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Effect of thermal bond excitations on the critical properties of covalent Ising networks
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We introduce a bond-diluted Ising model with temperature-dependent concentration of bonds, which is
intended to simulate the excitations of bond degrees of freedom as in covalently bonded network liquids arising
from the thermal electronic transitions between bonding and antibonding electronic states. The critical behavior
of this simplified model system, called the thermalized-bond Ising model, is investigated in terms of the Monte
Carlo simulation results of finite-size regular Ising systems, as input for the method of chemical potentials that
is generally used to obtain the thermodynamic properties of annealed impurity models. A finite-size scaling
analysis of the susceptibility and the fourth-order cumulant results in a reliable estimation of the renormalized
critical exponents. The exponents are found to be consistent with the phenomenological renormalization rela-

tions, due to Fisher, despite the temperature-dependent bond dilution.
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I. INTRODUCTION

Models with annealed bond disorder were once consid-
ered by Thorpe and Beeman [1], among others [2], and in-
vestigated in detail using the method of chemical potentials
and the grand-canonical ensemble [3]. However, such mod-
els of disorder were not pursued any further because of their
lack of a spin-glass phase that was in so much demand in
those days. The absence of a spin-glass transition is attrib-
uted to the correlations introduced among the bonds by an-
nealing, such that like bonds have a tendency to form clus-
ters particularly close to the transition point [1]. Such
correlations are entirely absent in spin glasses, which are
characterized by uncorrelated quenched-in disorder, thus re-
sulting in frustration [4]. In the annealed case the system as a
whole, including the disorder, is allowed to come into com-
plete thermal equilibrium at every temperature. Thus, the
system has the liberty of choosing optimal spatial arrange-
ments of the disorder variables in order to further minimize
its free energy. In the annealed impurity models studied so
far [1,2], however, the concentration of the disorder is kept
constant with the temperature.

As a way to revive some interest in models with annealed
bond disorder, in this paper we extend the method of chemi-
cal potentials to study a bond-diluted Ising model that is
different from others by virtue of its temperature-dependent
annealed bond dilution. By introducing the thermalized-bond
Ising model (TBIM), we would like to investigate the effect
the thermally induced bond excitations have on the critical
behavior of a covalent liquid at its critical point, which is
generally believed to be in the universality class of the three-
dimensional lattice-gas model or equivalently the ferromag-
netic Ising model. In the case of TBIM, every covalent bond
linking a nearest-neighbor pair of atoms is allowed thermally
induced electronic transitions between bonding and anti-
bonding electronic states. Hence, it can be regarded as con-
taining annealed bond defects with a temperature-dependent
concentration. Every bond at every instant is characterized
by a coupling constant J=0, J, such that J=0 corresponds to
a broken bond (antibonding electronic state), while J=J,
means an attractive coupling between the two atoms (bond-
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ing electronic state) as illustrated schematically in Fig. 1.
Like the annealed case, and given enough time, our model
system has the liberty of lowering its free energy by choos-
ing optimal arrangements for the bond variables, and reach-
ing complete thermal equilibrium with the lattice or the
structural variables. This of course introduces correlations
among neighboring bonds, which is in sharp contrast with
random quenched impurity models. We believe that the ther-
malized bond model introduced here, and the many conceiv-
able variants thereof, can be of broader interest in the
research field of phase transitions in systems with predomi-
nantly covalent bonding, such as the lattice polymers [5] and
the lattice protein [6], as they can provide for a natural bond
breaking mechanism in lattice models of covalent structures.
A rather similar model, called as the bond-lattice excitations
model, has been introduced and studied before in the context
of the supercooled glass-forming liquids [7].

TBIM is exactly soluble in one and two dimensions [8],
as the solution can be mapped on to a regular Ising model
with a rescaled temperature on the same lattice [1]. In the
following, we focus on TBIM in three dimensions for which
no exact solution is anticipated. Thus, we rely on the statis-
tics obtained from Monte Carlo (MC) simulations of finite
lattices of the reference pure system in order to calculate
the rescaled temperatures of the corresponding finite
thermalized-bond lattices. A careful finite-size scaling analy-
sis of the susceptibility and the fourth-order cumulant then
provides reliable estimates for the critical exponents and the
overall critical behavior exhibited by TBIM in three dimen-
sions.

