
Molière theory of multiple Coulomb scattering with ionization and the transport
mechanism of the multiple scattering process

Takao Nakatsuka
Okayama Shoka University, Okayama 700-8601, Japan

Jun Nishimura
The Institute of Space and Astronautical Science, JAXA, Yoshinodai, Sagamihara 229-8510, Japan

�Received 21 January 2008; published 27 August 2008�

The Molière theory of multiple Coulomb scattering is improved to take account of ionization loss by

applying a differential formulation of the theory. Distributions for the deflection angle �� , as well as for any

linear combination between �� and the lateral displacement r�, under the ionization process are derived by a
series expansion with the same universal functions f �n���� of Molière, except that the values for both the
expansion parameter B and the scale angle �M are corrected from those under the fixed-energy process. We find
that Goudsmit-Saunderson angular distribution with ionization is also expressed by the same characteristic
parameters B and �M derived above by the Molière theory. The transport mechanism of Molière process of
multiple Coulomb scattering and the stochastic property of Molière series expansion are also investigated and
discussed.
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I. INTRODUCTION

An accurate theory of multiple Coulomb scattering im-
proves the precision of our designs and analyses of experi-
ments relating to fast charged particles. It also gives reliable
results in computer simulations for those experiments. There
exists a long history of theoretical works to predict and
clarify the stochastic properties of the process. We first con-
structed the theory by focusing on the central Gaussian pro-
file of angular distribution �1�. Investigations from this point
of view, called the Gaussian approximation �2�, have been
well accomplished by the Fermi-Yang diffusion equation to
give the simultaneous distributions among directions of mo-
tion, lateral displacements, and longitudinal detours of
charged particles �3–5�, even under the ionization process
�6–8�. Later, the theory was made more precise and appli-
cable to a wider angular range, taking account of large-angle
scatterings in the single-scattering cross section �9–15�. The
Goudsmit-Saunderson theory and the Molière-Bethe theory
are the representative ones in this scheme, and have been
widely used. The former accurately derived the angular dis-
tribution based on the addition theorem for spherical har-
monics �9,10,15�. The latter proposed a diffusion equation
assuming the small angle approximation �2� and derived the
angular distribution considering energy loss �11–13� as well
as the distribution for an arbitrary linear combination be-
tween the deflection angle and the lateral displacement under
the fixed-energy condition �16�.

Although the Molière-Bethe theory is less accurate at
large angles than the Goudsmit-Saunderson theory due to the
small angle approximation, it still has many benefits in typi-
cal and practical applications. The angular distribution is de-
scribed in a simple series expansion with universal functions,
and the angular distribution is easily obtained with accuracy
from the first few terms of the series. The distribution is
characterized by only two parameters, the expansion param-
eter B and the scale angle �M for deflection angle �17�. As the

theory is described in a standard diffusion equation, we can
understand the related problems totally by comparing the
results with those from the Fermi-Yang equation �3,4,8� and
shower theories �3,18,19�, and so on. So it has been widely
used in the design and analysis of experiments relating to
charged particles and in the trace of passages of charged
particles in Monte Carlo simulations �20–22�. However, de-
spite its excellent mathematical foundations, almost no the-
oretical improvements have been made out of the Molière-
Bethe formulation.

Kamata and one of the present authors proposed another
formulation of the Molière theory when investigating the ef-
fects of single scattering on their cascade shower theory
�18,19�. They described the diffusion equation in a simple
ordinary differential equation in the frequency space of Fou-
rier transforms. It was just a thorough extension of the
Fermi-Yang formulation, but with the addition of a logarith-
mic term corresponding to the large-angle scattering to the
Fermi equation �3,4�. Using their formulation, correction
terms by single scattering to solutions under the Gaussian
approximation were evaluated on other problems, such as
longitudinal-detour problems �5� and shower theories
�18,19�. Two constants, � and K specific to materials, were
introduced in their formulation, appearing in coefficients of
the diffusion equation. As all the scattering properties of the
materials, including mixed or compound materials, were
contained in these constants, it became far easier and simpler
to obtain the Molière angular distribution for charged par-
ticles traversing through any material. Their formulation is
equivalent to the Molière-Bethe formulation, as the both for-
mulations neglect Fourier components of the second higher
orders and more against finite constants and logarithmic
terms, and gives the Molière angular distribution of simple
series easily by using a transport formula indicated in Ap-
pendix B. As they remained the fundamental equation differ-
ential with the traversed thickness even after they applied
Hankel transforms to the angular variable, we could call their
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formulation the differential formulation of the Molière
theory �23�.

We have found other superior aspects of the differential
formulation of the Molière theory to be very useful in prac-
tical applications. We obtained more accurate angular distri-
butions, as well as distributions for arbitrary linear combina-
tions between the deflection angle and the lateral
displacement, taking account of ionization loss, for relativis-
tic charged particles of ��1, by only introducing the con-
traction factor � for the traversed thickness. For charged par-
ticles of moderate energies, as wide ranges of � as Molière
and Bethe applied their theories �11–13�, � is evaluated by a
numerical integration. And we found Goudsmit-Saunderson
angular distributions with ionization are expressed explicitly
with the above two parameters B and �M derived in Molière
theory through the differential formulation. The scattering
constants � and K for pure materials, as well as those for
mixed or compound materials, are also revised by using the
values in the Table of Atomic and Nuclear Properties of Ma-
terials in The Review of Particle Physics �24�.

The shape of Molière distribution is determined by the
expansion parameter B, sometimes called the shape param-
eter �25�. As is well known, the first multiple scattering term
of the Molière series is corrected by the second single-
scattering term by the magnitude of B−1. B showed a mo-
notonous increase with traversed thickness under the fixed-
energy process. However, B under the ionization process
increases more slowly and begins to decrease at the last stage
of the traverse. This fact is hard to understand, so we inves-
tigate and clarify the transport mechanism of the multiple
scattering process.

II. MOLIÈRE ANGULAR DISTRIBUTIONS
WITH IONIZATION FOR RELATIVISTIC

CHARGED PARTICLES

We first derive the angular distribution of singly charged
particles penetrating through uniform materials with relativ-
istic energies by the differential formulation of the Molière
theory �18,19�, assuming that their total energies E are far
higher than the rest energy mc2,

E � mc2, �1�

and we discuss the mutual relations between our formulation
and the Molière-Bethe formulation.

Let f�� , t�2��d� be the azimuthally symmetric angular
distribution of charged particles �26� with spatial deflection
angle � after penetrating through uniform materials of thick-

ness t measured in radiation length �3�, and f̃�� , t� be its
double Fourier transform, or its Hankel transform under the
azimuthally symmetric condition �18,19�

f̃��,t� =
1

2�
� � ei��·�� f̃��� ,t�d�� = �

0

	

J0����f��,t��d� , �2�

f��,t� =
1

2�
� � e−i�� ·�� f̃���,t�d�� = �

0

	

J0���� f̃��,t��d� .

�3�

According to our differential formulation, the diffusion equa-

tion for the Hankel transform f̃�� , t� is expressed by a simple
ordinary differential equation �27� under the small angle ap-
proximation

df̃

dt
= −

K2�2

4E2 f̃�1 −
1

�
ln

K2�2

4E2 � , �4�

where � and K, indicated in Tables III and IV later, denote
the scattering constants showing the characteristics of mate-
rial �18,19� discussed in Sec. IV B.

