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The statistics of a subcritical spatially homogeneous XY spin system driven by dichotomous Markov noise
as an external field is investigated, particularly focusing on the switching process of the sign of the order
parameter parallel to the external field. The switching process is classified in two types, which are called the
Bloch-type switching and the Ising-type switching, according to whether or not the order parameter perpen-
dicular to the external field takes finite value at the switching. The phase diagram for the onset of the switching
process with respect to the amplitude of the external field and the anisotropy parameter of the system is
constructed. It is revealed that the power spectral density I��� for the time series of the order parameter in the
case of the Bloch-type switching is proportional to �−3/2 in an intermediate region of �. Furthermore, the
scaling function of I��� near the onset point of the Bloch-type switching is derived.
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I. INTRODUCTION

Over the last decade, the dynamics of the magnetization
in ferromagnetic systems below the critical temperature
driven by a periodically temporary oscillating external mag-
netic field has been extensively studied �1–5�. After the first
work in a deterministic mean-field system by Tome et al. �1�,
much progress has been made in terms of Monte Carlo simu-
lations of a kinetic Ising spin system �2�. It was found that
concerning the prescribed symmetry F�t+ T

2 �=−F�t� of the
external field F�t� the system shows two kinds of oscillations
called symmetry-restoring oscillation and symmetry-
breaking oscillation depending on the amplitude and fre-
quency of the applied external field, and that the transition
between the two oscillations belongs to the same universality
class of the equilibrium Ising model in zero field. The tran-
sition is called the dynamic phase transition �DPT�. With a
constant bias of the external field, DPT was also shown to
belong to the same universality class of the Ising model in
nonzero field �3�. DPT has also been observed experimen-
tally in an ultrathin Co film on Cu�100� �4�.

Recently Fujisaka et al. proposed a simple mean-field
model to investigate the origin of DPT in the Ising spin sys-
tem �5�. Furthermore, they generalized the framework of
DPT to the XY spin system in a periodically oscillating mag-
netic field by introducing the following equation of motion
�6�:

�̇�t� = � − ���2� + ��* + F�t� �1�

and its spatially extended case �7�, where � is the complex
order parameter, � is a real anisotropy parameter, and F�t�
=h cos��t� is the applied external field satisfying F�t+ �

� �
=−F�t�.

It is quite interesting to ask whether DPT would be ob-
served under other kinds of external fields, e.g., a temporally
stochastic and spatially uniform field with finite amplitude.
Ising spin systems driven by such an external field were in-
vestigated and DPT was observed �8,9�. We have studied
DPT in a mean-field model of Ising system driven by such an
external field of another kind, the symmetric dichotomous
Markov noise �DMN� �10�, where a large amount of studies
on the behavior of systems driven by DMN exists as re-
viewed by Bena �11�. We also found that there exist two
kinds of motions called symmetry-restoring motion �SRM�
and symmetry-breaking motion �SBM� analogous to the
symmetry-restoring oscillation and the symmetry-breaking
oscillation in the periodically oscillating case �12�. The dy-
namics of a spatially distributed Ising spin system in the case
of SBM was then studied focusing on the domain size statis-
tics �13�. Here we will investigate the dynamics of the spa-
tially homogeneous XY spin system driven by DMN in the
context of DPT. The order parameter of the system obeys Eq.
�1� with F�t� being DMN instead of the periodically oscillat-
ing external field. The purpose of the present paper is to
clarify the difference of the dynamics in the XY spin system
from the one in the Ising spin system and to characterize the
statistical properties, especially, of real component of ��t�
parallel to the external field.

This paper is organized as follows. The linear stability
analysis of Eq. �1� in both cases of F�t� being a constant and
DMN is presented in Sec. II. The phase diagram for the onset
of switching is shown, and the parameter region, where the
asymptotic dynamics reduces to a Ising spin system, and a
summary on the statistics are provided. The dynamics char-
acteristic to the XY spin system is discussed in Sec. III. In
Sec. IV, another type of dynamics characteristic to the XY
spin system, which is a mixture of the dynamics appearing in
the Ising spin system and that discussed in Sec. III is dis-
cussed. Concluding remarks are given in Sec. V.
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II. LINEAR STABILITY ANALYSIS AND PHASE
DIAGRAM

We examine the asymptotic dynamics of the complex or-
der parameter ��t� obeying Eq. �1�, or equivalently its real
and imaginary parts of X�t�, and Y�t� obeying the equations
of motion

Ẋ�t� = −
�V�X,Y ;F�t��

�X
= �1 + � − Y2�X − X3 + F�t� ,

�2a�

Ẏ�t� = −
�V�X,Y ;F�t��

�Y
= �1 − � − X2�Y − Y3, �2b�

with the potential V�X ,Y ;F�� 1
4 �X2+Y2−1�2− �

2 �X2−Y2�
−FX. Here F�t� is the symmetric DMN which alternates be-
tween +H0 and −H0 with the transition rate �F

−1. The prob-
ability density p��� of the time interval � for the transitions
of F�t� is given by

p��� = �F
−1e−�/�F. �3�

The system of Eqs. �2� is invariant under the transformation
X→−X and F�t�→−F�t�. Since F�t� also has statistical sym-

metry, i.e., F�t� and F̃�t�=−F�t� are statistically equivalent,
the system has either symmetric asymptotic solution or a pair
of asymptotic solutions symmetric with each other. We are
now interested in the event that X�t�, parallel component of
��t� to the external field F�t�, changes its sign, which is
called the switching. The time interval between two succes-
sive switching events is then called the switching time. Since

Ẏ =0 for Y =0, hereafter, the phase space is restricted to the
upper half-plane ��X ,Y� �Y �0�.

