 =0, (16)

the orientation-dependent excess parts c., and /., satisfy the
equality

hex(l’z) = Cex(l’z) + PJ dr3<cex(] ’3)hex(372)>035 (17)

which is decoupled from that of the reference fluid and may
be regarded as an OZ equation for the excess part (excess OZ
equation). As we shall see, condition (16) is satisfied in our
scheme.

We stress that, in principle, the closures for Egs. (15) and
(17), respectively, might be different. In addition, although
the two OZ equations are decoupled, a suitably selected clo-
sure might establish a relationship between F, and F(F
=c,h).

C. Percus-Yevick closure with orientational linearization
For hard-core fluids, /2 and ¢ inside the core are given by

h(1,2)=-1 for0<r<o,

c(1,2)==[1+v(1,2)] for0<r<o. (18)
At the same time, we have the following exact relations:

h(1,2)=¢g(1,2) - 1 =e(1,2)y(1,2) - 1,

c(1,2) = f(1,2)[1+ 1 (1,2)] + e(1,2)[y(1,2) = 1 = 1(1,2)].

Since ¢, h, and g are discontinuous for hard-core fluids
and involve & terms for sticky particles, it is more convenient
to define closures in terms of y and 7, which are still con-
tinuous and without & singularities. The Percus-Yevick ap-
proximation for molecular fluids with orientation-dependent
interactions corresponds to assuming

YY(1,2)=1+%(1,2)
and thus, for the DCEF,
Y(1,2) =f(1,2)[ 1 + 1(1,2)], (20)

which implies that ¢ vanishes beyond the range of the poten-
tial.

However, the dependence of y(1,2) on angles may still be
very complex. A possible procedure is to perform a series
expansion of all correlation functions in terms of an infinite

everywhere, (19)
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set of rotational invariants, which are angular basis
functions—related to the spherical harmonics—having the
property of rotational invariance valid for homogeneous flu-
ids [33]. Unfortunately, the full PY approximation requires
an infinite number of expansion coefficients for both ¢(1,2)
and h(1,2). This approach is usually impracticable, but
sometimes even unnecessary, as it is possible that the most
significant angular basis functions are included in a small
closed subset of that infinite set. Indeed this happens, for
instance, in the DHS model within the MSA [3], where the
set {1,A,D} is the required subset. Although this does not
happen in our model, we shall argue that the same truncation
is sufficient due to the dipolar symmetry of the anisotropic
adhesion.

Indeed, a natural assumption is that the only nonzero har-
monics in ¢(1,2) and h(1,2) are those contained in f(1,2)
and those which can be obtained from that set by convolu-
tion [30]. Now, the angular basis functions included in our f
bond are only 1 and D, but the convolution of two f bonds
involves the angular average of two D’s, which yields [3]

<D(k7 Ql 793)D(k’ QS’ QZ)>Q3

[D(kvﬂlvﬂz) + 2A(k’91592)]

W | =

in k space, and thus generates also A. Consequently, we will
expand any angle-dependent correlation function F as

F(1,2) = Fy(r) + FA(nA(1,2) + Fp(r)D(1,2) + -+ -,
1)

neglecting all higher-order terms. In other words, we assume
that all angular series expansions can be fruncated after these
first three terms, linear with respect to the angular basis
functions. Using this spirit in the PY approximation, given
by Eq. (20), we obtain the following PY correlation functions
with orientational linearization (OL):

cPYOL(1,2) = ¢o(r) + A (N A(1,2) + cp(r)D(1,2)
= co(r) + (a)[ch(NA(1,2) + c[(D(1,2)],
(22)
and
RPY-OL(1,2) = ho(r) + ha(r)A(1,2) + hyp(r)D(1,2)
= ho(r) + (@[ AL(NA(1,2) + h()D(1,2)],

(23)
where
co(r) = Agod(r - o)
cA(r) = Apo8(r - o) for r = o, (24)
ep(r) = Apodr- o)
with

Ay =ng(0')t,

Ay=yR (o),
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Ap=[yp' (@) +ayg ()], t=yp (@)r+ah,, (25)

Yo (r) =1+ y(r),
YRU(r) = ya(r) = (an)yi(r),

yoX(r) = yp(r) = (an)y}(r). (26)

Clearly for f(1,2) no truncation is required, as the expansion

fo(r) = f5585(r) = 5(r) + 10 8(r - 0),
fa(r) =0,

fp(r) = (at)od(r - o) (27)

is exact. It can be shown that ¢(1,2) and h(1,2) must have
the same approximate form in view of the OZ equation, Eq.
(7).

The solution of the original OZ equation (7) is then
equivalent to the calculation of the radial coefficients c(r),
ca(r), ep(r) and hy(r), ha(r), hp(r), which are the projections
of ¢(1,2) and h(1,2) onto the angular basis {1,A,D}. The
core condition on h, Eq. (18), becomes

ho(r) = - 1
ha(r)=0 for0<r<o. (28)
hp(r)=0

Note that in the zero density limit ¥(1,2)
=pfdr3(c(1,3)h(3,2))“3 must vanish, and thus yPY(1,2)
—1, ie.,

limyg (r) =1, limy¥(r)=1lim yP¥(r) =0,

p—0 p—0 p—0
while both ¢(1,2) and A(1,2) must reduce to f(1,2) as fol-
lows:

limp_@ Fo(r) Zfo(r) 5
limpHO FA(") = ,0

lim, o Fp(r) =fp(r) (F=c,h),
and

lim Ag=t, lim Ap,=0, lim Ap=art. (29)
p—0 p—0 p—0
Moreover, as «— 0 all A and D coefficients of ¢, i, and y
vanish, so that the isotropic adhesion case is recovered. Fi-
nally, it is also worth stressing that the same 6 term arises in
¢, h, and g, that is,

F(1,2) =Freg(1’2) +Fsing(172) (F=C’h7g)7

where F, is the “regular” part (i.e., the part with no & sin-
gularity, and—at most—some step discontinuities), while
Fine(1,2)=08(r—0)A(1,2) is the singular term representing
the anisotropic surface adhesion [with A(1,2)=A,
+AAA(1,2)+ApD(1,2)].
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D. Integral equations for the projections of ¢ and &

In the following, we extend Wertheim theory [3] to our
model, in order to obtain the radial projections of ¢ and h.
The PY-OL approximation to the excess anisotropic part of
the correlation functions is
cop OH(1,2) = ea(NA(1,2) + ep(r)D(1,2),

€x

RPYOL(1,2) = hy(NA(1,2) + hp(nD(1,2),  (30)

thus  verifying the required property (ce.(1,3))q,
=(hex(3,2))q,=0 described in Sec. III, and allowing the
splitting of the molecular OZ equation into a reference and
an excess part.

The first part is the reference PY equation, and coincides
with that solved by Baxter for the fluid with isotropic adhe-
sion [11,12] as follows:

ho(r) = co(r) + p(hgxco)

hy(r)=-1, 0<r<o

co(r)=Agod(r-0o), r=o, (31)

where the symbol * denotes spatial convolution, i.e.,
(A% B)(r15)=JA(r3)B(ry,)dr;.