Anti-Bonding level

Bonding level Atomic level

FIG. 1. A schematic illustration of the electronic energy states of
the covalent bonds linking a chain of atoms. The energy gap be-
tween the bonding and the antibonding level is denoted by J,.
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The rest of this paper is organized as follows. In Sec. II,
we present the microscopic Hamiltonian that characterizes
the thermalized-bond Ising model. In Sec. III, the method of
chemical potentials that is generally used to investigate the
thermodynamic properties of annealed impurity models is
briefly reviewed, paying particular attention to those aspects
that are directly relevant to the present work. This method is
then applied in Sec. IV to calculate the thermodynamic prop-
erties of interest for finite-size TBIM systems, using the
Monte Carlo simulation results of finite-size regular Ising
systems as input. In Sec. V, a finite-size scaling analysis is
carried out to calculate the critical exponents of TBIM in the
thermodynamic limit. Our main results are discussed in Sec.
VI, and the paper is concluded in Sec. VII with a summary.

II. THERMALIZED-BOND ISING MODEL

We introduce an Ising model with a temperature-
dependent bond dilution, arising from the thermally induced
electronic transitions of the covalent bonds between bonding
and antibonding electronic states, referred to as thermalized-
bond Ising model or TBIM. The bond dilution is annealed in
the sense that any relaxation time associated with the bond
defects is much shorter than the experimental or the obser-
vation time scale. Thus, the system is allowed to further
lower its free energy by choosing optimal spatial arrange-
ments of the defects. We denote the thermally averaged bond
concentration by p. (1—p) is therefore the concentration of
broken bonds due to thermal excitations. To keep the analy-
sis simple, we shall treat the covalent bonds as independent
two-level systems with energy gap J,, (as sketched in Fig. 1),
obeying classical Maxwell-Boltzmann statistics, and in ther-
mal equilibrium with the lattice. Thus, the ratio of the bonds
to the broken bonds in equilibrium is given by the ratio of
the corresponding Boltzmann factors: p/(1—p)=exp(BJ).
On solving for bond concentration p, we have

p=1/(1+eP), (1)

where B=1/kgT is the reciprocal temperature of the TBIM,
and kp is the Boltzmann constant. We certainly do not rule
out other forms of the bond concentration p. In fact, in a
more realistic application, one may wish to consider bonds
that obey Fermi-Dirac statistics, and treat the electronic oc-
cupation numbers accordingly. However, as we shall explain
later in this paper, our main results stay the same no matter
which one statistics is used for the treatment of the bonds.
Thus, to keep the treatment simple, we shall adopt the clas-
sical Maxwell-Boltzmann statistics for the treatment of the
bonds. It is clear from Eq. (1) that the bond concentration p
decreases from unity at 7=0 to one-half at infinitely large
temperatures, while the concentration of broken bonds (1
—p) increases from zero at the absolute zero of temperature
to one-half at infinite temperature. It must be pointed out that
the bond concentration p remains well above the bond per-
colation threshold for the cubic lattice, p,=0.2488 [9], at all
temperatures: as the bonds percolate at all temperatures, the
bond percolation problem does not appear to be directly rel-
evant to the thermodynamic transition studied later in this

paper.
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The bond distribution function for our thermalized-bond
model system is of the form

PAB) =p&y,+(1-p)dyo. 2)

where p is given by Eq. (1) and & denotes the Kronecker
delta. J=J, is the coupling associated with a bond, and J
=0 is that due to a broken bond. Each atom of a nearest-
neighbor pair contributes an electron to the covalent bond,
and the thermalization of the bond allows for thermally in-
duced electronic transitions between the two electronic states
at finite temperature. Indeed this provides for a natural bond-
breaking mechanism that may be suitably incorporated in the
lattice models of covalently bonded structures. The micro-
scopic Hamiltonian of the system under consideration can be
formally defined by