A. Linear stability analysis under constant external field

Let us first consider the fixed points of Eqs. �2� by replac-
ing F�t� with the constant 	H0 with 	 denoting plus or mi-
nus. By considering the minima of the potential
V�X ,Y ;	H0�, one finds four kinds of stable fixed points de-
pending on the parameter values of � and H0.

�i� If �
0 and H0�2�	1−�: Two fixed points

�	g��0�,0�, �	g��0 + 2�/3�,0� �4�

exist, where g���� 2	1+�
	3

cos �, �0� 1
3cos−1�−H0 /Hc����, and

Hc��� � 2
1 + �

3
�3/2

. �5�

Here Hc��� gives the threshold value of H0 between SRM
and SBM �12� in the Ising-type equation of motion

ẊI�t� = �1 + ��XI − XI
3 + F�t� , �6�

to which Eq. �2a� reduces with Y =0.
�ii� If H0
2���	1−� and H0�Hc���: One fixed point

�	g��0 + 2�/3�,0� �7�

exists. The fixed point �	g��0� ,0� existing in the region �i�
loses its stability in the Y direction at the boundary between
�i� and �ii�.

�iii� If H0
−2�	1−� and H0
Hc���: One fixed point

�	X3,0� �8�

with X3��1 /2�H0+	H0
2−Hc

2�����1/3+ �1 /2�H0

−	H0
2−Hc

2�����1/3 exists. At the boundary between �ii� and
�iii�, two unstable fixed points on X=0 disappear by a saddle-
node bifurcation.

�iv� If ��0 and H0�−2�	1−�: One fixed point


− 	
H0

2�
,
	4�2�1 − �� − H0

2

2�
� �9�

exists. At the boundary H0=−2�	1−�, two stable fixed
points are created from a stable fixed point by a pitchfork
bifurcation due to the symmetry of Y →−Y.

The four regions �i�–�iv� on the �� ,H0� plane are pre-
sented in Fig. 1�a�.

B. Phase diagram on the (� ,H0) plane

When the system is driven by DMN, the switching never
occurs in the region �i� due to the existence of potential bar-
rier. The motion thus belongs to SBM. On the other hand,
there exists no potential barrier and the switching occurs in
the regions �iii� and �iv�. In the region �ii�, a potential barrier
exists on the line Y =0 and, thus, the motion on the line Y
=0 must be unstable in order for the switching to occur. By
the linear stability analysis, the condition reads as


I � 1 − � − �XI�t�2
 
 0 �10�

with the solution of Eq. �6�, where �¯
 denotes the long-
time average. If the condition �10� is not satisfied, Y =0 is
asymptotically stable and the dynamics is described by Eq.
�6� asymptotically. Figure 1�b� shows the numerically evalu-
ated region on the �� ,H0� plane satisfying the condition �10�
for �F=10. Hereafter �F=10 is used in numerical integration
of Eqs. �2�. The region �ii� splits into �ii-u� and �ii-s� accord-
ing to the condition �10�, as shown in Fig. 1�b�. The region
�iii� also splits into �iii-u� and �iii-s� in the same manner. The
switching, in the region �ii-s�, does not occur despite the
absence of potential barrier, and the motion results in SBM.
In the region �iii-s�, the switching along the line Y =0 occurs

FIG. 1. �Color online� Phase diagram of linearly stable fixed
points for F�t�=	H0. Solid line shows H0=Hc���. In �b�, the nu-
merically evaluated region satisfying the condition �10� with �F

=10 is also shown.
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because of H0
Hc���, which is called the Ising-type switch-
ing whose statistical properties are studied in the previous
paper �12�. In the region �ii-u�, the condition �10� holds and
the switching occurs with a nonzero amplitude of Y avoiding
the potential barrier on the line Y =0, which is called the
Bloch-type switching. As it will be discussed in Sec. IV, both
types of the switching occur in the region �iii-u� because
H0
Hc��� and the condition �10� simultaneously hold.