The second part is the excess PY-OL equation, given by
Eq. (17) coupled with the PY-OL closure. Following an ex-
tension of Wertheim’s approach, as described in detail in
Appendix A, Eq. (17) can be split into the following system
for the A and D projections of ¢ and h:

1
ha(r) = car) + Splearhy + 2chxhi).

1
h%(r) = c%(r) + gp(cA*h% + COD*hA + c%*h%), (32)

where ¢))(r) and h)(r) are defined by the relationship

- Fp(x)

Fo(r)=Fp(r) =3 f - (F=c,h),  (33)

r

whose inverse is [3]

3 r
Fp(r)= Fg(r) - —sf Fg(x)xzdx. (34)
Jo
The core conditions become
ha(r)=0
. for 0 <r<o, (35)
hp(r)=-3K
with
“h
K= f oW, _ Kieg + Ap, (36)
- X

o
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“h
Ko = J Lr;g@dr. (37)

Note that the presence of the § singularity in /,(x) requires
the specification of o~ as the lower integration limit, unlike
the case of Ref. [1] where only the regular part K., is
present. Moreover, since hD(r)=ath1T)(r), from Eq. (36) one
could also write

K=atk, (38)

which shows that K is related to the anisotropy degree, and
vanishes both in the symmetric adhesion case (@=0) and in
the HS limit (r=0). Since hp(r) — fp(r)=(ar)ocS(r— o) in the
zero density limit, one then finds that

lim K = at. (39)

7—0
Finally, the PY-OL closure for the new DCFs reads
caA(r)=Ap od8(r—o
é( )=Ayod(r - o) _ . (40)
cp(r) = Apad(r - o)

(for simplicity, here and in the following we omit the super-
script PY-OL).

E. Decoupling of the integral equations

It is possible to decouple the two equations for A and D
coefficients by introducing two new unknown functions
which are linear combinations of the previous ones. As
shown in Appendix A, if we define F,(r) and F,(r)(F
=c,h) through the relations

Fi(r) = (L) '[Fa(r) - Fj(0)],

Fy(r) = Ly '[Fa(r) +2Fp(n)]  (F=c,h),
then we get the OZ equations

hy(r)=ci(r) + py(hy*cy),

hy(r) = cp(r) + pa(ha*cy),

with the following densities and core conditions:

p1=Lyp,
p2=Lop,

h](r) =K//:,l,

for0<r<o.
hy(r)==2K/L,

The decoupling of the three different projections of ¢ and
h is remarkable: the molecular anisotropic OZ equation re-
duces to a set of three radial integral relations, which may be
regarded as OZ equations for three “hypothetical” fluids (la-
beled as 0, 1, 2) with spherically symmetric interactions. We
stress that there is not a unique solution to the decoupling
problem, since—in principle—there exist infinite possible
choices for (L, L,). The final results are clearly independent
of the values of (£;,L,).
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In the present paper, we adopt Wertheim’s choice, i.e.,
L,=-K and £,=2K, which leads to

FI(7) = S LR~ Fy(0)]
1 1 (F=c,h), (41)
Fyr) = g{[F%(r) + EFM}

p1=—Kp
p2=2Kp,
l’l](r) =-1
for0<r<o (42)
]’lz(r) =—1

(in Ref. [1], F, and F, were denoted as F_ and F,, respec-
tively).

Note that the auxiliary fluids have densities different from
that of the reference fluid (the negative sign of p, poses no
special difficulty).

We can also write

Fm(r) = Fm,reg(r) + Amaﬁ(r— 0-)’ (43)
with
1
Fl,reg(r) = ﬁ[}?%,reg(r) - FA,reg(r)]’
1 1
F2,reg(r) = 5( F(L)),reg(r) + EFA,reg(r)i| P (44)
and

07

h = '
Dases(r) h%,reg(r) + 3r_3|:Krega3 - f h%,reg(x)xzdx] , r>o.

At r=20hp o and h)

Dreg have the same discontinuity. We
also get

hD,reg(U+) = ho

D,reg(0-+) + 31<reg' (49)

Clearly, these results must agree with those obtained from
Eq. (33), i.e.,

hO(r) = hp(r) = 3¢(r),

Y(r) = f hp(x)x~'dx=Apb(o—r) + f hD,reg(x)x_ldx.

In order to recover Eq. (49) along this second route, note that
#(r) is not continuous at r=o. In fact, from Egs. (36) and

(37) follows y(07)=K whereas y(0*)=K,,.
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1
Av= Ay Ay
1 . . 1
= 3_I([hD,reg(0- ) - hA,reg(U )]t + a3_I(A0’

1 1
A2 = 3—K(AD + EAA>
1

1 1
= 3_I{|:hD,reg(0'+) + EhA,reg(U+):|t+ ag(AO (45)

(since 7...(U)zh...,reg(0+)_c...,reg(0+)v and C...,reg(0'+)=0
within the PY-OL closure).

Knowing the correlation functions F(r) and F,(r) (with
F=c,h), one can derive Fa(r), Fg(r), ie.,

Fa(r) = 2K[F,(r) = Fy(r)],

For) = 2K{F2(r> s éFl(r)} , (46)

and

Aa=2K(Ay - Ay),

AD:K(2A2+A1). (47)

Finally, from F,(r), F%(r) one has to evaluate F,(r),
Fp(r), by employing Eq. (34). We note the following points:

(i) Insertion of hOD(r)=h0D,reg(r)+AD05(r— o) into Eq. (34)
yields hip(r)=hp e(r) + Apodlr—o), with

0<r<o,
(48)

(i) Similarly, for cp(r) we obtain cp(r)=cp eg(r)
+Apod(r—o), with

CD,reg(r) = C?),reg(r) - SF_S |:f C%,reg(x)xzdx + ADO'3 0(7 - U) >
0

(50)

since [(8(x—0)x*dx=06(r—0c). On the other hand, from
Eq. (33) one easily finds that

cp(r) = c(l))(r) forr=o. (51)

(iii) By applying the relationship (34) to cp(r), using Eq.
(51) and noticing that c¢p(x)=0 for r> ¢ within the PY-OL
approximation, leads to a sum rule as follows:
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f c%()c)x2 dx = f C%Yreg()c))c2 dx+Apa®=0, (52)
0 0

that we will exploit later.

IV. ANALYTIC SOLUTION

We have seen that the molecular PY-OL integral equation
(IE) for our anisotropic-SHS model splits into three IE’s,

hm(r) = Cm(r) + pm(hm*cm),

hy(r)==1, 0<r<o (m=0,1,2),

cp(r)=A,,08(r-0), r=o,
(53)
where
Po=P;
p1=—Kp,

and the “amplitudes” of the adhesive o terms are

A() = [1 + hO,reg(0-+)]t = ng(U-)t,

Ap=hyreg(@t+P=y Y (@)t + P (m=1,2), (55)

with
layb¥(0) K., lah, K
p=——0 7 e, _ 0 Creg, (56)
3 K K 3 K K

Here, the new expressions of A; and A, have been obtained
from Egs. (45) with the help of Egs. (49) and (44).

