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Established expressions for entropy production in irreversible processes are generalized to include friction
explicitly, as a source of irreversibility in the interaction between a system and its surroundings. The net
amount of heat delivered to the system does not come now only from the reservoir, but may have an additional
component coming from the work done against friction forces and dissipated as heat. To avoid ambiguities in
interpreting the different contributions to entropy increase, the latter is also written in terms of the heat directly
exchanged between the system and surroundings and of the fraction of frictional work that is lost in the system.
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I. INTRODUCTION AND MOTIVATION

There has been a renewed interest in deriving expressions
for the entropy produced in irreversible processes involving
a system and its surroundings, which have been presented
within the framework of the so-called rectification of ther-
modynamic inequalities and may be of relevance for the
study of mesoscopic devices or of biological or macromo-
lecular systems �1�. In particular, rectified forms of the sec-
ond law have been discussed in connection with theorems for
irreversible work that have found application in the field of
molecular dynamics �1–3�. Thermodynamical analysis based
on entropy production and its maximization has also been
recently applied in fusion research to discuss turbulent heat
transport in tokamak discharges, in an attempt to explain the
transition from a low- to a high-confinement plasma state
and the triggering of an internal transport barrier �4�.

In a very schematic manner, recall that the first law for a
given system reads

dU = d–Q + d–W , �1�

where dU is the infinitesimal change in its internal energy,

d–Q the infinitesimal amount of heat it absorbs, d–W is the

infinitesimal work done on it, and the symbol d– designates an
infinitesimal change in a quantity that is not a state variable.

In addition, if d–Qrev and d–Wrev are, respectively, the heat and
work inputs to the system in a reversible transformation be-
tween the same initial and final states as in �1�, then

dU = d–Qrev + d–Wrev. �2�

Recall still that the contribution of a given process to the
entropy increase of the universe is

dSuniv = dS + dS0, �3�

with dS and dS0 the entropy changes of the system and sur-
roundings, respectively. One also has, with the the surround-
ings behaving as a reservoir at absolute temperature T0 and

giving off the heat d–Q0,

dS0 = −
d–Q0

T0
, �4�

and, with T designating the system’s absolute temperature,

dS =
d–Qrev

T
. �5�

Thus, combining �1�–�5� and assuming further that the effec-
tive heat lost by the surroundings equals the net heat flow to
the system, meaning

d–Q0 = d–Q , �6�

the result

dSuniv =
d–W − d–Wrev

T
+ � 1

T
−

1

T0
�d–Q �7�

is obtained, equivalent to

dSuniv =
d–Wdiss

T
+ � 1

T
−

1

T0
�d–Q �8�

if the dissipative work

d–Wdiss = d–W − d–Wrev �9�

is defined �1�.
Consider now the example of a cylinder containing a gas

that is slowly and isothermally compressed by a piston for
which sliding friction is not negligible, which constitutes a
case study for irreversible quasistatic processes �5�. Clearly,

in this situation, the work d–W done on the gas is the same as

the work d–Wrev it would receive in a reversible transforma-
tion between the same states, since both processes are qua-
sistatic �6�. Going back to �7�–�9�, one would then wrongly
conclude that dSuniv would vanish for this transformation, in
marked violation of the second law for a process where there
is dissipative work and entropy is certainly produced out of
friction. So there seems to be a problem with �7�–�9�, at least
concerning their applicability when there are friction forces
acting on the system’s boundary, hence this paper, whose
purpose is precisely to address such a problem. The impor-
tance of this work stems not only from the relevance that
results for entropy increase such as �7�–�9� have for several*bizarro@ipfn.ist.utl.pt
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interdisciplinary branches of contemporary physics �1,4�, but
also from the fact that it has to do with fundamental thermo-
dynamics and the very essence of the second law. One has
actually to ascertain how to write a rectified form of the
second law accounting explicitly for the dissipative work due
to friction, which has evident implications for engineering
applications, as well as for the analysis of mesoscopic sys-
tems in which some effects or interactions may have to be
modeled as friction. Indeed, the latter is an integral, almost
unavoidable feature of nature and it deserves to make its
appearance, per se, in the equations of basic thermodynam-
ics. Moreover, the subject addressed here deals with quite
simple, essentially college-level physics, which by no means
diminishes its interest but adds pedagogical value instead,
making it, for instance, a valuable auxiliary tool to be used in
the classroom to illustrate how the first and second laws
combine together in the machinery of macroscopic thermo-
dynamics.