C. Statistics of Ising-type SRM in the region (iii-s)

In the region �iii-s�, Y =0 is stable and the dynamics re-
duces to that of the Ising spin system �12�. The statistics of
the Ising-type switching is summarized as follows �12�. Let
us denote the time at which the nth switching occurs by tn
�t0=0�, i.e., X�tn�=0, and denote the nth switching time by
�n�=tn− tn−1�. The switching time is assumed to be an inde-
pendent identically distributed random variable according to
a probability density �X���. By employing the approximation
that �X�t���1 and X�t� changes its sign at t= tn, the power
spectral density �PSD� IX��� of X�t� is obtained as

IX��� =
4

�̄X�2 Re
1 − �̃X�i��
1 + �̃X�i��

, �11�

where �̄X denotes the average switching time and �̃X�z� de-
notes the Laplace transform �LT� of �X���. For large � com-
pared with a characteristic time �ch of the system with a
constant external field F�t�=	H0, the approximation

�X��� � �I��� �
1

�̄I

e−�/�̄I �12�

with �̄X� �̄I��Fe�ch/�F is valid. The approximation of Eq.
�12� leads to

IX��� �
1

�̄I

4

�2 + �2/�̄I�2 �13�

for ���ch
−1. The formula of Eq. �11� is also used in the fol-

lowing analysis.

III. STATISTICS OF BLOCH-TYPE SRM IN THE REGION
(ii-u)

Let us investigate the statistics of the switching by con-
sidering PSD determined by Eq. �11� in the region �ii-u�.

Figure 2 shows a numerically obtained time evolution of
Eqs. �2� in this parameter region exhibiting the switching.
The figure reveals that the switching of X is associated with
the growth of Y, where Y�t� intermittently takes a relatively
large value. The state of 0�Y�t��Yc is called a laminar
state, where Yc is a small constant proportional to
	1−�− �X2
 and the nonlinear term in Eq. �2b� can be ne-
glected, and Y�t�
Yc is a burst state.

It is convenient to rewrite Eq. �2b� as

Ẏ = �
0 + f�t��Y − Y3 �14�

in order to determine the form of �Y���, where 
0�1−�
− �X�t�2
 and f�t���X�t�2
−X�t�2 with �f�t�
=0. In the
present parameter region, 
0
0 holds because the condition

0=0 coincides with the condition 
I=0 due to the fact that
Eqs. �2� satisfying 
0�0 reduce to Eq. �6� and Y =0. From
the behavior of X�t� as shown in Fig. 2, the approximation
f�t�� �h0 with a constant h0 holds. As shown in Fig. 3, the
probability density � f�t� of the time intervals of f�t�, keeping
f�t�
0 or �0, takes an exponential distribution. Thus, f�t� is
approximated by a DMN with effective parameters h0 and � f.
It should be noted that Eq. �14� with f�t� replaced by a
Gaussian white noise is a well-known stochastic model of
on-off intermittency �14,15� and that on-off intermittency is

FIG. 2. �Color online� �a� Time series of X�t� �solid line� and Y�t� �dashed line�, and �b� �X�t� ,Y�t�� plot for �=0.02 and H0=0.3.

FIG. 3. Probability density � f�t� of the switching time t for �
=0.02 and H0=0.3. The line shows � f�t��e−t/� f with � f �10.5.
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also observed in a system driven by the multiplicative DMN
�16�.

A. Analytical expression of �Y(�) and its LT

We derive the probability density �Y��� of laminar length
� obeying Eq. �14� under an assumption that f�t� is a DMN
with the amplitude h0 and the characteristic time � f. In the
laminar state, the term Y3 in Eq. �14� can be neglected to

give the linearized equation Ẏ = �
0+ f�t��Y, or equivalently

ẏ = v�t� � 
0 + f�t� �15�

with y�t�� ln�Y�t� /Yc�. Equation �15� is known as the di-
chotomous diffusion on a line �11�. Let us consider a sample
path �y�t� ; t�0� of Eq. �15� with the initial condition y�0�
=0 as shown in Fig. 4, and regard y�t��0 as laminar state
and y�t�
0 as a “pseudoburst state.” The nonlinear term in
Eq. �14� is actually essential for the burst state to be
bounded, but it is unnecessary in the following calculation
obtaining the distribution of laminar length. Let us assume
y�0�=0 and introduce Q��t� defined by

Q��t� � ���y�t��
v�0�=v�
, �16�

where the average is taken under the condition v�0�=v�

�
0�h0. Then, as shown in Appendix A, it follows

Q��t� = e−t/�f��v�t� +
e−t/�f

2h0� f

I0�t/�̂ f� �

v��̂ f

h0� f
I1�t/�̂ f�� ,

�17�

where �̂ f �� f�1−
2�−1/2, 
�
0 /h0, and I��z� is the modified
Bessel function of the first kind. Furthermore, as shown in
Appendix B, �Y�t� satisfies

Q−�t� = �v−�−1��t� + �
0

t

dsQ+�s��Y�t − s� , �18�

or equivalently

Q̃−�z� =
1

h0 − 
0
+ Q̃+�z��̃Y ˜ �z� . �19�

Combining Eqs. �17� and �19�, we obtain

�̃Y�z� =
�̃0��̂ fz + 
̂2/2�

�̃0�
̂2/2�
, �̃0�z� � 1 + z − 	z�z + 2� , �20�

with 
̂2�2��1−
2�−1/2−1� and its inverse LT as

�Y��� = �̃0�
̂2/2�−11

�
I1
 �

�̂ f
�e−�/�̂f exp
− �
̂2/2�

�

�̂ f
� . �21�

The average laminar length �̄Y is obtained as

�̄Y � �
0

�

��Y���d� = − � d

dz
�̃Y�z��

z=0
=

� f



. �22�

Equation �21� is simplified as

�Y��� �
1

2�̃0�
̂2/2��̂ f

exp
− �1 + 
̂2/2�
�

�̂ f
� �23�

for 0�� / �̂ f �1 and

�Y��� �
1

	2��̃0�
̂2/2��̂ f

 �

�̂ f
�−3/2

e−
̂2�/2�̂f �24�

for � / �̂ f �1. Equation �24� recovers a well-known form of
the laminar length distribution in the on-off intermittency
�17�.