For normally incident charged particles under the fixed-

energy condition �4� with the initial condition f̃ =1 / �2�� at
t=0 can be easily integrated as

f̃ =
1

2�
exp�−

�G
2 �2

4
	1 −

1

�
ln

�G
2 �2

4t

� , �5�

where

�G
2 = K2t/E2 �6�

denotes the well-known Gaussian mean-square spatial angle
for relativistic charged particles indicated in Eq. �1.55a� of
Rossi and Greisen �3�, only with Es replaced by K. We can
obtain the Molière angular distribution from Eq. �5� in
double power series with �−1 and ln t as indicated in Appen-
dix A. However, for derivation of the angular distribution,
the more plain Molière’s expression in simple power series
with B−1 can be obtained from our solution �28�. According
to the transport formula described in Appendix B, the solu-
tion �5� is changed to

f̃ =
1

2�
exp�−

�M
2 �2

4
	1 −

1

B
ln

�M
2 �2

4

� , �7�

where the expansion parameter B and the scale angle �M are
derived from

B − ln B = � − ln � + ln t , �8�

�M = �G
�B/� �9�

with �G of Eq. �6�, so that we have the Molière angular
distributions f���2��d� for spatial angle � and fP�
�d
 for
projected angle �:

2�f��� = f �0���� + B−1f �1���� + B−2f �2���� + ¯ , �10�

fP�
� = fP
�0��
� + B−1fP

�1��
� + B−2fP
�2��
� + ¯ , �11�

with the Molière series functions f �n���� and fP
�n��
� �12,13�

and the scale variables

� = �/�M and 
 = �/�M . �12�

In actual cases, the energies of charged particles dissipate
when the particles penetrate through the materials. If we as-
sume continuous energy loss by ionization with a constant
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rate, the critical energy � in unit radiation length �3,29�, the
incident particles of energy E0 lose their energies as

E = E0 − �t . �13�

Then Eq. �4� becomes

�
df̃

dE
=

K2�2

4E2 f̃�1 −
1

�
ln

K2�2

4E2 � . �14�

The solution satisfying the initial condition of f̃ =1 / �2�� at
E=E0 is expressed by

f̃ =
1

2�
exp�−

K2�2t

4E0E
�1 +

1

�
	2 +

E0 + E

E0 − E
ln

E

E0



−
1

�
ln

K2�2

4E0E

�

=
1

2�
exp�−

�G
2 �2

4
	1 −

1

�
ln

�G
2 �2

4�t

� , �15�

where

�G
2 = K2t/�E0E� �16�

denotes the Gaussian mean-square spatial angle under the
ionization process presented by Eyges �6�, and

� = e2�E/E0��E0+E�/�E0−E� �17�

denotes a newly introduced factor under the ionization pro-
cess, agreeing with Molière’s evaluation �30�. � is a function
of the fractional energy E /E0 or the fractional dissipation
�E0−E� /E0, decreasing from 1 to 0 as the fraction of dissi-
pated energy increases from 0 to 1, as indicated by the solid
curve in Fig. 2 in the next section.

According to our transport formula introduced in Appen-
dix B, solution �15� can be expressed as Eq. �7�. Thus we get
the Molière angular distribution with ionization in the simple
series of Eq. �10�, where the expansion parameter B is deter-
mined from

B − ln B = � − ln � + ln��t� �18�

and the scale angle �M from Eq. �9� with �16�, as listed in
Table I. Variations in the expected angular distribution with
energy dissipation for relativistic muons are compared with
those under the fixed-energy condition in Fig. 1.

Eyges found that the angular distribution under the Gauss-
ian approximation with ionization loss of a constant rate is
easily obtained from the distribution without ionization sim-
ply by replacing the energy E with the geometrical mean
between the incident and the destination �E0E �6�. However,
we find that the Molière angular distribution with ionization
for relativistic particles is instead obtained from traditional
results without ionization by replacing both the thickness t
and the energy E with the effective variables �t and ��E0E
as the characteristic parameters B and �M obey this rule as
confirmed in Eqs. �9�, �16�, and �18�. The thickness is re-
duced to the effective value of �t under the ionization pro-
cess, so we can call � the contraction factor. The expansion
parameter B increases more slowly compared with B under
the fixed-energy process due to the slower increase of �t, and
moreover B begins to decrease at the last stage of traverse
along with the decrease of the value �t in Eq. �18�.

TABLE I. The equation and the characteristic parameters of
Molière angular distribution with ionization and their approxima-
tions. 
�zZ / �137�� denotes the Born parameter. Our results for
charged particles of moderate energies give the traditional Molière
results at the limit of �→0, where an approximation of �� by �
gives almost no differences in the resultant B and �M for typical
materials used in experiments. Our approximate results neglect the
expansion terms of the order �mc2 /E�4 and higher. Moreover, our
relativistic results neglect the terms of order �mc2 /E�2.

Results for charged particles of moderate energies with ionization

Equation df̃

z2dt
= −

�2

w2 f̃�1 −
1

�
ln

��2�2

w2 �
�G

2 K2z2

2�mc2�mc2

pv
−

mc2

p0v0
+

1

2
ln

�E0 − mc2�/�E − mc2�
�E0 + mc2�/�E + mc2��

ln � ln
��2�G

2

4z2t
−

4z2

�G
2 �

0

t
1

w2 ln
��2

w2 dt

B − ln B � − ln � + ln��z2t/��2�

�M �G
�B/�

Approximate results of mc2 /E�1 and 
2�1

Equation df̃

z2dt
= −

�2

w2 f̃�1 −
1

�
ln

�2�2

w2 �
�G

2 K2z2t

E0E �1 +
2

3

m2c4

E2 	1 +
E

E0
+

E2

E0
2
�

ln �
2 +

E0 + E

E0 − E
ln

E

E0
−

m2c4

9E2 	14 + 5
E

E0

+ 5
E2

E0
2 + 12

E

E0

E0 + E

E0 − E
ln

E

E0



B − ln B � − ln � + ln��z2t/�2�

�M �G
�B/�

Relativistic results of mc2 /E�1 with z=1

Equation df̃

dt
= −

K2�2

4E2 f̃�1 −
1

�
ln

K2�2

4E2 �
�G

2
K2t � E0E

ln � 2 +
E0 + E

E0 − E
ln

E

E0

B − ln B �−ln �+ln��t�

�M �G
�B/�
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III. MOLIÈRE DISTRIBUTIONS WITH IONIZATION
FOR LINEAR COMBINATION BETWEEN THE

DEFLECTION ANGLE AND THE
LATERAL DISPLACEMENT

Molière obtained the generalized distribution for linear

combination between the deflection angle �� and the lateral
displacement r� under the fixed-energy condition �16�. We
improve on his result to take account of ionization loss in Eq.
�13�, for relativistic charged particles.

Let the simultaneous distribution between �� and r� be

f��� ,r� , t�d��dr� and its Fourier transform be f̃��� ,�� , t�:

f��� ,r�,t� =
1

4�2 � � � � e−i�� ·��−ir�·�� f̃���,�� ,t�d��d�� , �19�

where �� and �� denote the Fourier variables corresponding to

�� and r�, respectively. The diffusion equation for Fourier
transform of the simultaneous distribution is described as

� f̃

�t�
= ��

� f̃

����
−

K2��2

4E�2 f̃�1 −
1

�
ln

K2��2

4E�2 � , �20�

where the variables ��� and E� change together with the dif-
ferential variable t�. The first term of the right-hand side

vanishes when we replace the variable ��� as

��� = �� + �t − t���� , �21�

where t and �� denote the destination thickness and Fourier
variable. Then Eq. �20� can be integrated as

ln 4�2 f̃ = − �
0

t K2��2

4E�2 �1 −
1

�
ln

K2��2

4E�2 �dt�

= �
0

1 K2t��� + �� tu�2

4��E + �tu�2 ln
K2��� + �� tu�2

4e��E + �tu�2du , �22�

where E denotes the destination energy.
Let �� be the linear combination between the deflection

angle �� and the lateral displacement r�, or the chord angle r� / t
�2,16�, with respective weights of a and b,