The essential difference with respect to Ref. [1] lies in the
closure, which is—of course—related to the model potential.
While Wertheim’s paper on DHS [3] employed the MSA
closure, which performs properly for long-ranged electro-
static potentials at a low strength of interaction, our PY-OL
closure is more appropriate for the short-ranged potential of
the present model.

The first integral equation IEO is fully independent,
whereas IE1 and IE2 depend on the solution of IEQ (unlike
the case of Ref. [1]), because of the presence of A inside A,
and A,. While IEQ is exactly the PY equation for the refer-
ence SHS with isorropic adhesion solved by Baxter [11,12],
IE1 and IE2 are different from both Wertheim’s MSA solu-
tion for DHS and Baxter’s PY solution for SHS. We remark
that the closures for IE1 and IE2 are not PY as A, and
A,—given by Eq. (55)—differ, by the term P, from those
appropriate for the PY choice, corresponding to AfnY
_PY
=y,, (o)t

Consequently, IE1 and IE2 can be reckoned as belonging
to a class of generalized PY (GPY) approximations, intro-
duced in Ref. [39], which admit an analytic solution. Thus,
the PY-OL closure for ¢(1,2) leads to a PY integral equation
for c((r), coupled to two GPY integral equations for c;(r)
and ¢, (r) [which are linear combinations of c,(r) and c%(r)].
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On comparing the three IE’s and their closures given by
Eq. (53), it is apparent that they have exactly the same form,
but differ by the density p,, and the expression for A,,. The
first integral equation IEQ corresponds to an isotropic SHS
fluid with density p. On the other hand, IE1 and IE2 refer to
“auxiliary” isotropic SHS fluids with densities p; and p,, and
adhesion parameters A; and A,, respectively. Note that, ac-
cording to Egs. (45), A,, is not evaluated at the actual density
P, of the auxiliary fluid, but at the real density p. These
remarks strongly suggest that the solutions of IEO, IE1, and
IE2 can be expressed in terms of a unigue solution—the PY
one for isotropic SHS—by changing only p,, and A,,. This
can be achieved by the formal mapping

Fo(r) = F*SU5(r; 999, A)
Fy(r) = F* (1, A)
Fy(r) = F*S8(r; 5, A)

(F=gq,c,h), (57)

where 7,= 7 is the real volume fraction, while #, and 7, are
“modified volume fractions” of the auxiliary fluids 1 and 2,
i.e.,

n=n= (m6)pc,

m=-Kn,

m=2Kn. (58)

In Egs. (57) ¢g(r) denotes the Baxter factor correlation func-
tion, introduced in the next section.

It is worth noting that this result for SHS mirrors the
analog of the MSA solution for DHS [3] where all three
harmonic coefficients can be expressed similarly, in terms of
a single PY solution for the reference HS fluid.

A. Baxter factorization

We shall now solve Egs. (53) by using the Wiener-Hopf
factorization due to Baxter [12]. Let us recall its basic steps.
After Fourier transforming the OZ equation for a one-
component fluid with spherically symmetric interactions, one
assumes the following factorization:

1 - pc(k) = Q(k)Q(- k),

©

ok)=1- 27Tpf q(r)e*dr. (59)

0
Then it can be shown that the introduction of the “factor
correlation function” ¢(r) allows the OZ equation to be cast
into the form [12]

o0

re(r)=—q'(r) + 27Tpf dugq(u)q' (r+u),
0

[

rh(r)=-q'(r) + 27Tpf duq(u)(r—u)h(|r —u
0

), (60)

where the prime denotes differentiation with respect to r.
Solving these Baxter equations is tantamount to
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determining—within a chosen closure—the function ¢(r),
from which ¢(r) and h(r) can be easily calculated. It is also
necessary to remember that, for all closures leading to c(r)
=0 for r> o, one finds ¢(r)=0 for r> o [39].

On applying Baxter’s factorization to Egs. (53), we get

(o8

rhm(r) == q;n(r) + 27TpmJ dMQm(u)(r - u)hm(|r - I/l|) .
0

(61)

with m=0,1,2. Now the closure c,,(r)=A,,08(r—0c) for r
= ¢ implies that the same & term must appear in h,,(r). Thus,
for 0<r<o, using h,,(r)=-1+A,,08(r-0o), we find
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q,(r)=a,r+b,0- A,,028(r - o),

with

Ay = 1- prmf dMQm(u)’
0

o

b,, 0= 277pmf dugq,,(u)u. (62)
0

The & term of ¢, (r) means that ¢,,(r) has a discontinuity
gn(0%) =q,(07)==A,,0%, with ¢,,(c")=0. Integrating g/ (r),
substituting this result into Egs. (62), and solving the corre-
sponding algebraic system, we find the following solution:

1
—a,(r-o0)?+(a,+b,)o(r-o0)+A,0°, 0<r<o
qm(r) =12 (63)
0 otherwise,
127]/’”/\"1
apy = aHS( 77m) - 1 5 (64)
/™
6 mAm
b= b"S(p,) 4+~ (65)
1- M
M= (71/6)p,, 0, (66)
1+2x 3x
HS HS
= , b = 67
a>(x) (1_xp (x) e (67)
From the first of Eqs. (60) we get the DCFs ¢,,(r) =¢,, 1eo(r) + A,,,08(r—0), Where ¢, ¢,(r)=0 for r=0, and for 0<r<o,
1 3 -1
Cim reg(r) == 77mai<1> + 677171[(am + bm)2 - 2amAm]<£> - afn - 1277mA%n<£> . (68)
’ 2 o o o

The second of Eqs. (60) yields the total correlation functions /,,(r)=h,, ;eo(r)+A,,08(r—0a). For r> o, Eq. (61) becomes

r—ao

0

f dMQm(u)Hm,reg(r_u)’
0

Hm,reg(r) = 1277m0-_3

where H,,(r) =rh,,(r). Due to the last term of Eq. (69) and
the discontinuity of g,,(r) at r=0, h,, ,(r) has a jump of at
r=2o0 [40’41] hl?z,reg(20-+)_hm,reg(zo-_)z_6 7]mA;2n

B. An important relationship

In Appendix B it is shown that a remarkable consequence
of the sum rule (52) is the condition

duqm(u)Hm,reg(r_ u) + f duqm(“)(“ - r) + Amo—zqm(r - 0-)» o<r<2c

(69)
r>2o,

(12=a1, (70)

which will play a significant role in the determination of the
unknown parameters A, A,, and K (see Appendix B).

C. Reference fluid coefficients

The m=0 case corresponds to Baxter’s PY results for the
reference fluid of isotropic SHS particles [11,12]. We have
qo(r)=¢""3"(r; 7, Ap), and
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co(r) = A SH(rs , Ag) = g > (rs 7, Ag) + Agardlr = o),

reg

ho(r) = BSHS(ry A ) = By S (ri . Ag) + Agord(r — o)
(71)

(for simplicity, we omit—here and in the following—the su-
perscript PY).