B. PSD IX(�) and the statistics of X(t)

As shown in Appendix C, the distribution function of the
switching time of X�t� is approximated by the distribution
function of the laminar length, i.e., �X�t���Y�t� in the
present parameter region. In Fig. 5, the numerically evalu-
ated �X��� and �Y��� are compared with each other, where
Eq. �21� with � f =10.5 and 
=2.34�10−2 is also shown. The
value of effective parameter � f is estimated from � f�t� of Fig.
3 and the value of 
 is determined by using Eq. �22� with a
numerical evaluation of �̄Y. The result indicates that the sta-
tistics of the Bloch-type switching is quite different from that
of the Ising-type switching characterized by Eq. �12�.

The PSD IX��� of X�t� is shown in Fig. 6, where the
analytical expression obtained by substituting Eq. �20� into
Eq. �11� with the assumption �̃X�z�� �̃Y�z� is compared with
the numerical result. The PSD IX��� consists of three regions
that are classified as follows:

�i� IX����const for 0���
̂2 /2�̂ f,
�ii� IX�����−3/2 for 
̂2 /2�̂ f ����̂ f

−1,
�iii� IX�����−2 for �̂ f

−1��

FIG. 4. Schematic sample path of y�t� obeying Eq. �15� with
y�0�=0. The nth crossing time of y=0 is denoted by tn �t0=0�.

FIG. 5. �Color online� Numerically obtained probability densi-
ties �X��� of switching time � ��� and �Y��� of laminar length � ���
for �=0.02 and H0=0.3 with Yc=0.2. Solid line shows Eq. �21�
with � f =10.5 and 
=2.34�10−2.
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The behavior in �ii�, which is quite different from that of
the Ising-type switching given by Eq. �13�, implies that the
correlation function of X�t� depends on time in a stretched
exponential way as �18�

�X�0�X�t�
 � e−C	t �25�

with a constant C.
Each behavior of IX��� in the three regions of � is ex-

plained as follows: �i� �̃X�i�� for 0��̂ f��
̂2 /2 is expanded
as

�̃X�i�� = 1 − �1�̂ f�i − �2��̂ f��2 + O���̂ f��3� , �26�

where �1�1 /	a�a+2� and �2� 1+a+	a�a+2�
2�a�a+2��3/2 with a� 
̂2 /2.

Substitution of Eq. �26� into Eq. �11� yields

IX��� =
� f


2 . �27�

�ii� �̃X�i�� for 
̂2 /2��̂ f��1 is then expanded, by setting

̂2 /2=0, as

�̃X�i�� � �̃0�i�̂ f�� = 1 − 	�̂ f� − �	�̂ f� − �̂ f��i + O���̂ f��3/2� ,

�28�

which yields

IX��� =
2


	� f

�−3/2 + O��−1� . �29�

�iii� In the case of �̂ f��1, the expansion

�̃�i�� � 1 + i�̂ f� − i�̂ f�	1 − 2i��̂ f��−1 �30�

with

	1 − 2i��̂ f��−1 � 1 − i��̂ f��−1 + 1
2 ��̂ f��−2 + 1

2 ��̂ f��−3i

+ O���̂ f��−4� �31�

leads to

IX��� �
4


� f
�−2. �32�

C. Scaling functions of PSDs for X(t) and Y(t)

We here investigate the scaling properties of the PSDs of
X�t� and Y�t�. Let us first consider a normalized time series
�N�Y�t��� by using a function

N�x� � �0, x � Yc,

1, x 
 Yc.
� �33�

The probability density �Y��� of laminar length and its LT
�̃Y�z� are given by Eqs. �21� and �20�, respectively. Let �̃b�z�
be LT of the probability density �b��� of burst length. Then
the PSD IY��� of N�Y�t�� is expressed as

IY��� � lim
T→�

1

T��0

T

N�Y�t��e−i�tdt�2

�34�

=
2

�̄Y�2 Re
�1 − �̃Y�i����1 − �̃b�i���

1 − �̃X�i���̃b�i��
, �35�

which is derived in the same way as in Ref. �13�.
For simplicity let us assume that �b��� is an exponential

distribution �b���=�b
−1e−�/�b, or equivalently

�̃b�z� =
1

1 + �bz
, �36�

where �b is the average length of burst state. Then IY��� in
the limit 
→0 ��̄Y →�� satisfies a scaling relation