H:_Ejijo-io-j’ (3)
(ij

where o;=*1 is the structural variable associated with the
site i of the underlying simple cubic lattice, and J;;=0, J
represents the annealed bond variable associated with the
nearest-neighbor sites (ij) that is described by the bond dis-
tribution function given as Eq. (2). The Ising variable o
must be interpreted as a structural variable (as opposed to
interaction/gauge variable), the thermal average of which de-
fines the order parameter for the model system under consid-
eration. It is well known that the lattice-gas model in three
dimensions (or, equivalently, the ferromagnetic Ising model)
largely captures the universal behavior of fluids at their criti-
cal point, despite the lattice or the simple mathematical
structure. By introducing the thermalized-bond Ising model,
we wish to incorporate a bond-breaking mechanism suitable
for covalent bonds, and investigate the effect on the critical
behavior of a covalent liquid at its critical point. Indeed, the
renormalizing effect of the “hidden variables” (or annealed
impurity subject to a constraint) on the critical exponents of
magnets and fluids has been recognized for many years [10].
(See also Table I in Ref. [10] for a comparison of the experi-
mental exponents with the theoretical exponents, highlight-
ing some of the discrepancies.) In doing so, we also extend
the method of chemical potentials to investigate systems
with temperature-dependent annealed bond impurity. A vari-
ant of this model was introduced and studied by Monte Carlo
simulation, albeit for a fixed bond concentration, in Ref. [11].
A rather similar model involving excitations of a bond lattice
has also been studied before in the context of the super-
cooled glass-forming liquids [7].

III. THEORETICAL BACKGROUND

The following is a review of those aspects of the method
of chemical potentials that are directly relevant to the present
work. Throughout this section, we shall use the notation and
the mathematical structure introduced by Thorpe and Bee-
man [ 1]. The model Hamiltonian (3) may be written as a sum
over nearest-neighbor pairs of atoms
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(ij)
where
Hy=- 2 Jfioon— 2 fi&. (5)
i=1.2 i=1,2

Thus, each bond has a coupling associated with it, J;, which
characterizes the electronic state of the covalent bond: J;
=J, denotes the bonding state, while J,=0 is the antibond-
ing state. In Eq. (5), the bond indicator function f; is unity if
the coupling is J; and zero otherwise. The thermal average,
(f:, is physically the same as the bond distribution function
P,(B) given as Eq. (2). The chemical potential & coupled to
the bond indicator f; is introduced into the Hamiltonian only
to produce the desired bond distribution. (It drops out of
consideration at the end.) As in the case of the annealed
impurity models, one averages the partition function over the
disorder, rather than averaging the free energy. Thus, the
grand partition function involves a trace over both the struc-
tural variables, o;, and the bond variables f;,

2= P (6)

3 o}

A partial trace over the {f;} allows for an expression of the
result in terms of the partition function of a regular Ising
model on the same lattice, but with a different temperature.
The result is

E=A""Z(K), (7)

where Z(K) is the partition function of a regular Ising model
with reciprocal temperature K, z is the coordination number
of the lattice, and N is the total number of atoms. Nz/2 is
therefore the total number of bonds. K is interpreted as the
reciprocal temperature of the regular Ising model or the ref-
erence system in terms of which the thermodynamic proper-
ties of the TBIM at a rescaled reciprocal temperature 3 can
be derived. More explicitly, K and A are, respectively, given

by
XK = <2 eﬁgi’fﬁff) / (E eﬁ‘fj_ﬁjj> ,
i J

Ao ( D epg,-w,-) (2 eﬁf,-—ﬁfj). (8)

i .

J

Now, the concentration (f;) is given by

2 dlnE dlnA K

BI =N g = an T 5

9)

where €(K)=(o,0,) is the nearest-neighbor pair correlation
function of the regular Ising model, and is simply given by
the negative energy of the reference system normalized to
the number of bonds Nz/2. From Egs. (8) and (9), and on
eliminating the unwanted chemical potentials, one gets an
implicit equation giving the rescaled temperature of the an-
nealed system in terms of the temperature of the reference
system [1],
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1
s [1+eK)]+[1- e(K)]e2K-257; 5 (10)

It must be emphasized that relations (7)—(10) remain valid
even if (f;) is temperature-dependent [12]. On replacing (f;)
by its explicit form P,(8), the above can be written as

P,(B) 1
0.0, L1+ e(K)]+[1- (K) ]2 = o

(11)

Equation (11) is an implicit relation in terms of which B can
be obtained as a function of K. An important point one needs
to recognize, however, is that the critical point singularities
of the thermodynamic functions that do not involve a tem-
perature derivative of the free energy, such as the order pa-
rameter and its higher-order cumulants, are only renormal-
ized due to the rescaling of the temperature given by Eq.
(11). This can be seen in view of the fact that the definition
of the order parameter, given as Eq. (12) below, does not
involve the bond indicator function f;. Equation (11) is cen-
tral to the analysis presented in the following section, where
we present our results for the order parameter and the sus-
ceptibility of finite-size TBIM systems.