D. A and D coefficients

We write g,,(r)=¢"""5(r; 5,,,A,,) with m=1,2. Then,
(i) For the A coefficients, after recalling Eq. (43) and ex-
ploiting Egs. (47), we end up with
CA(F) = ZK[CO,reg(r;ZKnsAZ) - CO,reg(r;_ KW’AI)]

+ Apad(r - o),

hA(r) = ZK[hO,reg(r;2K779A2) - h(),reg(r;_ KnsAl)]
+ Apo8(r-o). (72)

(ii) For the D coefficients, we get

1
COD(r) = 2K cO,reg(r;2K77’A2) + ECO,reg(r;_ Kn’Al):|

+Apod(r-o),

1
hOD(r) =2K hO,reg(r;zK”]’AZ) + EhO,reg(F;_ K”’Al):|

+ Apod(r-o). (73)

Finally, from cOD(r) and hOD(r) we can calculate cp(r) and
hp(r), as described by Egs. (50) and (48), respectively.

In short, (a) our PY-OL solution—{cy,cy,cp} and
{hg,ha,hp}—satisfies both the PY closures and the core con-
ditions; (b) all coefficients contain a surface adhesive & term;
and (c) {hg,ha,hp} all exhibit a step discontinuity at r=20.

V. EVALUATION OF THE PARAMETERS K, A;, AND
A,

The calculation of the Baxter functions ¢,,’s (m=0,1,2)
requires the evaluation of K, A, and A,, for a given set of «,
7, and ¢ values, a task that we address next.

A. Exact expressions

Four equations are needed to find the three quantities
A,=q,,(07)/6*(m=0,1,2), as well as the parameter
K(7,t,a). We stress that the almost fully analytical determi-
nation of these unknown parameters was lacking in Ref. [32]
and represents an important part of the present work. Our
detailed analysis is given in Appendix B, and we quote here
the main results.

(i) For Ay, the same PY equation found by Baxter for
isotropic SHS [11,12]

12
1279tA2 - (1 + 1—”;)1\0 + (e =0. (74)
-7

Only the smaller of the two real solutions (when they exist)
is physically significant [11,12], and reads
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=
=
1

yo (o)t

S ()t
1 12 127 \? '
—{1+ 74 \/<1+ nt) —487/ygs(77)t2J

2 -7 -7

(75)

(ii) For A; and A,, two other quadratic equations, i.e.,

12
M ;

12nmrAfn—<1+ )Am+h‘;s(nm)t=—7> (m=1,2).

m

(76)

(iii) The fourth equation is the following linear relation-
ship between A; and A,:

12mA; 1299 A _ mA-m) mé-m) (77)
L= 1-m  (U-m) (A=)’
which stems from the condition a,=a;.
The analysis of Appendix B gives
As(y, 51, @) = Ay (10, 1,1, @), (78)
with
A, =A+AY (m=1,2), (79)
1 1( m 7 ) 1 x(1 +4x)
A==+ —+—|=c+—7""""—"7"—,
3 4\l-7n 1-n/ 3 4(1+x)(1-2x)
(80)

7 )
A = ——W, A= —W, 81

PTal-m) 0 T A=) &)
where we have introduced 7;=-x, 7,=2x (x=Kn), and Wg"
is defined in Appendix B. All these quantites are analytic
functions of x=K#. Thus, to complete the solution, we need
an equation for K, which can be written as

PY
K=k, with k=200 (82)
Z(n1, 1s1)
3 1< 129,A
Z=2(A\+A)-31 =3 {127;,,1/\51—m
2 2m=1 - m
Hs Kie
) [+ (53)

and lim,,_, Z(7,, 7,,t)=1. Insertion of found expressions for
Ay, Ay, and K, (see Appendix B) into Eq. (82) yields a
single equation for K that we have solved numerically, al-
though some further analytic simplifications are probably
possible. Our solution is then almost fully analytical, as only
the final equation for K is left to be solved numerically.

B. Approximate expressions

For practical use we next derive very accurate analytical
approximations to K, A, and A,, which provide a useful tool
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FIG. 2. (Color online) Comparison between exact numerical and
approximate analytical results for the parameters K, A, and A, as a
function of ¢, for anisotropy degree a=1/2 and two values of the
packing fraction: 7#=0.01 (top panel) and 7=0.1 (bottom panel).

for fully analytical calculations. Since in all cases of our
interest we always find x=K7<<1, a series expansion leads
to

Wt = %(1 +50)t+ 0%, (84)

and, consequently,

x(1 + 5x) x(1+5x)
AF="———"1+0(), AS=- t+ 0.
T a(1m2g O Ay O
(85)
Similarly we can expand Z in Eq. (83) as
Z(x,0) =1 + z;(Dx + 2,(1)x* + O(x%), (86)

with
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Zl(t)zzlt(3+ 111),

Zz(t)=i(15+61t—4t2). (87)

Insertion of this result into Eq. (82) yields a cubic equation
for K,

L) PK +2,() K> + K - atyOPY(O') =0,

which, again with the help of Eq. (82), is equivalent to a
cubic equation for Z,

7' =72+ 2 (0l atys () )Z + (0 atyy " (0) 7] =0.
(88)

The physically acceptable solution then reads

1
Zna)=Z(1+ B+ B - +B- B =), (89)
where

9 2
B=1+ 25 0lant!(0)n] + So(dlant (o),

C=1+3z,(0)aty" (o) 7). (90)

In conclusion, our approximate analytic solution for K, A,
and A, includes three simple steps: (i) calculate K by using
Eqgs. (82), (89), (90), and (87); (ii) evaluate x=K; and (iii)
solve for A; and A, by means of Egs. (80) and (85).

C. Numerical comparison

In order to assess the precision of previous approxima-
tions, we have calculated K, A;, and A, by two methods: (i)
solving numerically Egs. (B8), and (ii) using our analytic
approximations. After fixing a=1/2, we have increased the
adhesion strength (or decreased the temperature) from =0
(HS limit) up to =0.8, for some representative values of the
volume fraction (%=0.01, 0.1, 0.2, and 0.4). The maximum
value of 7 corresponds to 7=1/(12¢) = 0.1, which lies close to
the critical temperature of the isotropic SHS fluid. On the
other hand, 7=0.01 has been chosen to illustrate the fact
that, as #— 0, the parameter K tends to at. The linear de-
pendence of K on ¢ in this case is clearly visible in the top
panel of Fig. 2.

In Figs. 2 and 3 the exact and approximate results for K,
Ay, and A, are compared. The agreement is excellent: at »
=0.1, 0.2, and 0.4, the relative error on K does not exceed
0.1%, 0.4%, and 1%, respectively, while the maximum of the
absolute relative errors on A; and A, always remain less than
0.05, 0.2, and 0.6% in the three above-mentioned cases. It is
worth noting that, as 7 increases, the variations of A and A,
are always relatively small; on the contrary, K experiences a
marked change, with a progressive lowering of the relevant
curve.