IY��� =
�b

2

� f
fY
2�̄Y

2�

� f
� �37�

as shown in Appendix D, where the scaling function fY�x� is
given by

fY�x� =
	2

	1 + 	1 + x2
. �38�

The scaled plots of numerically evaluated PSDs of Y�t� for
�=0.015, 0.02, and 0.023 with H0=0.3 are compared with
the scaling function fY�x� in Fig. 7, where the scaled plots of
Eq. �35� are also shown. Since the value of effective param-
eter � f is almost unchanged for these parameter values as
well as �b, the same values � f =10.5 and �b=14 are used in
Fig. 7, where the value of �b is estimated from the numeri-
cally generated �b���. It is confirmed that the scaling of Eq.
�37� with Eq. �38� holds in the limit �̄Y →�. The form of Eq.
�38� in the context of the on-off intermittency has been de-
rived by using a multiplicative noise system �19�, a piece-
wise linear map �20�, and the continuous-time random walk
theory �21�. The fact that PSD in the system driven by DMN
also obeys the same scaling function ensures that the on-off
intermittency is generally characterized by Eq. �38�.

Next let us consider the PSD IX��� of X�t�, which is ap-
proximately obtained by Eq. �11� with the assumption
�̃X�z�� �̃Y�z�, as mentioned above. It is shown in Appendix

FIG. 6. �Color online� PSD for �=0.02, H0=0.3, and �F=10.
Solid line is the result of Eq. �20� with Eq. �11� under the assump-
tion �̃X�z�� �̃Y�z�, where the values of 
 and � f are the same as
those in Fig. 5.
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D that IX��� in the limit 
→0 ��̄X→�� satisfies a scaling
relation

IX��� =
�̄X

2

� f
fX
2�̄X

2�

� f
� , �39�

where the scaling function fX�x� is given by

fX�x� =
4	2

�1 + 	1 + x2��	1 + 	1 + x2 + 	2�
. �40�

Figure 8 compares the scaled plots of numerically evaluated
IX��� and Eq. �11� for several parameter values with the
scaling function fY�x�. It is confirmed that the scaling of Eq.
�39� holds in the limit �̄X→�.

IV. STATISTICS OF SRM IN THE REGION (iii-u)

Let us investigate the statistics of the switching in the
region �iii-u�. In this parameter region, the Ising-type switch-
ing characterized by the probability density �I��� occurs be-
cause the condition H0
Hc��� is satisfied. Moreover, the

Bloch-type switching characterized by the probability den-
sity �Y���, under the approximation that each burst of Y�t�
corresponds to a switching of X�t� that is expressed as
�X�����Y��� in the preceding section, also occurs because
the condition �10� is satisfied. As a result, there coexist both
types of the switching in the present parameter region. In
fact, Fig. 9 shows that the switching occurs both with Y
�Yc �the Bloch-type switching� and with Y �0 �the Ising-
type switching�. The probability density �X��� of switching
time � is thus characterized by neither �I��� nor �Y���, as
shown in Fig. 10. Since the rate of the Ising-type switching
becomes small �large� for 0�H0−Hc����1 �H0−Hc���
�0�, �X��� agrees with �Y��� ��I���� in the limit
H0→Hc��� �H0�Hc����.

We attempt to determine the analytical form of IX��� by
assuming that the Ising-type switching and the Bloch-type
switching occur independently, with the approximation that
each burst of Y�t� corresponds to a switching of Bloch type.
The probabilities �I��� and �Y��� that the switchings do not
occur in a time interval � are defined by

FIG. 8. Scaled plots of PSDs of X�t� for �=0.015, 0.02, and
0.023 with H0=0.3. Black line shows Eq. �40�. Gray lines show the
results of Eq. �11� with � f =10.5. The values of the average switch-
ing time are �̄X=1.90�102, 4.48�102, and 2.27�103 for �
=0.015, 0.02, and 0.023, respectively.

FIG. 7. Scaled plots of PSDs of Y�t� for �=0.015, 0.02, and
0.023 with H0=0.3. Black line shows Eq. �38�. Gray lines show the
results of Eq. �35� with � f =10.5 and �b=14. The values of the
average laminar length are �̄Y =2.08�102, 4.82�102, and 2.36
�103 for �=0.015, 0.02, and 0.023, respectively.

FIG. 9. �Color online� �a� Time series of X�t� �solid line� and Y�t� �dashed line�, and �b� �X�t�, Y�t�� plot for �=0.03 and H0=0.415.
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�I�Y���� � �
�

�

�I�Y��s�ds . �41�

The assumption leads the whole probability �X��� that the
switching does not occur in a time interval � to

�X��� = �I����Y��� = e−�/�̄I�Y��� , �42�

where it is assumed that each burst in Y�t� corresponds to a
switching of X�t�. Then the probability density �X��� of the
switching time � in the present parameter region is obtained
as

�X��� = −
d

d�
�X��� . �43�

Applying LT to Eq. �43� yields

�̃X�z� = 1 − z�̃X�z� = 1 −
z

z + �̄I
−1 �1 − �̃Y�z + �̄I

−1�� , �44�

where LT of Eq. �42�, �X
˜ �z�= �1− �̃Y�z+ �̄I

−1�� / �z+ �̄I
−1�, is

used. Substitution of Eq. �44� into Eq. �11� gives the analyti-
cal form of IX��� in the region �iii-u�.