II. ANALYSIS AND DISCUSSION

So, where lies the problem with �7� and �8�? Precisely in
assumption �6�. Indeed, keeping in mind that

dU0 = − d–Q0 − d–W0 �10�

for the change in internal energy of the surroundings, where

d–W0 designates the work output from the latter, and that

dU + dU0 = 0 �11�

because of energy conservation, since system and reservoir
evolve as an isolated set, �1�, �6�, �10�, and �11� put together
imply

d–W0 = d–W . �12�

However, when there is work d–Wfric performed against fric-
tion forces, �12� does not apply but has to be replaced by

d–W0 = d–W + d–Wfric, �13�

which, in turn, and accounting once more for �1�, �10�, and
�11�, leads to

d–Q0 = d–Q − d–Wfric �14�

instead of �6�. Equation �14� means that the net amount of
heat lost by the surroundings does not correspond entirely to
the total heat received by the system, the actual difference
between these two heat terms leading to a very clear, intui-
tive physical interpretation: the work that is lost due to fric-
tion, and becomes thus unavailable for useful purposes, ends
up dissipated as heat. Combining �1�–�5�, and �13�, one then
gets

dSuniv =
d–W0 − d–Wrev

T
+ � 1

T
−

1

T0
�d–Q0, �15�

or, using �14�,

dSuniv =
d–W − d–Wrev

T
+

d–Wfric

T0
+ � 1

T
−

1

T0
�d–Q , �16�

or further

dSuniv =
d–Wdiss

T
+ � 1

T
−

1

T0
�d–Q0 �17�

if the dissipative work is redefined according to

d–Wdiss = d–W0 − d–Wrev. �18�

The results in �15�–�18� have a broader domain of validity
and generalize �7�–�9�, the two ensembles being equivalent

only if d–Wfric vanishes, in which case �13� and �14� degen-
erate into �6� and �12�. Eventually, it would be possible to
reconcile the two sets if the system could be, somehow, ex-
tended to include friction, yet such a point of view would be
of a rather limited interest since, quite generally, it would not
be possible to draw clear-cut physical boundaries between
such an extended system and its surroundings �7�.

Rewriting �18� with the help of �13� yields

d–Wdiss = d–W − d–Wrev + d–Wfric, �19�

where the two distinct sources of mechanical irreversibility

become apparent: friction, via d–Wfric, but also the deviation,

as measured by d–W− d–Wrev, of the transformation from a
quasistatic process in which both system and surroundings
would evolve through a series of quasiequilibrium states �8�.
The last term on the right-hand side �RHS� of �15�–�17� rep-
resents entropy production arising from thermal irreversibil-
ity due to heat exchange between the system and reservoir
when they are at different temperatures, but it is not clear if

the heat actually transferred from one to the other is d–Q0 or

d–Q. On the other hand, looking now at �17�, it is tempting to
interpret the first term on its RHS as the entropy produced
from dissipation in the system, yet the second term on the
RHS of �16� apparently suggests that the heat produced due
to friction is entirely dissipated in the surroundings. The am-
biguity pervading the interpretation of �15�–�17� stems from

the fact that, because of d–Wfric, neither d–Q0 nor d–Q corre-
sponds to the heat exchanged between system and reservoir.