021201-11



GAZZILLO, FANTONI, AND GIACOMETTI

0-4 T T T I T T T I T T T I T T T
;___._,,,_:.:,:.:.*.:Y:A:V’._'.:.::,::._._._.._._.__,
0.3 | .
S | 7n=0.2 ]
02 i
2 ]
L * Ay 4
—— - A=
0.1 . PPN o
r — —'- Ap—approx
L 3 K 4
| K-approx i
OO L L L L | L L L | L L L | L L L i
0.0 0.2 0.4 0.6 0.8
(a) t
0-4 T T T I T T T I T T T I ’I ’:' ’_’I -
:‘A_“F_:_:..”:.f.:.._ —— e — — _,_.._______:
03 —
2| 7n=0.4 |
<02 N
Mﬁ - -
L * Ay 4
— A —
01k . ; approx _|
r ——'- A;—approx
L o K 4
| K-approx i
00 / L L L | L L L | L L L | L L L i
0.0 0.2 0.4 0.6 0.8
(b) t

FIG. 3. (Color online) Same as in Fig. 2, but for 7=0.2 (top
panel) and 7=0.4 (bottom panel).

VI. SOME ILLUSTRATIVE RESULTS ON THE LOCAL
ORIENTATIONAL STRUCTURE

Armed with the knowledge of the analytic expression for
the g,,’s a rapid numerical calculation of the three harmonic
coefficients {hy,ha,hp} appearing in

gV ON(1,2) = 1 + ho(r) + ha(r)A(1,2) + hp(r)D(1,2)
(91)

can be easily obtained as follows. From the second Baxter IE
(60), one can generate h(r) directly from ¢(r), avoiding the
passage through c(r). From {gy,q,,q,} one first obtains
{ho,h,hy} by applying a slight extension of Perram’s nu-
merical method [42] and then derives {h, 4 ,hp}, according
to the above-mentioned recipes.

The main aim of the present paper was to present the
necessary mathematical machinery to investigate thermo-
physical properties. We now illustrate the interest of the
model by reporting some preliminary numerical results on
the orientational dependence of g"Y"°X(1,2)—i.e., on the lo-
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e O
1 2

FIG. 4. (Color online) Illustration of the simple configuration
discussed in the text and chosen to define some radial sections
through the multidimensional plot of g(1,2).

cal orientational structure—as a consequence of the aniso-
tropic adhesion. A more detailed analysis will be reported in
a forthcoming paper.

Consider the configuration depicted in Fig. 4. Let a ge-
neric particle 1 be fixed at a position r; in the fluid with
orientation u,, and consider another particle 2 located along
the straight half-line, which originates from the center of 1
and with direction u;. This second particle has then a fixed
distance r from 1, but can assume all possible orientations
u,, which—by axial symmetry—can be described by a single
polar angle 6= 6, (i.e., the angle between u, and u,) with
respect to the intermolecular reference frame. Within this
geometry, we have (6;,¢,)=(0,0) and ¢,=0, obtaining
A(1,2)=cos #, D(1,2)=2cos 6. Consequently, g(1,2)
=g(r,0,,9,,0,, ¢, reduces to

8(r,0) = go(r) + [hx(r) + 2hp(r)Jcos 6, (92)

where 0= 6,, and g,(r)=1+hy(r) is the radial distribution
function of the reference isotropic SHS fluid.

Clearly, g(r, 6) is proportional to the probability of find-
ing, at a distance r from a given molecule 1, a molecule 2
having a relative orientation 6. We consider the three most
significant values of this angle: (i) #=0, which corresponds
to the “parallel” configuration of u; and u,; (ii) #=7/2, for
the “orthogonal” configuration; and (iii) #=1r, for the two
“antiparallel” (head-to-head and tail-to-tail) configurations.
From Eq. (92) it follows that

g(r) = g(r,0) = go(r) + [ha(r) + 2hp(r)],
£7"(r) = g(r,m/2) = go(r),

() = g(r,m) = go(r) = [ha(r) + 2hp(M]. (93)

Note that g°"°(r) coincides with the isotropic result g,(r).

In Fig. 5 we depict the above sections through the three-
dimensional surface corresponding to g(r,6), i.e., gP*(r),
g°™(r), and g™P(y), for 7=0.3 with =0.2 and r=0.6, re-
spectively, at the highest asymmetry value admissible in the
present model, i.e., @=1/2. The most significant features
from these plots are (i) g™iP¥(g*)> gP¥(¢*) and (ii) for r
>2ggiiPar(y) ~ gP¥(r) =~ g/(r), i.e., the anisotropic adhesion
seems to affect only the first coordination layer o<r<2g,
around each particle.

The interpretation of these results is the following. In
view of (i) we see that the parallel configuration is less prob-
able than the antiparallel one at contact. Such a finding, to-
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FIG. 5. (Color online) Sections through g(1,2), with particles 1
and 2 in the configuration shown by the previous figure, calculated
as a function of r for fixed relative orientations: #=0 (parallel con-
figuration), =1/2 (orthogonal configuration), and 6= (antiparal-
lel configurations).

gether with (ii), means that chain formation characteristic of
polymerization is inhibited by the short-ranged anisotropic
adhesion exploited here. This strictly contrasts with the case
of long-ranged DHS fluids, where it is believed [7,8] that
chaining phenomena might preempt the gas-liquid transition.
This specific feature of the present model is extremely inter-
esting and we plan a throughout investigation on this topic in
a future publication.

VII. PHASE STABILITY

In view of previous findings, a very natural question is
whether the addition of our anisotropic sticky term to the
potential changes phase stability and phase transition curves
with respect to the corresponding isotropic case. We believe
the answer to be positive. This is strongly suggested by the
results obtained for similar anisotropic models, such as hard

PHYSICAL REVIEW E 78, 021201 (2008)

spheres with sticky points [13-21] or sticky patches
[10,22-27].

We now briefly comment on this issue. Within our formal-
ism, this problem of stability can be conveniently analyzed
using standard formalism devised for this aim [44—47]. We
start from the stability condition with respect to small but
arbitrary fluctuations of the one-particle density p(1) from
the equilibrium configuration, denoted as “eq” [45-47],

fd(l)fd(z){g(l’z)—c(1,2)] 5p(1)8p(2) > 0.
p(1) eq
(94)

Here d(i) stands for dr; d();, i=1,2, and we assume the
equilibrium one-particle density to be p/4 [45-47].