Figures 11 and 12 show both the analytical and numerical
results of IX��� for two parameter values satisfying 
̂2 /2�̂ f


�̄I
−1 �Fig. 11� and 
̂2 /2�̂ f ��̄I

−1 �Fig. 12�. The effective pa-
rameters � f and 
 in Eq. �20� are evaluated in the same man-
ner as mentioned in Sec. III A. On the other hand, �̄I in Eq.
�12� is evaluated in terms of Eq. �6� using the same values of
� and H0. The average switching time �̄X in Eq. �11� is de-
termined from

�̄X = − �d�̃X�z�
dz

�
z=0

= �1 − �̃Y��̄I
−1���̄I. �45�

These figures show that IX��� in the present parameter region
also consists of three regions as discussed in Sec. III, and
that IX�����−3/2 holds for max��̄I

−1 , 
̂2 /2�̂ f�����̄ f
−1. The

result reveals that the correlation function of X�t� in the
present parameter region is also characterized by Eq. �25� in
an intermediate time scale.

The dependence of IX��� on � is analytically determined
as follows. �̃X�i�� for 0��̄I��1 is expanded as

�̃X�i�� = 1 − i�1�̄I� − �2��̄I��2 + O���̄I��3� , �46�

where �1 and �2 are defined by

FIG. 10. �Color online� The probability densities �X��� ��� and �Y��� ��� for �a� H0=0.415, �b� 0.41, and �c� 0.405 with �=0.03, where
Hc�0.402.

FIG. 11. �Color online� PSD for �=0.025, H0=0.401, and �F

=10. The solid line shows theoretical results with 
�1.17�10−1,
� f �10.9, and �̄I�6190.

FIG. 12. �Color online� PSD for �=0.05, H0=0.417, and �F

=10. The solid line shows theoretical results with 
�4.21�10−2,
� f �11.2, and �̄I�1280.
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�1 � 1 − �̃Y��̄I
−1�, �2 � 1 − 
1 +

�̂ f�̄I
−1

	a�a + 2�
��̃Y��̄I

−1�

�47�

with a� �̂ f�̄I
−1+ 
̂2 /2. The substitution of Eq. �46� into Eq.

�11� yields

IX��� =
2�2 − �1

2

�1
�̄I, �48�

where �̄X=�1�̄I is used. In the case of �̄I��1, whereas, one
can set �̄I

−1=0 in Eq. �44� and thus �̃X�z�= �̃Y�z� holds. As a
result, the PSD for �̄I

−1�� agrees with the PSD in the region
�ii-u� described in Sec. III A.

The dependence of IX��� on � is summarized as follows.
If 
̂2 /2�̂ f ��̄I

−1 is satisfied, then Eq. �48� with 
̂=0 reduces to
IX���= �̄I for ���̄I

−1. In the case of �̄I
−1�
̂2 /2�̂ f, on the other

hand, the approximation �̄I=0 in Eq. �44� eventually yields
Eq. �27� for ��
̂2 /2�̂ f. The asymptotic forms of the PSD for
max��̄I

−1 , 
̂2 /2�̂ f�����̂ f
−1 and for �̂ f

−1�� are given by Eqs.
�29� and �32�, respectively.

V. CONCLUDING REMARKS

In this paper, we have investigated the statistics of a sub-
critical spatially homogeneous XY spin system driven by
symmetric dichotomous Markov noise �DMN� as an external
field, particularly focusing on the switching process of par-
allel component X�t� to the external field, which restores the
symmetry of the system. The motion of X�t� is classified
according to whether the switching process occurs or not,
and the transition between the two types of motions can be
observed by changing the amplitude of the DMN. The
switching process is, moreover, classified into three types
called the Ising-type switching, the Bloch-type switching,
and the mixture of both types.

The probability density �X��� of switching time � and the
power spectral density �PSD� IX��� of X�t� for the Bloch-
type switching are formulated by making use of the fact that
the dynamics of perpendicular component Y�t� to the direc-
tion of DMN, exhibits on-off intermittency. It is revealed that
IX��� depends on � as

IX��� � �−3/2 �49�

in an intermediate range of �, thus that the correlation func-
tion �X�0�X�t�
 is characterized by a stretched exponential
form e−C	t with a constant C. The scaling functions of the
PSD IX��� of X�t� and that of Y�t� are also derived.