IV. STATISTICS OF FINITE-SIZE TBIM SYSTEMS

As outlined in the Introduction, we shall only be con-
cerned with the critical behavior of the TBIM in three dimen-
sions, where Monte Carlo simulation results of finite-size
regular Ising systems are used as input to find the thermody-
namic properties of the corresponding finite-size TBIM sys-
tems. A finite-size scaling analysis of the statistics thus ob-
tained reveals the critical behavior expected of TBIM in the
thermodynamic limit.

Although in one and two dimensions the regular Ising
model has been solved analytically [13,14], an exact solution
in three dimensions is still lacking. In order to obtain the
properties of the reference Ising system, we have simulated
simple cubic lattices of size N=L> with periodic boundary
conditions for five different linear system sizes L= 16, 20, 30,
40, and 50 using a dedicated Metropolis Monte Carlo code
[15], with sequential spin-flip attempts through the lattice,
over its critical region. At every temperature, the system was
allowed 4000 equilibration passes (complete lattice updates),
and data points were accumulated by averaging over 400 000
accumulation passes. The accumulation passes were divided
into 10 bins, and the binned averages were used to estimate
the statistical errors, which in most cases are no more than a
few percent of the corresponding mean values. In order to
check the accuracy of our data, we calculated the critical
exponents of the reference Ising system and compared our
results with the extensive literature available on the subject
[16]. Very good agreement was obtained.

In order to determine the rescaled temperatures of the
finite-size TBIM systems, we computed the energy per bond,
—¢,(K), of the finite-size regular Ising systems. €;(K), when
substituted in Eq. (11), gives the rescaled temperature of the
corresponding finite-size TBIM system. Figure 2 shows the
rescaled temperature 7; plotted against the temperature of
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FIG. 2. The temperature of finite-size TBIM versus that of the
reference system for different system sizes in the critical region.
Both temperatures are measured in units of Jy/kg.

the reference system 1/K for various system sizes. Both tem-
peratures are measured in units of J,/kg. The finite-size ef-
fect on 7}, though small, must be taken into account in a
careful finite-size scaling analysis of the data, which we
present in the next section. The order parameter of the
TBIM, defined by

N

> o N, (12)

i=1

(mp) =

is plotted in Fig. 3 against the rescaled temperature for vari-
ous system sizes. The corresponding susceptibility

N

XL= ﬁ((ﬂ@ = (mp)?) (13)

is shown in Fig. 4. In addition to the above, we have deter-
mined the fourth-order cumulant, given by Eq. (14) below,
for finite-size TBIM systems, which provides a convenient
route to finite-size scaling analysis as presented in the next
section.

23 2.4 2.5 2.6 27

FIG. 3. The order parameter for finite-size TBIM systems is
plotted against the corresponding rescaled temperatures in the criti-
cal region.
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FIG. 4. The susceptibility of finite-size TBIM systems vs the
corresponding rescaled temperatures in the vicinity of the critical
point.

V. FINITE-SIZE SCALING ANALYSIS

The singularities of the free energy can only evolve in the
thermodynamic limit of the infinite system size, L— %, and
the finite size of the systems employed causes a systematic
rounding of the critical singularities, as seen explicitly in
Figs. 3 and 4. Such finite-size effects, however, can be turned
into a powerful tool through finite-size scaling analysis for
determining the critical exponents [17].