We expand the fluctuations both in Fourier modes and in
spherical harmonics [44]

+0 +
op(j) = op(r;, Q) = f 3N 2 Sp(Kk)Y,,(Q).
(2m) 1=0 m=-1
(95)
Using the orthogonality relation [44]
f dQ Y:n(Q)Yl’m’(Q) = 5][!5”",”! N (96)

standard manipulations [47] show that condition (94) can be
recast into the form

+1y +ly

EEE

3
11,15=0 m==l my=—I, 2 )

>0, (97)

5pllml(k) 5Pl m (k)Allmllzmz(k)

where the matrix elements ’leml 1,m,(K) are given by
1m1121712(k) ( 1)ml_5l 125m1,—m2
- j aq, f 40, ()Y, ()

X J dre™Te(r,Q,,0,). (98)

The problem of the stability has been reported to the char-
acter of the eigenvalues of matrix (98). This turns out to be
particularly simple in our case. Using the results (A3) it is
easy to see that

f dreik'rc(l‘,ﬂl,ﬂz) = Eo(k) + EA(k)A(Ql,Qz)
+cp(k)D(€21,0,0).  (99)

Insertion of Eq. (99) into Eq. (98) leads to
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lymylymy

~ 4 _
Allmllzmz(k) = (_ 1)m|7511125m1,—m2 - [CO(k)I(O)

~ A ~ D
+ cA(k)I;1”)1]lzm2 + cD(k)Iﬁln)ﬁlzmz]’

(100)

where we have introduced the following integrals, which can
be evaluated in the intermolecular frame, using standard
properties of the spherical harmonics [44]:

0)
lymylymy

= f dQl f sz Y[]ml(Ql)lemz(‘Q‘Z)

:477511051205m105m207

I i, = f dQ, j A, Y, 0 ()Y, (Q2)A(Q, Q)

= §W511151215m105m20’

IED ) (cos )

imylmy

= f dQl f dQZ Yllml(‘Q’l)lemz(QZ)D(Ql"Q’Z"Q’k)

4
= 73},161,10m,00m,02P2(cos 0), (101)
3 1 2 1 2
and where P,(x)=(3x*>~1)/2 is the second Legendre polyno-
mial.
Hence, the matrix (98) is diagonal and the relevant terms
are

Agooo(k) = 47{% - Eo(k)] , (102)

whose positiveness is recognized as the isotropic stability
condition, and

Ajpio(k) = 477{%) - é[EA(k) +2P,(cos G)ED(k)]}-
(103)

All remaining diagonal terms have the form A nio=41/p
>0.

In order to test for possible angular instabilities, we con-
sider the limit k— 0 of Eq. (103), namely,

Ajg10(0) = 47”{1 - §[5A<0> +2P,(cos 0)5D(0)]}.

(104)

This can be quickly computed with the aid of Egs. (46) and
(59), the fact that ED(O)=E%(O) and the identity (70). We find

47 ,

Ajo10(0) = 701, (105)

which is independent of the angle 6. This value is found to
be always positive as a; >0 (see Fig. 6). Within this first-
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a;=a,

0'95|||I|||I|||I|||I|||
0.0 0.2 0.4 0.6 0.8 1.0

(b) t

FIG. 6. (Color online) Evaluation of quantities aq (top panel)
and a,=a, (bottom panel) as a function of ¢ for various packing
fractions ranging from 7=0.01 to 7=0.4. These are computed from
Eq. (64) with m=0, 1. Note that for both #=0.1 and 7=0.2, ag=0
corresponds to the onset of isotropic instability.

order approximation, therefore, the only instability in the
system stems from the isotropic compressibility. The reason
for this can be clearly traced back to the first-order approxi-
mation to the angular dependence of the correlation func-
tions. If quadratic terms in A and D were included into the
series expansion for correlation functions, the particular
combination leading to a cancellation of the angular depen-

dence in the stability matrix A, (0) would not occur,
leading to a different result.

This fact is consistent with the more general statement
that, in any approximate theory, thermodynamics usually re-
quires a higher degree of theoretical accuracy than the one
sufficient for obtaining significant structural data. Conceptu-
ally, the need for distinguishing structural results from ther-
modynamical ones is rather common. For instance, in statis-
tical mechanics of liquids it is known that approximating the
model potential only with its repulsive part (for instance, the
hard sphere term) can account for all essential features of the
structure, but yields unsatisfactory thermodynamics. On the
other hand, the present paper refers to a simplified statistical-
mechanical tool, i.e., the OZ equation within our PY-OL clo-
sure, which has been explicitly selected to allow an analyti-

1Mylymy
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cal solution. Our results, however, indicate that the first-order
expansion used in the PY-OL closure can give reasonable
information about structure, but not on thermodynamics,
where a higher level of sophistication is required.

VIII. CONCLUDING REMARKS

In this paper we have discussed an anisotropic variation
of the original Baxter model of hard spheres with surface
adhesion. In addition to the HS potential, molecules of the
fluid interact via an isotropic sticky attraction plus an addi-
tional anisotropic sticky correction, whose strength depends
on the orientations of the particles in dipolar way. By varying
the value of a parameter «, the anisotropy degree can be
changed. Consequently, the strength of the total sticky poten-
tial can vary from twice the isotropic one down to the limit
of no adhesion (HS limit). These particles may be regarded
as having two nonuniform, hemispherical, “dipolarlike
patches,” thus providing a link with uniformly adhesive
patches [10,22-27].

We have obtained a full analytic solution of the molecular
OZ equation, within the PY-OL approximation, by using
Wertheim’s technique [3]. Our PY-OL approximation should
be tested against exact computer simulations, in order to as-
sess its reliability. Nevertheless, we may reasonably expect
the results to be reliable even at experimentally significant
densities, notwithstanding the truncation of the higher-order
terms in the angular expansion. Only one equation, for the
parameter K, has to be solved numerically. In addition, we
have provided analytic approximations to K, A, and A, so
accurate that, in practice, the whole solution can really be
regarded as fully analytical. From this point of view, the
present paper complements the above-mentioned previous
work by Blum er al. [32].

We have also seen that thermophysical properties require
a more detailed treatment of the angular part than the PY-OL
closure. Nonetheless, even within the PY-OL oversimplified
framework, our findings are suggestive of a dependence of
the fluid-fluid coexistence line on anisotropy.

Our analysis envisions a number of interesting perspec-
tives, already hinted at by the preliminary numerical results
reported here. It would be very interesting to compare the
structural and thermodynamical properties of this model with
those stemming from truly dipolar hard spheres [45-47]. The
possibility of local orientational ordering can be assessed by
computing the pair correlation function g(1,2) for the most
significant interparticle orientations. We have shown that this
task can be easily performed within our scheme. This should
provide important information about possible chain forma-
tion and its subtle interplay with the location of the fluid-
fluid transition line. The latter bears a particular interest in
view of the fact that computer simulations on DHS are no-
toriously difficult and their predictions regarding the location
of such a transition line have proven so far inconclusive [43].
The long-range nature of DHS interactions may in fact pro-
mote polymerization preempting the usual liquid-gas transi-
tion [8]. Our preliminary results on the present model
strongly suggest that this is not the case for sufficiently
short-ranged interactions, thus allowing the location of such

PHYSICAL REVIEW E 78, 021201 (2008)

a transition line to be studied as a function of the anisotropy
degree of the model. Our sticky interactions have only attrac-
tive adhesion, the only repulsive part being that pertinent to
hard spheres, whereas the DHS potential is both attractive
and repulsive, depending on the orientations.