Then the statistics of the switching processes in the mix-
ture of Ising and Bloch types is discussed under an assump-
tion that each process occurs independently. It is shown that
IX��� also takes the form of IX�����−3/2 in an intermediate
range of �, and its condition is determined.
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APPENDIX A: EXPLICIT FORM OF Q±(t)

By integrating Eq. �15�, Eq. �16� is rewritten as

Q��t� = ���
0t + W�t��
 f�0�=�h0
�A1�

with W�t�=�0
t f�s�ds. By introducing

P��w,�;t� = ���w − W�t��� f�t�,�
 f�0�=�h0
, �A2�

which satisfies the initial condition P��w ,� ;0�=��w���,�h0
,

Q��t� is expressed as

Q��t� = P��− 
0t, + h0;t� + P��− 
0t,− h0;t� . �A3�

Since Ẇ�t�= f�t�, P��w ,� ; t� satisfies the master equation
�10�

�tP�+ h0� = − h0�wP�+ h0� + � f
−1�P�− h0� − P�+ h0�� ,

�A4a�

�tP�− h0� = h0�wP�− h0� + � f
−1�P�+ h0� − P�− h0�� ,

�A4b�

where the abbreviation P���= P��w ,� ; t� is used. Equations
�A4� with any initial conditions can be solved analytically
�22�, and we obtain

P��w, + h0;t� + P��w,− h0;t�

= e−t/�f��w � h0t�

+
e−t/�f

2h0� f

I0��/h0� f� +

h0t � w

�
I1��/h0� f��

����w + h0t� − ��w − h0t�� . �A5�

Here ��	h0
2t2−w2 is introduced, and I��z� and ��x� denote

the modified Bessel function of the first kind and the Heavi-
side function, respectively. Finally, substitution of Eq. �A5�
into Eq. �A3� yields Eq. �17�.

APPENDIX B: RELATION BETWEEN Q±(t) AND �Y(t)

Let us consider a sample path �y�t� ; t�0� of Eq. �20�
satisfying y�0�=0 and assume that the ith crossing of y=0
takes place at t= ti �t0=0� i.e., y�ti�=0. See Fig. 4. For almost
all paths, either v�ti�=v− or v�ti�=v+ holds, because the prob-
ability that the DMN f�t� changes its sign at a given time t
= ti is zero. Thus, for almost all paths satisfying v�0�=v−,
v�t1�=v+ holds and we have

Q+�t� = ���y�t + t1��
v�0�=v−
. �B1�

Since y�t�=y�ti+ t− ti�→v�ti��t− ti� for t→ ti, we obtain
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��y�t�� = �
i=0

�

��v�ti��t − ti�� �B2�

= �v�0��−1��t� + �
i=0

�

��v�ti+1��t − ti+1�� �B3�

= �v�0��−1��t� + �
0

t

ds�
i=0

�

��v�ti+1�

��s + t1 − ti+1����s − t + t1� �B4�

= �v�0��−1��t� + �
0

t

ds��y�s + t1����t − s − t1� �B5�

for almost all paths, where

��y�t + t1�� = �
i=0

�

��v�ti+1��t + t1 − ti+1�� �B6�

�t�0� is used. Taking the average under the condition v�0�
=v−, Eq. �B5� leads to

Q−�t� = �v−�−1��t� + �
0

t

ds���y�s + t1����t − s − t1�
v�0�=v−

�B7�

= �v−�−1��t� + �
0

t

ds���y�s + t1��
v�0�=v−

����t − s − t1�
v�0�=v−
, �B8�

since t1 and y�s+ t1� �s�0� are statistically independent of
each other. With Eq. �B1� and the identity

�Y�t� = ���t − t1�
v�0�=v−

= ���t − �t2j+1 − t2j��
v�0�=v−
�j = 0,1,2, . . . � ,

�B9�

Eq. �B8� reads as Eq. �18�.

APPENDIX C: RELATION BETWEEN �X(x) AND �Y(x)

Let us consider the relation between the distribution func-
tion of the switching time of X�t� and that of the laminar
length of Y�t�, in the Bloch-type switching. The region of
laminar state 0�Y �Yc on the XY plane is divided into the
left laminar region �LLR� and the right laminar region �RLR�
according to the sign of X. The region Y 
Yc is denoted as
the transition region �TR� that corresponds to the burst state.
Here we define the switching of X as the event that starting
from a given state point in LLR or RLR the orbit arrives at
the other side of the laminar region for the first time. Note
that in the main text the switching is defined as the crossing
of X=0, which takes place in TR in the Bloch-type switch-
ing. Here, we employ the above definition for the simplicity
of formulation. The two definitions coincide, if multiple

crossings of X=0 in TR is neglected. Note also that the con-
tribution of the multiple crossing to the power spectral den-
sity IX��� of X�t� is relatively small, because it takes place
around X=0.

Prior to each switching the state point visits TR. The
probability density of the residence time in TR is expressed
as a sum of two parts: One denoted by �T��� is that for the
orbit segments connecting LLR and RLR, which corresponds
to switching, and the other denoted by �*��� is that for the
orbit segments connecting the same region of LLR or RLR.
For �T���, the minimum �* of � satisfying �T���
0 exits,
which is a characteristic relaxation time of the dynamics un-
der fixed F�t�=	H0. Let �X��� be the probability that
switching time is greater than �, i.e.,

�X��� = �
�

�

ds�X�s� , �C1�

and �Y��� be that of the laminar length. Noting �X���=0 for
���* and extracting the initial laminar state from the pro-
cess of switching, the following relation for ���* is ob-
tained,