�� = a�� + br�/t , �23�

and g��� , t� be its probability density �31�. For b=0, the prob-
lem is reduced to the angular distribution described in the
previous section. For b�0, we have

g��� ,t�d�� =
td��

b
� � f	�� ,

t

b
��� − a���,t
d�� , �24�

so that the Fourier transform g̃��� , t� of g��� , t�,

g̃���� =
1

2�
� � e−i��·��g��� ,t�d�� = 2� f̃�a��,b��/t,t� , �25�

is derived as

ln 2�g̃ = �
0

1 K2t�2�a + bu�2

4��E + �tu�2 ln
K2�2�a + bu�2

4e��E + �tu�2du

= �
E

E0 b2K2t�2

4��3t3 	1 −
Q

E�

2

ln� b2K2�2

4e��2t2	1 −
Q

E�

2
dE�

= �
Q/E0

Q/E b2QK2t�2

4��3t3 	1 −
1

s

2

ln
b2K2�2�1 − s�2

4e��2t2 ds

= −
b2QK2t�2

4��E0 − E�3�2�s + ln�s� − 	s −
1

s

ln�1 − s�

− 2L2�s�

Q/E0

Q/E
− �s −

1

s
− 2 ln�s�


Q/E0

Q/E

�ln
b2K2�2

4e��E0 − E�2� , �26�

where we define

Q � E − �a/b��t , �27�

10−2

10−1

100

10−3 10−2 10−110−3

10−2

10−1

100

(b) with ionization

DEFLECTION ANGLE (rad)

θ2 2π
f(

θ)

E0 = 100 GeV

(a) fixed energy

MUON

E0 = 100 GeV

θ2 2π
f(

θ)
in water

FIG. 1. Comparison of expected angular distributions multiplied
by �2 for muons with and without ionization loss, assuming that rest
energy is negligible. Solid curves in �b� show the distributions after
39.3, 118, 197, 275, and 354 m traverses in water with ionization,
from left to right, where the incident muons dissipate 10, 30, 50, 70,
and 90 % of their initial energies. The curves in �a� show the dis-
tributions after the same traverses without ionization. Dotted curves
indicate accumulations of the single-scattering distribution inte-
grated over the traversed thickness as evaluated in Eq. �106�.
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�h�s��x
y � h�y� − h�x� , �28�

and L2�z� denotes the dilogarithm function �32,33�

L2�z� = �
z

0 ln�1 − t�
t

dt . �29�

According to our transport formula introduced in Appen-
dix B, solution �26� can be expressed as Eq. �7�, so that we
can describe both the spatial and the projected distributions
for �� in Molière series of Eqs. �10� and �11� with the expan-
sion parameter B expressed by Eq. �18� and the scale angle
�M expressed by Eq. �9�, where the contraction factor � in
this case is determined as

ln � =
2�s + ln�s� − �s − s−1�ln�1 − s� − 2L2�s��Q/E0

Q/E

�s − s−1 − 2 ln�s��Q/E0

Q/E

+ ln
Q�s − s−1 − 2 ln�s��Q/E0

Q/E

E0 − E
�30�

and the mean-square Gaussian angle �G
2 are determined as

�G
2 =

b2QK2t

�E0 − E�3�s −
1

s
− 2 ln�s�


Q/E0

Q/E
� �2K2t

E0
2 . �31�

We have introduced square of the broadening factor �2 to
give the ratio of the Gaussian mean-square angle �G

2 for the
combination angle �� under the ionization process �31� to �G

2

for the deflection angle �� under the fixed-energy process �6�,
for the sake of geometrical understanding. We indicate the
values of � in Fig. 2 and Table II as well as the values of �2

in Fig. 3, taking a=cos � and b=sin � as Molière did �16�.
Both factors � and � are functions of the fraction of residual
energy E /E0 or functions of the fraction of dissipated energy
�E /E0. ln � from Fig. 2 at �E /E0=0 and �2 of Fig. 3 at
E /E0=1 agree with Molière’s results without ionization �16�
in the fourth and the third rows of his Table 1, respectively
�34�. Our factors at the limit of E→0 have nonzero finite

values only for the chord-angle distribution or the lateral
distribution ��=� /2�, and thus practically provide the prob-
ability density.

0 0.5 1
0

0.5

1

FRACTIONAL DISSIPATION ∆E/E0

C
O

N
T

R
A

C
T

IO
N

F
A

C
T

O
R

ν
≡

(e
B
/B

)/
(e

Ω
t/Ω

)

λ = 0
λ = π/4
λ = π/2
λ = 3π/4

FIG. 2. The contraction factors �, or the ratios of eB /B to

e�t /�, for the combination angle �� ��� cos �+ �r� / t�sin � under the
ionization process defined for relativistic charged particles. Ab-
scissa denotes the fraction of dissipated energy �E0−E� /E0.

TABLE II. The contraction factor � for the linear combination

�� =�� cos �+ �r� / t�sin �. �E /E0= �E0−E� /E0 denotes the fraction of
the dissipated energy.

�E /E0 �=0 �=� /4 �=� /2 �=3� /4

0.00 1.0000 0.9320 0.6492 0.6492

0.05 0.9996 0.9412 0.6575 0.6409

0.10 0.9982 0.9502 0.6662 0.6320

0.15 0.9956 0.9590 0.6752 0.6225

0.20 0.9917 0.9677 0.6846 0.6124

0.25 0.9863 0.9760 0.6945 0.6016

0.30 0.9791 0.9829 0.7054 0.5902

0.35 0.9696 0.9895 0.7157 0.5772

0.40 0.9576 0.9949 0.7278 0.5632

0.45 0.9425 0.9986 0.7400 0.5481

0.50 0.9236 1.0000 0.7531 0.5310

0.55 0.9002 0.9982 0.7670 0.5126

0.60 0.8711 0.9921 0.7821 0.4917

0.65 0.8349 0.9797 0.7986 0.4680

0.70 0.7898 0.9583 0.8164 0.4409

0.75 0.7331 0.9236 0.8360 0.4091

0.80 0.6609 0.8686 0.8580 0.3711

0.85 0.5674 0.7811 0.8829 0.3240

0.90 0.4430 0.6390 0.9122 0.2625

0.95 0.2695 0.3986 0.9482 0.1740

1.00 0.0000 0.0000 1.0000 0.0000

10−3 10−2 10−1 100

100

102

FRACTIONAL ENERGY E/E0S
Q

U
A

R
E

O
F

B
R

O
A

D
.F

A
C

T
O

R
µ2

≡
θ G

2 /(
K

2 t/E
02 )

λ = 3π/4
λ = π/2
λ = π/4
λ = 0

FIG. 3. Square of the broadening factor �2 or the ratios of the
Gaussian mean square angle �G

2 for the combination angle ��

��� cos �+ �r� / t�sin � to K2t /E0
2, under the ionization process de-

fined for relativistic charged particles. Abscissa denotes the fraction
of residual energy E /E0.
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At the limit of �→0, Eq. �18� with Eqs. �30� and �31�
gives the characteristic parameters B and �M for the
combination-angle distribution under the fixed-energy condi-
tion

B − ln B = � − ln � + ln t +
2

3
+

a3/b
3a2 + 3ab + b2 ln

a2

�a + b�2

+ ln
3a2 + 3ab + b2

3�a + b�2 , �32�

�M
2

B
=

3a2 + 3ab + b2

3

K2t

�E2 , �33�

which agree with Molière’s results �3.11b� and �3.15� �16�.
Meanwhile under the special case of a /b=E / ��t�, including
the case of �� →r� / t with E→0, Eq. �26� can be easily inte-
grated within an elementary function as

ln 2�g̃ =
�a + b�2K2t�2

4�E0
2 ln

�a + b�2K2t�2

4e�E0
2 , �34�

so we find from Eqs. �B2� and �B5� that the distribution for
linear combination �� under this condition has the same
Molière distribution as the angular distribution without ion-
ization loss, except with the scale angle �M of �a+b� times
large or small value.

IV. MOLIÈRE ANGULAR DISTRIBUTION WITH
IONIZATION FOR CHARGED PARTICLES

OF MODERATE ENERGIES

We construct in this section the differential formulation of
the Molière theory applicable to charged particles of moder-
ate energies, taking account of the rest energy of penetrating
particles, and apply our formulation to Goudsmit-Saunderson
angular distribution with ionization. We also define the scat-
tering constants that are applicable even to these particles
and evaluate them so that they are consistent with the Table
of Atomic and Nuclear Properties of Materials in The Review
of Particle Physics �24�.