Finally, information about the structural ordering in the
present model would neatly complement those obtained by
us in a recent parallel study on a SHS fluid with one or two
uniform circular patches [10]. Work along this line is in
progress and will be reported elsewhere.
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APPENDIX A: EXTENSION OF WERTHEIM’S
APPROACH

The Fourier transform of the excess PY-OL equation, Eq.
(17), reads

hrex(k, Q1,0) = ., (k,Q1, Q)
+ p<cAex(k’ Q 1» QS)ﬁex(k’ 93’ QZ) >QS
(A1)

(the superscripts have been omitted for simplicity). In order
to evaluate the angular average, we first need the FT of ¢ and
h. The FT integral (8) may be rewritten as

fm dr rzfdQ, exp(ik - r)[--]
0

o 2 +1 )
= f dr rZJ dgbf d(cos @) cos -],
0 0 -1

Let us now apply this operator to F.(1,2) (F=c,h), ex-
pressed as

Fex(r,QI’QZ) = FA(r)A(‘Q'I»‘QQ) + FD(r)D(QbQZ’Qr):
(A2)

and first perform the angular integration [d(),, recalling that

[3]

f dQ, exp(ik - r)1 =4mjy(kr)1,
f dQ), exp(ik - r)A(€)},€)y) = 47jo(kr)A(Q,,8),),

f dQ, exp(ik - 1)D(€Q,0,,0,) = = 41j,(kr)D(€1,0,,€),

(A3)

where jo(x)=x"'sinx and j,(x)=3x"3sin x=3x72 cos x
—Jjo(x) are Bessel functions, and
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D(Q,05,Q) =3(u; - K)(uy - k) —u; - uy = Dy(1,2),
with k=k/k. We get
Fo(k,Q,,Q) = FA()AQ,, Q) + Fp(k)D(Q,9,,0Q,),

where F A(k) is the usual FT of the spherically symmetric
function FA(r): F,_(k)=47rf§dx x%jo(kx)F (x). On the other

hand, Fp(k)=—4 odx x%j,(kx)Fp(x), which is the Hankel
transform of Fj(r), may conveniently be considered as the

FT of a “modified” function F%(r), ie., Fp(k) :f%(k). Taking
the inverse FT of Fp(k) yields

r

(A4)

with the help of the identity

J kK25 ) o) = 7_7{ 3 0(x3— r 5(x; r)} .
0 2 X X

In conclusion, the FT of F,(1,2) reads

Fo(k,Q,,0) = FA()AQ,, Q) + F(k)D(Q,,9,,0Q,),
(AS)

with F standing for 4 or c.
Let us now define the angular convolution of two func-
tions as

AeB=BoA = (AQ.0)B(05,0))q,.

Wertheim [3] demonstrated that the rotational invariants 1,
A, and D form a closed group under angular convolution;
that is, the angular convolution of any two members of this
set yields only a function in the same set, or zero, according
to Table 1.

Substituting the expressions for ¢, and flex given by Eq.
(A5) into the angular average éeXOﬁex
=(Cox(K. 03, 0) ey (K, Q5. 0))q , with the help of Table I
we obtain \

P DR
Cex © hex = CAhAgA + cAh%EDk
~07 1 ~0~01
+CDhA§Dk+CDhD§(2A+Dk)'

Inserting this result into Eq. (A1) and equating the coeffi-
cients of A and D separately, one finds that the k-space ex-
cess PY-OL equation splits into two coupled integral equa-
tions, i.e.,

I R _
hy—ca= gp(CAhA +28)),
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~ 1 ~ ~ ~
Iip = & = 3 p(Euhip + phia + Eplip)- (A6)

Coming back to the r space, one gets the following equa-
tions:

1
ha(r)=calr) + gp(CA*hA + 2c%*h0D),

1
RO(r) = c9(r) + gp(cA*h% + O xhy+O%hY). (A7)
In particular, since hp(r)=0 for 0<r<a, Eq. (33) yields
h)(r)==3K for 0<r< o, with K being a dimensionless pa-
rameter defined by

“h
K= J hod) (A8)
o X
The exact core conditions for Egs. (A7) are
hy(r)=0
3( ) for 0<r<o. (A9)
hp(r)=-3K

Now, in the PY-OL closure for the DCFs, Egs. (24), the
closure for cp(r) must be replaced with that corresponding to
cOD(r) (for simplicity, here and in the following we omit the
superscript PY-OL). In order to derive this, let us start from
CD(r) =CD,reg(r) +ADO-5(V_O-)a where CD,reg(r) =fHS(r)y[P)Y(r)
=0 for r= 0. Then Eq. (33) yields

)

c%(r) =cp(r) - SJ CD—’rj;(‘idx -3Ap6(0-r),

since 7 8(x—o)x"'dx=0"'60(c~r) [35]. So we get

coD(r) =cp(r) forr=o, (A10)
and the required new closures are
ca(r)=Apyodé(r—o
3() sodr=o) L (A11)
cp(r)=Apad(r - o)

In order to decouple the two integral equations for A and
D coefficients, we then introduce two new unknown func-
tions, which are linear combinations of the previous ones.
Defining

ﬁnew= )\IF'A"_)\ZI?’OD (F=C,]’l),
and using Egs. (A6) leads to

l;new - 5new = )\I(EA - EA) + )\2(}7?) - CN'(]_)))

LN Calts + Ny(Epy + Ephy) + (2N,

W | =

Requiring the second member of this equation to be propor-
tional to pCpey/tnew—that is, equal to Lp(\Ex+NoE0) (Nifis

+7\2ﬁ%), with £ being the proportionality constant—yields
the following conditions:
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1
_)\1 = ;C)\z,
3
1
_)\225)\1}\2,

3

1
5(2>\, +\,) =LA

An infinite number of solutions are possible, and correspond
to

1
()\1»)\2)=_(1,—

1
1), d (N ,N\p) =—(1,2),
3L, ), and (Aq,\y) 3£2( )

since there is no need for the proportionality constant to have
the same value in the two cases, i.e., & can differ from &;. As
a consequence, we can write the two new ., (r) as

(1) = 3L [halr) = (],

hy(r) = (3L,) " '[ha(r) + 2h5(r)],

while similar expressions hold for ¢; and ¢,. From Egs. (A9)
it follows that h,(r)=K/L, and h,(r)=-2K/L, for 0<r
<o.

In Ref. [1] Wertheim chose £,=—K and L,=2K [3],
which leads to

(A12)

F() = 3T - Falr)]

. : (F=c,h), (A13)
Fy(r) = 3—1([F%(r> - Emr)]
p1=—Kp,
p2=2Kp,
M) ==l 0<r< Ald
h(r)=— 1 or r<o ( )

(in Ref. [1], F, and F, were denoted as F_ and F,, respec-
tively). Clearly, Wertheim’s choice has the advantage of pro-
viding, for all the three hypothetical fluids, core conditions of
the typical HS form: h,,(r)=-1 for 0<r<o (m=0,1,2).
The cost to pay is the introduction of “modified densities”
for the auxiliary fluids 1 and 2 (the negative sign of p; poses
no special difficulty).

On the other hand, it would be equally proposable to
choose L,=L,=1, which leads to

Fi(7) = 300 - F0)]
1 (F=c.h),
Fo(r) = STFA() + 250
pP1=p;

P2=p,
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hl(r) =K

for0<r<o.
hz(r):—zK

The advantage of this second possibility would be that all the
three “hypothetical” fluids have the same real density, while
the cost is represented by the less usual core conditions,
which, however, pose no particular difficulty.