To address the problem from a more complete and de-
tailed perspective, it is convenient to explicitly include in the

analysis the heat d–Qexch directly transferred from the sur-

roundings to the system, as well as the fraction � of d–Wfric
that is dissipated in the latter, so

d–Q = d–Qexch + �d–Wfric �20�

and

d–Q0 = d–Qexch − �1 − ��d–Wfric. �21�

From a physics point of view, whereas �13� and �14� comply
with the first law and thus suffice to guarantee energy con-
servation, they do not convey the whole story as far as the
second law and entropy production are concerned, as they do

not tell where d–Wfric ends up being lost as heat. Hence the
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need for the additional step in �20� and �21� which, when
incorporated in �15� or �16�, gives

dSuniv =
d–W − d–Wrev

T
+ ��

T
+

1 − �

T0
�d–Wfric + � 1

T
−

1

T0
�d–Qexch.

�22�

Each term on the RHS of �22� now carries a precise and clear
physical meaning: the first accounts for entropy increase due
to departures from quasistatic conditions, the second repre-
sents frictional dissipation which, depending on �, can take
place in the system, in the reservoir, or in both, and the third
arises from heat transfer between the system and surround-
ings when they are not in thermal equilibrium. Equations
�13�–�22� generalize previous results �1�: together with their
analysis and interpretation above, they provide several
equivalent rectified forms for the second law in which the
role of friction is explicitly accounted for.

Without going into a detailed discussion of the micro-
scopic interpretations of heat and work, the perspective here
adopted has been the standard one, which is conveyed by �1�
and defines heat as the difference between the total change in
internal energy of the system and the macroscopically mea-
surable work done on it �9,10�. Other authors prefer a stricter

definition whereby heat is only the term d–Qexch in �20�,
meaning the amount of energy directly transferred to the sys-
tem from other systems that is not work, whereas a quantity

such as �d–Wfric is not seen as frictional work converted into
heat but rather as an increase in the so-called internal thermal
energy of the system �11,12�. Note, however, that �22� is
independent of which interpretation one follows, as each and
every energylike quantity entering it is uniquely defined and,

therefore, measurable, even if indirectly as d–Wfric and d–Qexch.

For instance, following �14�, d–Wfric can be accessed via the

difference between the macroscopic works d–W0 and d–W,

whereas, as suggested by �1� and �20�, �d–Wfric and hence
also � can be retrieved if the internal-energy change dU and

the work d–W are measured adiabatically, which implies set-

ting d–Qexch equal to zero. If � cannot be obtained in this
manner, one can always go back to either �15� or �16�, in
which all work- or heat-assimilated quantities can be re-
trieved by standard procedures.

Still regarding the definitions of heat and work, it is in-
structive to check that the expressions derived are consistent
with the classical explanation of Joule’s famous experiment,
according to which the work of a descending weight that
causes a paddle wheel immersed in water to rotate is con-
verted into heat due to friction with the water molecules. The
subsequent rise in the water’s temperature enabled Joule to
equivalently express the calorie c, defined as the heat capac-
ity per unit mass of liquid water, in units of mechanical
work. In an ideal paddle-wheel experiment, � is equal to

unity whereas d–Qexch and d–Q0 vanish, as well as d–W and

d–Wrev, the latter because the reversible transformation would
be a purely heating process. Then, �13� and �20� become

d–W0 = d–Wfric �23�

and

d–Q = d–Wfric, �24�

agreeing with the conventional interpretation that work is
converted into heat through friction, and �15�–�18� or �22�
yields

dSuniv =
d–W0

T
. �25�

Combining �25� with the main result of the experiment
which, for a mass m of water, can be stated as

d–W0 = mcdT , �26�

gives the following well-known formula for the entropy in-
crease associated with water heating:

dSuniv =
mcdT

T
. �27�

As a simple, illustrative example consider once more the
slow, quasistatic isothermal compression, or expansion, of a
gas by, or against, a nonfrictionless piston �5�. Using the
pressurelike quantity Pfric, henceforth assumed constant, to
represent the sliding-friction force divided by the piston
cross-sectional area, one has