A. The diffusion equation for charged particles
of moderate energies

Let f��� ,x�d�� be the angular distribution of charged par-
ticles having traversed through uniform materials of thick-
ness x measured in g /cm2. Under the condition of continuous
energy loss without fluctuation, the diffusion equation for the
angular distribution is described as �13,18,19�

d

dx
f��� ,x� =

N

A
� � �f��� − ��� ,x� − f��� ,x������� �d��� ,

�35�

where A denotes the atomic weight, N the Avogadro con-
stant, and ���� the screened single-scattering formula under
the small angle approximation �2�

����2��d� =
4z2Z�Z + 1�e4

p2v2 �−42��d�, � � �e�a,

�36�

where p denotes the momentum and v the velocity of par-
ticles with charge z penetrating through material of atomic
number Z, and �a the characteristic screening angle �11,13�.
Applying Hankel transform of Eq. �2�, we have the equation
under the azimuthally symmetric condition

df̃ = − 2�
N

A
f̃dx�

0

	

�1 − J0����������d�

= −
K2

�

2z2dt

p2v2 f̃�
�e�a

	

�1 − J0������−3d� , �37�

where t denotes the traversed thickness measured in units of
radiation length X0 �3,29,35,36�,

t � x/X0, �38�

and we introduced the scattering constants � and K satisfy-
ing

K2

�
�

N

137A
Es

2re
2Z�Z + 1�X0, �39�

where re denotes the classical electron radius and Es

=�4��137mec
2�21.2 MeV denotes the scale energy

�3,24�.
The integration on the right-hand side of Eq. �37� can be

evaluated by using the formula �2,13�

I1�x� � 4�
x

	

t−3�1 − J0�t��dt = 1 + ln 2 − C − ln x + O�x2� ,

�40�

where C=0.57721¯ is Euler’s constant. So we can describe
the equation as

df̃

z2dt
= −

K2

2�

�2

p2v2 f̃�1 + ln 2 − C − ln��e�a���

=−
1

�

K2�2

4p2v2 f̃�ln
�2K2/�p2v2�0

2�
e2C−1��a

2/�0
2�rel

− ln
�2�a

2/�0
2

��a
2/�0

2�rel

− ln	 K2�2

4p2v2
� , �41�

where �0 denotes the angular constant �11,13�

�0 = �/�ap� , �42�

with a as the Thomas-Fermi radius of the atom �11� and
��a

2 /�0
2�rel is defined as the value of �a

2 /�0
2 for singly charged

particles with relativistic energies of Eq. �1�. Now we can
take � as the first term in the bracket of the right-hand side
of Eq. �41�,
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� � ln
K2/�p2c2�0

2�
e2C−1��a

2/�0
2�rel

, �43�

then our scattering constants � and K, defined by Eqs. �39�
and �43�, become specific to material, and the diffusion equa-
tion �41� to give the Hankel transform of the Molière angular
distribution for charged particles of moderate energies be-
comes simple:

df̃

z2dt
= −

�2

w2 f̃�1 −
1

�
ln

��2�2

w2 � , �44�

where

w � 2pv/K �45�

is the parameter defined in Rossi and Greisen �3�, except that
the scale energy Es is replaced by our K and

��2 =
�a

2/�0
2

��a
2/�0

2�rel

�2 �46�

is a factor to act for multiply charged �z�1� and/or nonrel-
ativistic particles and to take 1 for singly charged relativistic
particles. It will be helpful in later analyses to express the
single-scattering formula and the characteristic screening
angle of Eqs. �36� and �46� by our scattering constants � and
K determined from Eqs. �39� and �43�:

N

A
����2��d�dx =

1

��

K2z2

p2v2 �−42��d�dt , �47�

�a
2 =

��2K2

p2v2 e−�+1−2C. �48�

B. The scattering constants for pure material under the
Molière screening model

Molière evaluated the screening angle �11,13� as

�a
2 = �1.13 + 3.76
2��0

2, �49�

where


 � zZ/�137�� �50�

denotes the so-called Born parameter �2� for charged par-
ticles. Then we can determine the values of � and K specific
to materials from Eqs. �39� and �43�, to be consistent with
the Table of Atomic and Nuclear Properties of Materials in
The Review of Particle Physics �24�:

� − ln � = ln
4�Nre

2Z�Z + 1��0.885Z−1/3�2X0

e2C−1�1.13 + 3.76Z2/1372�A/1372

= ln
6700�Z + 1�Z1/3X0

�1 + 3.34Z2/1372�A
, �51�

K2 = 3.49 � 10−4Z�Z + 1�X0�Es
2/A , �52�

as listed in Table III. Note that the right-hand side of our Eq.
�51� shows the logarithm of Bethe’s equation �22� �13� with

z=1, �=1, and his t of X0, giving e2−2C times the number of
collisions in the unit radiation length. Then �M of our Eq. �9�
becomes �G of K /E, and we find our scattering constants �
and K denote B and E�M for singly charged relativistic par-
ticles after penetrating the unit radiation length.

C. The angular distribution for charged particles
of moderate energies with ionization

We derive the Molière angular distribution for charged
particles of moderate energies with ionization. The diffusion
equation �44� can be solved as

f̃ =
1

2�
exp�−

�G
2 �2

4
	1 −

1

�
ln

��2�G
2 �2

4�z2t

� , �53�

where

�G
2 = �

0

t 4z2

w2 dt �54�

denotes the Gaussian mean-square angle with Es replaced by
K, and � derived by

TABLE III. The scattering constants � and K defined in Sec.
IV B under the Molière screening model for pure materials revised
to be consistent with the Table of Atomic and Nuclear Properties of
Materials in The Review of Particle Physics �24�. Radiation lengths
X0 are taken from Tsai �36�. Critical energies � are taken
from smoothed formulas, 710 MeV / �Z+0.92� for gases and
610 MeV / �Z+1.24� for solids and liquids �24�.

Material Z A
X0

�g /cm2�
�

�MeV� �
K

�MeV�

H 1 1.008 63.05 369.8 16.44 17.96

He 2 4.003 94.32 243.2 16.07 18.88

Li 3 6.941 82.76 143.9 15.80 18.83

C 6 12.011 42.70 84.3 15.34 18.96

N 7 14.007 37.99 89.7 15.25 19.06

O 8 15.999 34.24 79.6 15.17 19.15

Na 11 22.990 25.74 49.8 14.89 18.58

Al 13 26.982 24.01 42.8 14.85 19.43

Si 14 28.086 21.82 40.0 14.80 19.47

S 16 32.066 19.50 35.4 14.71 19.54

Ar 18 39.948 19.55 37.5 14.63 19.60

Fe 26 55.845 13.84 22.4 14.34 19.79

Cu 29 63.546 12.86 20.2 14.25 19.84

Ge 32 72.610 12.25 18.4 14.17 19.90

Br 35 79.904 11.42 16.8 14.08 19.94

Ag 47 107.87 8.970 12.7 13.77 20.13

I 53 126.90 8.480 11.3 13.62 20.22

Cs 55 132.91 8.305 10.9 13.58 20.25

W 74 183.84 6.763 8.11 13.15 20.52

Pb 82 207.20 6.369 7.72 12.99 20.65

Bi 83 208.98 6.290 7.24 12.97 20.67
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ln
�

��2 = ln
�G

2

4z2t
−

4z2

�G
2 �

0

t 1

w2 ln
��2

w2 dt �55�

denotes the contraction factor for charged particles of mod-
erate energies. Especially under the ionization process with a
constant dissipation rate of �z2 in each radiation length

E = E0 − �z2t , �56�

Eq. �54� becomes

�G
2 =

K2

2�mc2�mc2

pv
−

mc2

p0v0
+

1

2
ln

�E0 − mc2�/�E − mc2�
�E0 + mc2�/�E + mc2�� .

�57�

Thus the spatial and projected angular distributions are de-
termined by the Molière series �10� and �11� with the expan-
sion parameter B derived from

B − ln B = � − ln � + ln��z2t/��2� �58�

and the scale angle �M derived from Eq. �9� with �54�, as
listed in Table I.