�X��� = �Y�� − �*� + �
0

�−�*

ds�
0

�−�*−s
ds��Y�s��*�s���X

��� − s − s�� . �C2�

By differentiating with respect to �, Eq. �C2� is transformed
into

�X��� = �Y�� − �*� − �
0

�−�*

ds�Y�s��*�� − �* − s�

+ �
0

�−�*

ds�
0

�−�*−s
ds��Y�s��*�s���X�� − s − s�� ,

�C3�

where �X��*�=1 is used. By performing LT, Eq. �C3� is
solved for �̃X�z� as

�̃X�z� = e−z�*�̃Y�z�
1 − �*̃�z�

1 − �*̃�z��̃X�z�
. �C4�

By definition, �*��� is not normalized, but satisfies

�
0

�

d��*��� + �
�*

�

d��T��� = 1. �C5�

On the other hand, the probability that F�t� does not change
its sign for a time interval of �* is given by ��*

� p���d�

=e−�*/�F, which implies �T��� contains e−�*/�F���−�*� as its
component. Thus, we obtain

p* � �*̃�0� = �
0

�

d��*��� � 1 − e−�*/�F. �C6�

If p* is sufficiently small, which is deduced from Eq. �C6�
for small �* /�F, then the terms of �*̃�z� in Eq. �C4� are
negligible, i.e., �̃Y�z��e−�*z�̃Y�z�. This leads to �X���
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��Y��−�*� and �X�����Y��� for large �. Even if p* is not
small, the following justification for the approximation of
�X�����Y��� can be made. We are interested in �X��� for
large �, where the power-law behavior is expected. For �Y���
exhibiting the power-law behavior, we have �1− �̃Y�z� �
=O�	�z�� for sufficiently small �z�, which leads to

1 − �*̃�z�

1 − �*̃�z��̃Y�z�
= 1 −

�*̃�z�

1 − �*̃�z�
O�	�z�� , �C7�

and thus �̃X�z�� �̃Y�z�.

APPENDIX D: SCALING FUNCTIONS fX(x) AND fY(x)

Let us show that the scaling functions fX�x� of IX��� and
fY�x� of IY��� are given by Eqs. �40� and �38�, respectively.
By introducing the decomposition 1− �̃Y�i��=LR+ iLI and 1
− �̃b�i��=BR+ iBI into real and imaginary parts, IX��� and
IY��� are written in the following forms:

IX��� =
4

�̄X�2

2LR − �LR
2 + LI

2�
4 − 4LR + �LR

2 + LI
2�

, �D1�

IY��� =
2

�̄Y�2

X�R − X� + Y�I − Y�
�R − X�2 + �I − Y�2 , �D2�

respectively, where R=BR+LR, I=BI+LI, X=LRBR−LIBI,
and Y =LIBR+LRBI are introduced. One finds that

BR =
��b��2

1 + ��b��2 , BI =
�b�

1 + ��b��2 . �D3�

The explicit forms of LR and LI are, on the other hand, ob-
tained as follows. Equation �20� takes the form

�̃Y�i�� = �1 − 
�−1�1 + i� f� − 	
2 − �� f��2 + 2i� f��
�D4�

by replacing 
̂ and �̂ f to the original parameters 

=	1− �1+ 
̂2 /2�−2 and � f = �̂ f�1−
2�1/2. By using r and � de-
fined by 
2− �� f��2+2i� f��rei�, one finds that

LR = �1 − 
�−1�	r + r cos �/	2 − 
� , �D5�

LI = �1 − 
�−1�	r − r cos �/	2 − � f�� ,

where

r = 	�
2 − �� f��2�2 + 4�� f��2, r cos � = 
2 − �� f��2.

�D6�

Let us introduce the scaling variable x defined by x
�2� f� /
2. Then Eqs. �D3� are expanded as

BR = 
4B̂2 + O�
8�, BI = 
2B̂ + O�
6� �D7�

with

B̂ �
�b

2� f
x . �D8�

Furthermore, Eqs. �D6� are expanded as

r = 
2	1 + x2 + O�
4�, r cos � = 
2 + O�
4� , �D9�

which yield

LR = 
L̂R + 
2L̂R + O�
3�, LI = 
L̂I − 
2�x/2 − L̂I� + O�
2�
�D10�

with

L̂R �
1
	2

�		1 + x2 + 1 − 	2�, L̂I �
1
	2

		1 + x2 − 1.

�D11�

Equation �D2� is eventually expanded as

IY��� =
2

�̄Y�2


3L̂RB̂2

L̂R
2 + L̂I

2
+ O�
4� �D12�

by substituting Eqs. �D7� and �D10�. Substitution of Eqs.
�D8� and �D11� and 
=� f / �̄Y into Eq. �D12� yields Eq. �37�
with Eq. �38� in the limit 
→0. On the other hand, Eq. �D1�
is expanded as

IX��� =
2


�̄X�2 L̂R + O�
2� �D13�

by substituting Eq. �D10�. Equation �D13� with L̂R in Eq.
�D11� and 
=� f / �̄X leads to Eq. �39� with Eq. �40�.
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