A convenient way of studying critical phenomena is
through the fourth-order cumulant due to Binder [18],

(my)

3(mp)*

U =1 (14)
which asymptotically approaches zero for T>T,, and two-
thirds for T<<T.. This dimensionless quantity has the finite-
size scaling form

U(T,) = O[LY(T, - T,)] (15)

that is independent of L at the critical point 7, =T, where 7
is the rescaled temperature of a finite-size TBIM lattice ob-
tained from Eq. (11). In order to locate the critical tempera-
ture of the TBIM, we have relied on the cumulant crossing
method [18]. In Fig. 5, U(T}) is plotted against T} for dif-
ferent system sizes. The inset shows a zoom on the crossing
for the larger system sizes, the width of which is used to
estimate bounds for 7. The plot gives evidence of a continu-
ous phase transition of the conventional type at T,
=2.557(1). T, is indeed much lower than the critical tem-
perature of the regular Ising model 1/K,=4.5115(5) [19].
The lowering of the transition point is expected in the light
of the annealed bond disorder present. Furthermore, the cor-
relation length exponent v, defined by &é~|T—T,|7, is esti-
mated from the scaling plot of U,(x) against x=L""(T,
—T,). This is shown in Fig. 6, for »=0.70, and T.=2.557. By
varying v, and evaluating the quality of the data collapse, our
best estimate of the correlation length exponent is v
=0.70(1). To obtain bounds for an exponent, we rely on a
lower and an upper bound that give a good data collapse,
beyond which the collapse of the data is visibly worsened.
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FIG. 5. Plot of the fourth-order cumulant vs rescaled tempera-
ture for various system sizes. The point of intersection corresponds
to the critical temperature, 7.=2.557(1), of TBIM in the limit of the
infinite lattice size. The inset is a zoom on the crossing for the larger
system sizes.

We have also carried out a finite-size scaling analysis of
the susceptibility y;, which has the finite-size scaling form

xu(Tp) = Ly/y)?[L”V(TL - Tc)]’ (16)

where vy is the susceptibility exponent defined by x~|T
—T,™. The ratio y/v is closely related to the anomalous
dimension exponent, 7, which describes the power-law de-
cay of correlations at the transition point 7, through the
Fisher scaling law y/v=2-7 [20]. X is a universal scaling
function such that an appropriate choice of the exponent v, in
this case y=1.40(1), results in a data collapse in a scaling
plot as can be seen in Fig. 7. It must also be pointed out that
Egs. (15) and (16) represent only the leading term in finite-
size scaling, as for the system sizes considered, the correc-
tion to scaling is expected to be rather small. This expecta-
tion is validated by the inset of Fig. 7, showing a log-log plot
of Xmax(L) (i.e., maximum value of x;) against L, which
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FIG. 6. A scaling plot of the fourth-order cumulant with »
=0.70 and 7,.=2.557 according to the finite-size scaling form in Eq.
(15). These values give the best data collapse that we have been
able to observe.
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FIG. 7. A scaling plot of the susceptibility with y=1.40, v
=0.70, and T,=2.557, according to the finite-size scaling form
given in Eq. (16). All available data have collapsed onto the corre-
sponding universal scaling function, ¥. The inset shows a log-log
plot of xmax(L) against L.

must be a straight line with a slope equal to y/ v, if Eq. (16)
is a valid representation of the finite-size scaling for the sys-
tem sizes considered. This is indeed the case, and the slope
of the straight line fit y/»=1.990(15) is in good agreement
with the exponent ratio y/»=2.000(14) obtained from the
scaling plots shown in Figs. 6 and 7.

Having estimated two of the critical exponents, the rest
can be obtained from a variety of scaling laws relating the
exponents. The scaling laws are particularly useful in the
instance of accurate estimation of the specific-heat exponent
a, defined by C~ |T—-T,|7%, where a finite-size scaling analy-
sis is always rendered inaccurate by a large nonsingular
background contribution. The hyperscaling law a=2-dv
[21], where d is the space dimensions, gives a=—0.10(3) for
d=3. The negative sign is indicative of the fact that the
specific-heat divergence in the regular Ising model has been
reduced to a finite cusp singularity. Furthermore, the order-
parameter exponent 3, defined by (m)~ (T.—T)?, can be ob-
tained from the scaling law [21], 28+ a+y=2, thus giving
B=0.35(2) for our thermalized-bond model system.