Under the relativistic condition of Eq. �1�, we have

��2 �
1 + 3.34z2Z2/1372

1 + 3.34Z2/1372 . �59�

So we can obtain the Molière angular distribution from the
expansion parameter B derived from

B − ln B � � − ln � + ln	 1 + 3.34Z2/1372

1 + 3.34z2Z2/1372�z2t
 �60�

and the scale angle �M derived from Eq. �9� with Eq. �16�.
Equation �60� for relativistic charged particles is reduced to
Eq. �18� for singly charged particles.

Under the condition that the Born parameter is small
enough as


 � zZ/�137�� � 1, �61�

it satisfies

�� � � . �62�

Then with �� approximated by �, B can be determined sim-
ply as

B − ln B � � − ln � + ln��z2t/�2� �63�

instead of Eq. �58�, and � is derived numerically, e.g., from
the partial integration of Eq. �55�:

ln � = ln
�G

2 p2v2

K2z2t
−

2z2�

�G
2 �

0

t �G
2

pv
dt . �64�

In Fig. 4 we compare the resultant characteristic param-
eters B and �M of charged particles with various rest ener-
gies, approximating �� by � with Eqs. �63�, �9�, and �57�.
Values of the parameters B and �M begin to deviate signifi-
cantly from those derived under the fixed-energy condition
�thin solid line�, while their total energies dissipate until they
approach the rest energies.

We also examine whether or not the condition ���� sat-
isfies the typical materials used in experiments. B and �M,

exactly derived from �� of Eqs. �58� and �9� with Eq. �57�,
are compared with those conventionally derived approximat-
ing �� by �, on materials C, Fe, and Pb in Fig. 5. We confirm
that there are almost no visible differences of more than 0.1
percent between the results from �� and � within the tra-
versed thickness of an energy loss of less than 70%.

D. Applications of our differential formulation to Goudsmit-
Saunderson angular distribution with ionization

The Goudsmit-Saunderson theory of multiple Coulomb
scattering �9,10� accurately traces the deflection angle with-
out using the small angle approximation �2�. We propose a
convenient method to derive Goudsmit-Saunderson series
terms by applying our Molière theory with ionization.

According to Lewis �15�, the probability den-
sity of Goudsmit-Saunderson angular distribution
fGS�� , t�2� sin �d� is expressed as

104 106 108
10

15

20

TRAVERSED THICKNESS t/(Ωe−Ω)

E
X

P
A

N
S

IO
N

P
A

R
A

M
E

T
E

R
B

mc2 = E0/10
mc2 = E0/20
mc2 = E0/50
mc2 = 0
mc2 = 0, Fixed E

β’ = β

104 106 108102

103

104

105

TRAVERSED THICKNESS t/(Ωe−Ω)

S
C

A
LE

A
N

G
LE

θ M
/(

K
e−

Ω
/2

/E
0)

mc2 = E0/10
mc2 = E0/20
mc2 = E0/50
mc2 = 0
mc2 = 0, Fixed E

β’ = β

(b)

(a)

FIG. 4. The values of the expansion parameters B �a� and the
scale angles �M �b� begin to deviate significantly from those derived
under the fixed-energy condition �thin solid lines�, along with dis-
sipating their energies and approaching to their rest energies. Dif-
ferences due to the different rest energies are small �thick lines�.
The unit of abscissa, �e−� of the order of 10−6 radiation length,
denotes e2C−2 times the mean-free path of Eq. �107� of the single
scattering for relativistic charged particles, and the unit of �M ordi-
nate Ke−�/2 /E0 denotes eC−1 times the screening angle �e�a of the
incident charged particle. The four branches of the curve correspond
to the incident energies E0 of 105, 106, 107, and 108 from left to
right, in units of �e−��.
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2�fGS��,t� = �
l=0

	 	l +
1

2

Pl�cos ��exp�− �

0

x

dx�
0

�

2�
N

A
����

��1 − Pl�cos ���sin �d�� ,

��
l=0

	 	l +
1

2

Pl�cos ��exp�− �

0

x

�dx� . �65�

Evaluating the exponent as Lewis did by substituting the
single-scattering formula �47� and the screening angle �48�,
we have

− �
0

x

�dx = − �
0

t 2K2z2dt

�p2v2 �
−1

1 1 − Pl���
4�1 − � + �a

2/2�2d�

� − �
0

t K2z2dt

4�p2v2 l�l + 1�	1 − ln
�a

2

4
− 2�

m=1

l

m−1

= − �

0

t K2z2dt

4p2v2 l�l + 1�	1 −
1

�
�ln

��2K2

4p2v2 − 2C

+ 2�
m=1

l

m−1


= −

�G
2

4
l�l + 1�	1 −

1

�
�ln

��2�G
2

4�z2t
+ 2��l + 1�



= −
�M

2

4
l�l + 1�	1 −

1

B
�ln

�M
2

4
+ 2��l + 1�

 ,

�66�

where ��z�= �d /dz�ln ��z� denotes the psi function �32�, the
Gaussian mean-square angle �G

2 and the contraction factor �
are derived as Eqs. �54� and �55�, and the characteristic pa-
rameters B and �M of Eqs. �58� and �9� are the same as those
derived in the preceding subsection under the Molière theory.
So we obtain the Goudsmit-Saunderson angular distribution
with ionization

2�fGS��,t� = �
l=0

	 	l +
1

2

Pl�cos ��exp�−

�M
2

4
l�l + 1�

�	1 −
1

B
�ln

�M
2

4
+ 2��l + 1�

� , �67�

corresponding to the Molière angular distribution
fM�� , t�2��d� with ionization

2�fM��,t� = �
0

	

�d�J0����exp�−
�M

2 �2

4
	1 −

1

B
ln

�M
2 �2

4

� ,

�68�

using the same characteristic parameters B and �M.
Determined from B and �M, the Goudsmit-Saunderson an-

gular distribution for relativistic charged particles with a con-
stant ionization loss rate is also derived from the results
without ionization only by replacing the thickness t and the

energy E with the effective thickness �t and energy ��E0E,
as in the Molière angular distribution investigated in Sec. II.
The Goudsmit-Saunderson angular distribution thus derived
is compared with the Molière angular distribution in Fig. 6
under both the fixed-energy and ionization processes. We
found almost no differences between them within angular
ranges that satisfy the small-angle approximation.

E. An approximate method to express the contraction
factor � for charged particles of moderate energy

We derive an approximate expression of the contraction
factor � from expansion of Eqs. �57� and �64� with mc2 /E up
to the second order. As it holds that

pv = E	1 −
m2c4

E2 
 , �69�

�G
2 �

K2z2t

E0E �1 +
2

3

m2c4

E2 	1 +
E

E0
+

E2

E0
2
� , �70�

we have
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FIG. 5. Differences due to the different materials are small
among the expansion parameters B �a� and the scale angles �M �b�
vs traversed thickness �thick lines�. The four branches of the curve
correspond to the incident energies E0 of 105, 106, 107, and 108

from left to right, in units of �e−��, where the rest energies are all
assumed to be E0 /20.
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ln � � 2 +
E0 + E

E0 − E
ln

E

E0
−

m2c4

9E2 	14 + 5
E

E0
+ 5

E2

E0
2

− 12
E

E0

E0 + E

E0 − E
ln

E0

E

 . �71�

The first two terms agree with ln � under the relativistic con-
dition, as indicated in Table I. The third term shows the next
higher order term taking account of the rest energy. The ex-
act and approximate results of the contraction factor � versus
the fractional energy loss are compared in Fig. 7. Both agree
well within an error margin of 1% up to an energy dissipa-
tion of about 70%. So we can obtain the Molière angular
distribution effectively in practical uses by applying the ex-
pansion parameter B derived from Eq. �63� with the contrac-
tion factor � of Eq. �71� and the scale angle �M derived from
Eq. �9� with the Gaussian mean-square angle �G

2 of Eq. �70�,
as listed in Table I.