d–Wfric = � PfricdV , �28�

with dV the infinitesimal change in the gas volume and the
upper and lower signs on the RHS of �28� corresponding to
actual compression or expansion of the gas, respectively
�13�. Then, with T and T0 the same, �22� simplifies to �8�

dSuniv = �
PfricdV

T0
�29�

or, after integration,

�Suniv = �
Pfric�Vf − Vi�

T0
, �30�

an eminently obvious result which, remember, could not be
retrieved from �7�–�9�, and where the subscripts f and i des-
ignate, respectively, the final and initial states of the gas.

A further interesting case is that of an irreversible quasi-
static adiabatic compression, or expansion, of a gas which,
for the sake of simplicity, is here considered to be ideal,
whence

PV = nRT �31�

and

U = ncVT , �32�

where P is the gas pressure, n its amount in moles, cV its
molar specific heat at constant volume, and R the ideal gas
constant. The evident restriction for an adiabatic transforma-
tion is that heat transfer from the surroundings to the system
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and vice versa is not allowed, so d–Qexch must vanish and �22�
and �28� become

dSuniv = � ��

T
+

1 − �

T0
�PfricdV . �33�

To integrate �33�, T must first be expressed in terms of V,
which can be done by combining �1�, �20�, �31�, and �32�
with the quasistatic pressure work

d–W = − PdV �34�

to obtain

VdP = − ��P � �� − 1��Pfric�dV �35�

and, upon integration,

�P � �1 − �−1��Pfric�V� = �Pi � �1 − �−1��Pfric�Vi
�,

�36�

with

� = 1 +
R

cV
�37�

the standard ratio between specific heats. Subsequently, in-
troducing in �33� the expression for T derived from �31� and
�36�, one can write for the entropy increase

�Suniv = ncV ln�1 � �1 − �−1�
�Pfric

Pi
�1 − �Vf

Vi
��	


�
�1 − ��Pfric�Vf − Vi�

T0
. �38�

Notwithstanding the absence of heat exchange between sys-
tem and reservoir in such an adiabatic process, the same
restriction as in Joule’s experiment, note that there may in-
deed be heat fluxes to the system, to the reservoir, or to both
coming from the work done against friction forces, as put
forward by � in �20� and �21�. For instance, when � becomes

unity, d–Wfric is fully dissipated as heat in the system, which
means that not only the gas, but also the container and its

piston, must be thermally insulated from the surroundings
�14�.

III. SUMMARY AND CONCLUSIONS

Motivated by the difficulties found in applying the exist-
ing results to the simple model of a gas slowly compressed
by a piston with sliding friction, the writing of expressions
for entropy production in irreversible transformations has
been reconsidered in a detailed discussion illustrated with
examples and carried out strictly within the framework of
classical thermodynamics. More precisely, rectified forms of
the second law have been obtained for computing the contri-
bution of a given process to the increase in the entropy of the
universe that explicitly include friction as a source of irre-
versibility and are, therefore, of general validity. To unam-
biguously interpret every term leading to entropy production,
the latter has been written in terms of the heat directly ex-
changed between system and surroundings and of the frac-
tion of the work produced by friction that is dissipated in the
system. In addition to the standard contributions to entropy
increase identified with heat transfer between system and res-
ervoir, when their temperatures are different, and with work
that is not performed quasistatically, an additional term now
arises related to frictional dissipation, which may occur in
the system, in the surroundings, or in both.

The results here revealed are of an interdisciplinary nature
and of a rather broad interest, the simplicity behind their
derivation making them easy to grasp even by an under-
graduate who has acquired a basic knowledge of the first and
second laws in an introductory physics course. Furthermore,
they are expected to be important for several branches of
physics and engineering, even at the mesoscopic level, par-
ticularly in those applications where dissipation identified
with frictional work must be taken into account.
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