VI. DISCUSSION

It is interesting to note the consistency of the critical ex-
ponents of the TBIM with certain phenomenological rela-
tions due to Fisher [10], which give the renormalization of
the critical exponents, by the so-called hidden variables, in
terms of the known exponents of the regular model system.
The term “hidden variable” applies to the annealed impurity
that may exist in addition to the statistical variables already
incorporated in the regular model Hamiltonian. Thus, it is
believed that the exponents describing the critical behavior
of the thermodynamic functions that do not involve a tem-
perature derivative of the free energy, such as the order pa-
rameter and the corresponding susceptibility, are renormal-
ized according to B=8,/(1-a,), and vy=v,/(1-q,),
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TABLE I. The critical exponents of TBIM are compared with those obtained from the renormalization
relations. The critical exponents of the regular Ising model are also included for completeness. The last row
contains some experimental data on simple and binary fluids adopted from Table I in Ref. [10].

Critical exponent v vy a B
Three-dimensional TBIM 0.70(1) 1.40(1) -0.10(3) 0.35(2)
Renormalization relations [10] 0.7086(35) 1.3907(75) —-0.1258(38)  0.3675(17)
Three-dimensional Ising model [16] 0.6294(10) 1.2353(25) 0.1118(30)  0.3265(4)
Simple and binary fluids 1.35-1.40 =0 0.33-0.36

respectively, where a subscript r on the exponent means the
regular/reference system. On the other hand, the exponent «
describing the specific-heat singularity is believed to be
given by a=-a,/(1-«,) [10]. (Note the negative sign.) In
Table I, we have listed for comparison the critical exponents
we have found for the TBIM along with those obtained from
the above renormalization relations. They agree very well
within statistical errors. The exponents of the regular Ising
model [16], which have been used in connection with the
above renormalization relations, are also included for com-
pleteness. Fisher, however, considered the effect of the hid-
den variables in the form of the annealed impurity subject to
a constraint such as a fixed number of impurity atoms (con-
centration). Furthermore, a variety of solvable models were
discussed to check the renormalization relations explicitly,
all of which involved a temperature-independent impurity
concentration [10]. Hence, our results may be regarded as
independent verification of the above renormalization rela-
tions for systems involving temperature-dependent annealed
bond impurity. Physically, this consistency should be inter-
preted in light of the fact that the minute details of the mi-
croscopic interactions of a physical system, in this case the
temperature dependence of the bond dilution, may not alter
the large-scale behavior at a critical point, thus preserving
the renormalized exponents and their universality.

This work only dealt with the effect the thermal bond
excitations have on a continuous phase transition. It is, how-
ever, more common for a covalent liquid to undergo an
abrupt or first-order phase transition to a solid or a gaseous
phase. Thus, one may again invoke a lattice model such as
the g-state Potts model (with ¢g>4 in two dimensions and

g>?2 in three dimensions) to investigate the effect the ther-
mal bond excitations have on a first-order transition point.
Whether it has any weakening effect on the latent heat, and
whether the effect is significant enough to change the order
of a weak first-order phase transition, are the kind of ques-
tions one may wish to consider. More generally, we believe
that in the lattice models of covalently bonded structures
such as the supercooled liquids [7], polymers [5], lattice pro-
tein [6], etc., the thermalization of bonds can provide for a
natural bond-breaking mechanism when suitably employed.
It should also be pointed out that in order to keep the treat-
ment simple, we have treated covalent bonds as independent,
two-level systems obeying classical Maxwell-Boltzmann sta-
tistics. However, this does not rule out other forms. In par-
ticular, a Fermi-Dirac distribution for the bond electrons, is
another plausible candidate. However, our main results are
not likely to change no matter which statistics is used here,
because the present work clearly shows that the bond ther-
malization preserves the expected renormalization of the
exponents—universality prevails.

VII. SUMMARY

In summary, the method of chemical potentials is ex-
tended to systems with temperature-dependent annealed
bond impurity by using it to calculate the critical behavior of
the thermalized-bond Ising model in three dimensions. The
critical exponents are found by a finite-size scaling analysis.
It is a matter of interest to note that the TBIM exponents are
consistent with the renormalization relations due to Fisher
despite the temperature-dependent bond dilution, thus pre-
serving the universality of the renormalized exponents.
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