F. The scattering constants for mixed or compound material

We derive a method to obtain the Molière angular distri-
bution of charged particles traversing through mixed or com-

pound materials with ionization. The increment of Hankel
transform of the angular distribution is expressed as

df̃ = −
�2

w2 f̃	1 −
1

�
ln

��2�2

w2 
z2dt . �72�

Separating the terms by independent Fourier components, we
have

− d ln f̃ =
1

X0w2	1 −
1

�
ln

��2

w2 
�2z2dx

−
1

X0w2�
��2 ln �2�z2dx . �73�

In the case of particles traversing through a mixed or com-
pound material, the coefficients appearing in the right-hand
side change discontinuously, corresponding to the atoms they
encounter. So we take their stochastic means as the actual
coefficient values in this case. Then we have

f̃ =
1

2�
exp�− �2�

0

x

Pr� 1

X0w2	1 −
1

�
ln

��2

w2 

z2dx

+ �2 ln �2�
0

x

Pr� 1

X0�w2
z2dx� , �74�

where the stochastic mean is defined by the weighted mean
value by the fraction pi of mass:

Pr�Q� � �
i

piQi. �75�

To simplify the solution �74�, we introduce the scattering

constants for mixed or compound material �̄ and K̄ satisfy-
ing

K̄2

X̄0

	1 −
1

�̄
ln

K̄2

U2
 = Pr�K2

X0
	1 −

1

�
ln

K2

U2

 , �76�
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FIG. 6. Comparison of expected angular distributions multiplied
by �2 for muons derived by the Goudsmit-Saunderson and Lewis
theory �solid curves� and by the Molière theory �dotted curves�,
assuming that the rest energy is negligible. Curves in �b� show the
distributions after 39.3, 118, 197, 275, and 354 m traverses in water
with ionization, from left to right, where the incident muons dissi-
pate 10, 30, 50, 70, and 90 % of their initial energies. The curves in
�a� show the distributions after the same traverses without
ionization.
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K̄2

X̄0�̄
= Pr� K2

X0�

 , �77�

where X̄0 denotes the radiation length for the compound ma-
terial �24�

X̄0
−1 = Pr�X0

−1� , �78�

and U an arbitrary unit of energy �37�, so that �̄ and K̄ are
determined as

�̄ − ln �̄ = Pr� K2

X0�

−1

Pr�K2

X0
	1 −

1

�
ln

K2

U2


+ ln� X̄0

U2 Pr� K2

X0�

� , �79�

K̄2 = X̄0�̄ Pr� K2

X0�

 . �80�

Then we have

�
0

x

Pr� 1

X0�w2
z2dx = �
0

x K̄2

4X̄0�̄p2v2
z2dx =

�̄G
2

4�̄
, �81�

where

�̄G
2 =

K̄2

2�̄mc2�mc2

pv
−

mc2

p0v0
+

1

2
ln

�E0 − mc2�/�E − mc2�
�E0 + mc2�/�E + mc2��

�82�

denotes the Gaussian mean-square deflection angle under the
compound material with energy loss of a constant rare

�̄ � X̄0 Pr��/X0� �83�

in the unit radiation length. Thus the solution �74� can be
expressed as

f̃ =
1

2�
exp�− �2�

0

x

Pr� 1

X0w2	1 −
1

�
ln

��2

w2 

z2dx

+
�̄G

2

4�̄
�2 ln �2� . �84�

So, applying the transport formula introduced in Appendix
B, we have the Molière angular distributions of Eqs. �10� and
�11� with the characteristic parameters B and �M of

B − ln B =
4�̄

�̄G
2
�

0

x

Pr� 1

X0w2	1 −
1

�
ln

��2

w2 

z2dx + ln
�̄G

2

4�̄
,

�85�

�M = �̄G
�B/�̄ . �86�

The scattering constants for the mixture �̄ and K̄ together
with �̄ are listed in Table IV.

In the case of small Born parameter under the Molière
screening model


 � zZ/�137�� � 1, �87�

it holds ����, so that Eq. �85� to give the expansion param-
eter B becomes

B − ln B �
4�̄

�̄G
2
	 �̄G

2

4
−

�̄G
2

4�̄
ln

�2�̄G
2

4�̄z2t

 + ln

�̄G
2

4�̄

= �̄ − ln �̄ + ln
�̄z2t

�2 , �88�

where

ln �̄ = ln
�̄G

2 p2v2

K̄2z2t
−

2z2�̄

�̄G
2
�

0

t �̄G
2

pv
dt . �89�

So we can get the Molière angular distributions for mixed or
compound materials simply from B and �M of Eqs. �88� and
�86�, just as from Eqs. �63� and �9� like for the pure materials

having the scattering constants �̄ and K̄.
The characteristic parameters B and �M exactly described

by Eqs. �85� and �86� for compound materials are compared
with those conventionally described by Eqs. �88� and �86�
approximating �� by �, for air and nuclear emulsion in Figs.
8 and 9. We cannot find any visible differences of more than
0.1% between them within a traversed thickness up to an
energy dissipation of about 90% �38�.

V. CROSS-SECTION DIVIDING MODEL TO INTERPRET
THE MOLIÈRE EXPANSION OF ANGULAR

DISTRIBUTION

We investigate a physical mechanism to provide the
Molière series expansion and to interpret the change in the
shape of the Molière angular distribution as the traversed
thickness increases. We discuss the problem in this section
for singly charged relativistic particles as in Eq. �1�. Then the

TABLE IV. The scattering constants �̄ and K̄ under the Molière
screening model and the critical energies �̄ for the mixture revised
to be consistent with the Table of Atomic and Nuclear Properties of
Materials in The Review of Particle Physics �24�.

Material
X̄0

�g /cm2�
�̄

�MeV� �̄
K̄

�MeV�

Aira 36.67 86.0 15.21 19.09

SiO2 27.04 51.0 14.96 19.34

H2O 36.00 91.5 15.23 19.06

LiH 79.24 164.9 15.89 18.65

G-5 emulsionb 11.32 17.7 13.94 20.01

NaI 9.45 13.4 13.67 20.13

CsI 8.39 11.0 13.60 20.24

BGOc 7.97 10.6 13.15 20.53

aFractional weight of 76.9% N, 21.8% O, and 1.3% Ar.
bComposed of 1.817 Ag, 1.338 Br, 0.012 I, 0.277 C, 0.053 H, 0.249
O, 0.074 N, and 0.007 S, in units of g /cm3.
cBismuth germanate �Bi2O3�2�GeO2�3.
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single-scattering formula �47� can be written as

N

A
����2��d�dx =

1

��

K2

E2 �−42��d�dt with � � �e�a

�90�

by using our scattering constants � and K, where the screen-
ing angle �48� is described as

�e�a = �K/E�e−�/2+1−C. �91�

Following the diffusion equations �35� and �37� in Sec.
IV, Hankel transform of the Molière angular distribution for
these particles under the azimuthally symmetric condition
can be evaluated by using formula �40�:

f̃ =
1

2�
exp��

0

t 2dt

�

K2

E2��e�a

	

�J0���� − 1��−3d��
=

1

2�
exp��

0

t � 1

�

K2�2

4E2 ln
��e�a�2�2

4e2−2C + O��4�
dt� .