APPENDIX B: EQUATIONS FOR THE UNKNOWN
PARAMETERS

Three quadratic equations for the A,,’s (m=0,1,2) can be
obtained from Egs. (55) and (56), after deriving from Eq.
(69) the following expressions for the PY-OL contact values:

12
I ses(0*) = B3 (3,) = A+ 127,00, (BY)
where
RS () =y () - 1,
1
yES(x) = <1 + 5)6)(1 -x)72. (B2)

Substituting Eq. (B1) into the expressions for A,, given by
Egs. (55), we get

(i) for A, the same PY equation found by Baxter for
isotropic SHS [11,12]

12
"z>A0+yf;S(n)z=o. (B3)
-7

127A5 - <1 7

Only the smaller of the two real solutions (when they exist)
is physically significant [11,12], and reads

Ao Yo (0t
0~ .
1 12 129 \?
—{1 + \/(1 + —nt> —487/y§S(77)t2J
2 1-7 -7
(B4)
(ii) For A and A,, the equations
12
127,1A2 - (1 + %t)Ammfjs(nm)r:— P (m=12).
= W
(BS)

It is remarkable that the right-hand member of these equa-
tions does not depend on the index m. This fact means that
A, obeys exactly the same equation as A, but with 7, re-
placing 7;; as will be confirmed later, such a property im-
plies that, if one writes A;=A(%,,7,,f, @), then A, must
have the same functional form with 7, interchanged with 7,
i~e~’ A2(771 > 7]2’t’a):Al(7]2’ U ’t’a)-

Now the system of equations for A, A,, and K must be
completed by a further relationship, which can be obtained
from the sum rule, Eq. (52). Taking into account that ¢,
=K(2c,+c;), and multiplying Eq. (52) by 4mp yields
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o

47Tp2J co(x)x* dx = 47Tp1J cy(x)x? dx. (B6)
0 0

On the other hand, putting k=0 into Eq. (59) gives
1 _mem(k=0) =1 _47Tpmf Cm(l")}"zdr=an(k=O) =a3n’
0

since Q,,(k=0)=a,, [as shown by the first of Egs. (62)].
Then Eq. (B6) becomes a3=aj, which splits into two equa-
tions: a,=a, and a,=-a,. From the expression for a,,, one
can easily realize that the second equation does not satisfy
the 1— 0 limit, whereas the first one, ay=a, [or, equivalently,
a* S (g, Ay)=a>SH8( 5, A|)], leads to the following lin-
ear relationship between A, and A,:

127]2A2 127]1Al _

1-n L-n
Note that the two Eqs. (BS) are coupled [since K.,/K
=1-Ap/K=1-(2A,+A,)], but with the help of Eq. (B7)
they could be easily decoupled. However, since the right-
hand members of Egs. (B5) coincide, we can get a new re-
lationship by equating their first members, and exploiting Eq.

(B7). So we arrive at the following equations for the three
unknowns A, A,, and K:

1295tA5 = Ay + DHS(pp)1 = 12091A7 = Ay + Byt

a™S(m,) - a™ (7). (B7)

129,A, _ 1299, A4 _ 74— 1) _ (4 —n)
I-mn I-n (1—772)2 (1—7]1)2 '

27,
/)|

1
1279,1A% - (1 7 t)Al + B (p)r=-P. (BY)

The first two equations form a closed system for A and A,.

The second one suggests that we can assume

1277111Am _ nm(4 - nm)
I- T (1 - 7]171)2

+ W,

or, equivalently,

1 1-
Am= St T +

Tnw (m=1,2), (BY)
129,

where W=W(#,, 1,,1) is an unknown function, which must
be proportional to 7;7,. In fact, Eqs. (B5) require that

1
hm A1=lim A2:§, (BIO)

7—0 7—0
since, from Eq. (56), one has lim,_,, P=% (lim,,_o K;ee=0).
If A, and A, in the first of Egs. (B8) are replaced with the
new expressions (B9), then one gets a quadratic equation for
W as follows:

3mm _
(1=7)(1=1,)
(B11)

(1= mp)tW? = (1 =2 mpt) W+ 0,

with
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M {1+2(771+712)—5771712_
(1=n)(1—-n)

[1+2x+10x2 1
=]l+|—

(1+x)(1_2x)_5(1+X)(1—2x)]t, (B12)

1
5(1 - p)(1 - Wz)]f

where we have put 7,=—x, 7,=2x (x=K7). The acceptable
solution is

1-2 t
— &(1 _ \/2_7)
2(1 = gyt
3mm 6x°
= 0=-— WO’
(1=27)(1 =) (1+x)(1 -2x)
(B13)
with
M M
WO= = .

1 1
S =21+ VD) S+ 42 (1 + VD)

(B14)
o 127 7,(1 = 717
(1= 7)1 = ) (1 =27 pat)?
24x%(1 + 247
r(+2) (B15)

= (201 + 420

Note that lim, o Wy=lim,,_,, M=1+(2/3)z.

The functions W, W,, D, and M are symmetrical with
respect to the exchange of #; and ,; in particular,
W(n,, m1,t)=W(n,, 7,,1), and this property implies that

Ao(my, 1) = Ay (0, my,1), (B16)
confirming our previous guess.
Moreover, if we put
Wo=1+WS, (B17)
then
A=A+ A, (B18)
with
1 1 1 1+4
A=_+_(L+L>=_+M’
3 4\1l-n 1-mn/) 3 4(1+x)(1-2x)
(B19)
7 T
A = ————W5, AS'=——""W;. (B20)
A=) 0 T A=) 0

Here, both A and W' are symmetric with respect to 7, and

1,, whereas A} represents the asymmetric part of A,
Note that the knowledge of A, and A, allows one to cal-

culate A, and A, immediately. In fact, Egs. (47) lead to
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Ar=2K(Ay - Ay)

3x N
_Kz(l +x)(1 —2x)W‘e’ ’

AD = K(2A2 + Al)

[1+2x(2+ WS")]}.

(B21)

ZK{I T a1+ -2%)

Now we must find an equation for K. We can regard the
third of Eqgs. (B8) as the required relationship. However, in
order to derive a more symmetric expression, we prefer to
start from Egs. (B5), rewritten as

12 K,
1299,tA7 - (1 N t)Al + WS (p)r+ —5¢
1— 7]1 K
1 at
+ EEng(") =0,
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12 K.,
1275tA3 - (1 P t)A2 + 1)+ —2¢
l— 7]2 K
1 at
+ g;ng(O') =0, (B22)
and we get
PY
K=ak. with k=20 (B23)
Z(n1, 1s1)
3 1< 129, A
Z=2(A+A) =3 >3 | 12,2 =
2 2m:l 1- M
Hs Kieg
+h,(n,) |+ I t, (B24)

and lim,_,, Z(7,,7,,t)=1. Replacing the found expressions
for A;, A,, and Aj into Eq. (B23) yields an equation for K
that we have solved numerically, although some further ana-
lytic simplifications are probably possible.
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