�92�

As �e�a of Eq. �91� is proportional to E−1 and it holds that

�
0

t K2

E2 dt =
K2t

E0E
and �

0

t K2

E2 ln
K2

E2 dt =
K2t

E0E
ln

K2

�E0E

�93�

with � of Eq. �17� under the ionization process of a constant
dissipating rate, we have

f̃ =
1

2�
exp� 1

�

K2�2t

4E0E
ln

��e�̂a�2�2

4e2−2C + O��4�� , �94�

where �e�̂a denotes the effective screening angle under the
ionization process

�e�̂a = �K/��E0E�e−�/2+1−C. �95�

In order to investigate the qualitative properties of the
Molière scattering process, we divide the cross section � into
the moderate scattering �M and the large-angle scattering �L
at a certain fixed separation angle �B� determined later, as
illustrated in Fig. 10:
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FIG. 8. Comparison between the exact B �a� and �M �b� for a
compound material, air, and the approximated results derived with
�� replaced by �. The four branches of the curve correspond to the
incident energies E0 of 105, 106, 107, and 108 from left to right, in

units of �̄e−�̄�, where the rest energies are all assumed to be
E0 /20.
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FIG. 9. Comparison between the exact B �a� and �M �b� for a
compound material, nuclear emulsion, and the approximated results
derived with �� replaced by �. The four branches of the curve
correspond to the incident energies E0 of 105, 106, 107, and 108

from left to right, in units of �̄e−�̄�, where the rest energies are all
assumed to be E0 /20.
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���� = �M��� + �L��� . �96�

Then the exponent of Eq. �94� can be expressed by the sum
of two individual contributions from the cross sections �M
and �L:

�
0

x

2�
N

A
dx�

0

	

�J0���� − 1��M����d�

= −
1

�

K2�2t

4E0E
ln

�B�
2

��e�̂a�2
+ O��4� , �97�

�
0

x

2�
N

A
dx�

0

	

�J0���� − 1��L����d�

=
1

�

K2�2t

4E0E
ln

�B�
2�2

4e2−2C + O��4� . �98�

Neglecting the terms of O��4� and introducing the expansion
parameter B� and the scale angle �M� corresponding to the
separation angle �B� ,

B� � ln
�B�

2

��e�̂a�2
and �M�

2 �
B�

�
�G

2 �99�

with the Gaussian mean-square angle �G
2 of Eq. �16�, we

have

f̃ =
1

2�
exp�−

�M�
2�2

4
	1 −

1

B�
�ln

�M�
2�2

4
− ln �

�

with � � ��M�
2/�B�

2�e2−2C. �100�

�M�
2 denotes the mean square angle of the central Gaussian

distribution produced by the moderate scattering �M. A thor-
ough expansion of Eq. �100� gives the angular distribution in
double power series of B�−1 and ln �, similar to Eq. �A3� in
Appendix A �39�:

2�f��� = f �0���� +
1

B�
�f �1���� + f1

�1����ln �� +
1

B�2 �f �2����

+ f1
�2����ln � + f2

�2�����ln ��2� + ¯ , �101�

where � denotes the deflection angle in the unit of the scale
angle ��� /�M� .

Up to now, �B� or B� has been left as an arbitrary constant,
so we can take �B� to satisfy

�B� = �M� e1−C �102�

to make �=1, so that ln � in Eq. �100� vanishes. Then Eq.
�102� substituted with Eqs. �95� and �99� gives the exact
expansion parameter B of Eq. �18�, and hence gives the exact
scale angle �M of Eq. �9� while making series �101� the
simple power series �10� of Molière.

This means the shape of the central Gaussian distribution
f �0���� is not affected by the large-angle scattering �L when
we divide the single-scattering cross section � at �B to sat-
isfy Eq. �102�. On the contrary, bad selections of �B� different
from �B change the mean-square angle �M�

2 of the central
Gaussian distribution by a factor of magnitude 1+B�−1 ln �
as understood in Eq. �100�, thus producing supplementary
terms with ln � appearing in the double power series �101�.

When we divide the single-scattering cross section at �B,
Eq. �100� can be expanded as

f̃ =
1

2�
exp�−

�M
2 �2

4
��

k=0

	
1

k!
� 1

B

�M
2 �2

4
ln

�M
2 �2

4
�k

.

�103�

The factor B−1��M
2 �2 /4�ln��M

2 �2 /4� in the summation denotes
the integration �98�. The initial term �k=0� of the expansion
�103�, so that f �0� of the Molière series �10�, means the
Gaussian distribution produced by a lot of moderate scatter-
ings �M within the thickness t �40�. As integrals in the dif-
fusion equation �35� and its Fourier transform �37� tell us,
each multiplication of the Fourier component
B−1��M

2 �2 /4�ln��M
2 �2 /4� broadens any objective angular dis-

tribution by one more large-angle scattering �L and makes
the source objective distribution vanish, depending on the
probability p of undergoing the large-angle scattering within
the traversed thickness t;

p �
N

A
�

0

x

dx�
0

	

�L���2��d� =
�t

�
e−B+�−2+2C =

1

B
e2C−2.

�104�

So we find the kth term of Eq. �103� or the kth term B−kf �k� of
the Molière series �10�,

B−k f̃ �k� �
1

2�

1

k!
� 1

B

�M
2 �2

4
ln

�M
2 �2

4
�k

exp�−
�M

2 �2

4
� ,

�105�

means the correction term of the preceding series due to the
k times successive large-angle scattering �L, by its probabil-
ity of �B−1e2C−2�k /k! within the thickness t �k�0�. Note that
the expansion parameter B acts as the probability parameter
by Eq. �104�, so that the Molière series �10� usually shows

σM

σL

√
eχa χ′

B θ

FIG. 10. Division of the single-scattering cross section � at �B�
into the moderate scattering �M and the large-angle scattering �L.
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rapid convergence due to the small probability of large-angle
scattering as B usually takes much greater value �nearly
equal to � of about 10, as indicated in Table III� than
e2C−2=0.429¯.

The asymptotic feature of the Molière distribution at a
sufficiently large angle is expressed as 2B−1�−3d� as derived
from the asymptotic value of the second term B−1f �1�����d�
of the Molière expansion �10�. The term also agrees with the
integration of the single-scattering distribution �90� through
the whole thickness t under the ionization process

2��d�

��
�−4�

0

t K2

E�2dt� =
2

�
	 �

�G

−3

d	 �

�G

 =

2

B
	 �

�M

−3

d	 �

�M



= 2B−1�−3d� , �106�

as under the fixed-energy process discussed by Bethe �13�.
The mean free path �t�MFP of the single scattering �90� in

radiation length becomes

�t�MFP = 1��
�e�a

	 2K2

�E2�−3d� = �e−�e2−2C, �107�

irrespective of the energies of the penetrating particle. In
addition, the number of single scatterings larger than any
fixed angle � within the thickness of t becomes

�
0

t 2K2dt

�E2 �
�

	

�−3d� =
K2t

�E0E�2 �
�c

2

�2 , �108�

where �c, defined as

�c = �G/�� �109�

with the Gaussian root-mean-square angle �G of Eq. �16�, is
called the characteristic angle �12,13�, larger than which we
can expect exactly one scattering within the thickness t.

As Eqs. �99� and �102� show us, the separation angle �B

agrees with eB/2 times the effective screening angle �e�̂a and
also agrees with e1−C�B times the characteristic angle �c of
Eq. �109�. So the value of eB /B becomes

1

B
eB = e2−2C �c

2

��e�̂a�2
, �110�

giving e2−2C times the number of effective scatterings larger
than �e�̂a within the thickness t, as Bethe showed in his Eq.
�22� under the fixed-energy case �13�. As eB /B increases mo-
notonously with B within its valid range of B�1, the change
of B can be interpreted by the change of eB /B of Eq. �110�.
Under the fixed-energy process, the numerator e1−C�c from
Eq. �109� with Eq. �6� increases proportionally to t1/2 with
the traversed thickness, whereas the denominator �e�a of Eq.
�91� stays constant, as indicated in Fig. 11. So we find eB /B,
and thus B, increases monotonously with the traversed thick-
ness. On the other hand, under the ionization process, the
effective screening angle �e�̂a of Eq. �95� increases propor-
tionally to E−1/2 at the first stage �E�E0� but proportionally
to E−1 at the last stage �E�E0� with energy dissipating at a
constant rate, since the contraction factor � of Eq. �17� de-
creases as

� � �1 −
1

6
	ln

E

E0

2

�E � E0� ,

e2�E/E0� �E � E0� ,
� �111�

whereas the numerator

e1−C�c = e1−C K�t
��E0E

= e1−CK�E0 − E
���E0E

�112�

from Eq. �109� with Eq. �16� increases far rapidly at the first
stage but more slowly in proportion to E−1/2 than E−1 of �e�̂a
at the last stage, as indicated in Fig. 12. So we find that eB /B,
and thus B, increases at the first stage of penetration, but
nevertheless begins to decrease at the last stage.

�

�

� � �

�

�

�

�

�

� � �

�

� �

�

FIG. 11. B can be determined by the number of collisions
e2C−2eB /B or the square of the ratio of the characteristic angle �c to
the screening angle �e�a under the fixed-energy process. eB /B is an
increasing function of B within its valid range of B�1, and the
ratio increases monotonously with the increase of the traversed
thickness t. So B increases monotonously with the increase of the
traverse under the fixed-energy process.
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FIG. 12. B can be determined by the number of collisions
e2C−2eB /B or the square of the ratio of the characteristic angle �c to
the effective screening angle �e�̂a under the ionization process.
eB /B is an increasing function of B within its valid range of B�1.
�c increases rapidly at the first stage of traverse but increases with
E−1/2 at the last stage with dissipation of energy. On the other hand,
�e�̂a increases slowly at the first stage but increases more rapidly
with E−1 than �c at the last stage with dissipation of energy. So B
increases at the first stage, nevertheless it begins to decrease at the
last stage of traverse, under the ionization process.
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VI. CONCLUSION AND DISCUSSION

The Molière theory of multiple Coulomb scattering is im-
proved to take account of ionization loss by applying our
differential formulation of the theory, equivalent to the origi-
nal Molière-Bethe formulation. As our diffusion equation is
expressed by a simple ordinary differential equation of the
first order with the traversed thickness after applying Hankel
transform to the angular variable, and as all the scattering
properties of traversed material are included in two scattering
constants � and K appearing in the coefficients, the problem
has become far easier to solve even if we take ionization loss
into account.

Molière angular distribution with ionization is also de-
scribed in series expansion with the same universal functions
f �n���� as under the fixed-energy process for relativistic
charged particles of ��1, except with the expansion param-
eter B and the scale angle �M corrected by the contraction
factor � introduced under the ionization process. We found
that B and �M, and thus the Molière angular distribution, for
these particles with energy loss of a constant rate can be
expressed by the traditional results under the fixed-energy
process except that thickness t and energy E are replaced by
the effective ones �t and ��E0E. Using our improved angular
distributions, we can take longer step-size in tracing charged
particles in computer simulations without anxiety of decrease
of the energy �21,41�.

The distribution for arbitrary linear combination a��

+br� / t between the deflection angle �� and the lateral displace-
ment r� �or the chord angle r� / t� was also derived under the
ionization process. At the traversed thickness where charged
particles completely dissipate their energies, only the lateral
displacement r� has the Molière distribution with finite char-
acteristic parameters B and �M, while other linear combina-
tions do not have the Molière distribution because the char-
acteristic parameters cannot be defined at the limit.

Our differential formulation of the Molière theory is ap-
plied to charged particles of moderate energies, taking the
rest energy of the particles into account. Molière angular
distribution with ionization for these particles is also ex-
pressed by the traditional formula under the fixed-energy
process except that B and �M are corrected by �. The con-
traction factor � for these particles is derived through a nu-
merical integration. We found ln � for charged particles of
moderate energies is well approximated merely by adding
the first higher term with mc2 /E to the initial ln � for rela-
tivistic particles. We have found that Goudsmit-Saunderson
angular distribution with ionization is also expressed explic-
itly by using the same B and �M derived for the Molière
angular distribution. The scattering constants � and K, char-
acterizing the scattering properties of traversed material, are
revised for pure materials and mixed or compound materials.

The transport mechanism of the multiple scattering pro-
cess is well interpreted by dividing the single-scattering
cross section � into the moderate scattering �M and the
large-angle scattering �L at the separation angle �B, as a first
approximation. The high-frequency moderate scattering gen-
erates the primary Gaussian distribution, and the low-
frequency large-angle scatterings correct the Gaussian distri-

bution successively, corresponding to the number of large-
angle scatterings within the thickness. The Molière series
corresponds to the separation angle �B of eB/2 times the ef-
fective screening angle �e�̂a, only when the large-angle scat-
tering does not interfere with the width of the primary
Gaussian distribution. The probability for charged particles
to undergo the large-angle scattering within the thickness
agrees with e2C−2B−1, where B denotes the expansion param-
eter, so we find the Molière series �10� is an expansion of the
angular distribution by the probabilities of k times successive
large-angle scattering.

The change of the value B with the traversed thickness is
interpreted by the change of the number of scatterings larger
than the effective screening angle �c

2 / ��e�̂a�2. Due to more
rapid increase of the effective screening angle �e�̂a than in-
crease of the characteristic angle �c with decrease of the
energy, the value of B decreases at the last stage of penetra-
tion under the ionization process.

The Molière angular distribution with ionization, derived
through our differential formulation of the theory, will help
us design and analyze experiments relating to fast charged
particles with improved accuracy. It will also be valuable for
the reliable and effective tracing of charged particles in
Monte Carlo simulations of single-particle transports and
cascade shower processes �21,22,42–46�.
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APPENDIX A: MOLIÈRE ANGULAR DISTRIBUTION
EXPRESSED IN A DOUBLE POWER SERIES

Another derivation of Molière angular distribution by
double power series without introducing Molière’s character-
istic parameters B and �M through his transcendental equa-
tion �7.1� �12� will be valuable, as we could not find any
description in a simple power series for a certain Molière
distribution �28�.

The integration �5� is expanded as

f̃ =
1
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exp�−


2

4
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− ln t
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k	ln


2

4
− ln t
k

,

�A1�

where we introduce new scale variables


 = �G� and � = �/�G. �A2�

Then, applying Hankel transforms, we get the Molière angu-
lar distribution in double power series with �−1 and ln t,

2�f��� = f �0���� + �−1�f �1���� + f1
�1����ln t�

+ �−2�f �2���� + f1
�2����ln t + f2

�2�����ln t�2� + ¯ .

�A3�

The universal functions f �0�, f �1�, and f �2�, derived by Molière
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�11,12�, and the others up to the second higher order are
expressed as follows and indicated in Fig. 13:
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The Molière angular distributions expressed in the double
power series of Eq. �A3� are equivalent with those expressed
in the simple Molière series of Eq. �10�, both neglecting the
next higher-order Fourier components, �2 times higher or
more than the constant or the logarithmic terms. We compare
these two angular distributions in Fig. 14. Both agree well at
moderate traverse thicknesses. When the traverse is very
thin, the simple Molière series oscillates, as discussed by
Bielajew et al. �47�. The double power series �A3� also
shows bad convergence at these thicknesses due to the lack
of higher-order Fourier components.

APPENDIX B: A TRANSPORT FORMULA TO GIVE
THE MOLIÈRE SIMPLE SERIES

We show a transform formula to obtain the angular distri-
bution in the Molière simple series from the solution of the
diffusion equation. Let the solution in the frequency space be
of the form �48�

f̃ =
1

2�
exp�− a�2 + b�2 ln�c�2�� . �B1�

If we define the expansion parameter B and the new scale
variable u as

B − ln B = �a/b� − ln�c/b� , �B2�

u = 2��bB , �B3�

then we get the traditional Molière form

f̃ =
1

2�
exp�−

u2

4
	1 −

1

B
ln

u2

4

� . �B4�

Thus, the probability density can be represented in the
Molière series �10�, where the Molière angle is defined as

� = �/�M with �M = 2�bB . �B5�
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FIG. 13. Universal series functions multiplied by �2 appearing
in the differential formulation of the Molière theory.
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FIG. 14. Comparison of angular distributions expressed in the
double power series with those expressed in the Molière simple
series, at thickness t=e2k+1�e−� with k=0,1 ,2 , . . . ,7, from left to
right. �e−� takes the values of the order of 10−6, denoting e2C−2

times the mean-free path of Eq. �107� of the single scattering. At
very short thicknesses, the both angular distributions show oscillat-
ing features due to deficits of higher-order Fourier components.
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