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The Vicsek model �VM� �T. Vicsek et al., Phys. Rev. Lett. 75, 1226 �1995��, for the description of the
collective behavior of self-driven individuals, assumes that each of them adopts the average direction of
movement of its neighbors, perturbed by an external noise. A second-order transition between a state of ordered
collective displacement �low-noise limit� and a disordered regime �high-noise limit� was found early on.
However, this scenario has recently been challenged by Grégory and Chaté �G. Grégory and H. Chaté, Phys.
Rev. Lett. 92, 025702 �2004�� who claim that the transition of the VM may be of first order. By performing
extensive simulations of the VM, which are analyzed by means of both finite-size scaling methods and a
dynamic scaling approach, we unambiguously demonstrate the critical nature of the transition. Furthermore,
the complete set of critical exponents of the VM, in d=2 dimensions, is determined. By means of independent
methods—i.e., stationary and dynamic measurements—we provide two tests showing that the standard hyper-
scaling relationship d�−2�=� holds, where �, �, and � are the order parameter, correlation length, and
“susceptibility” critical exponents, respectively. Furthermore, we established that at criticality, the correlation
length grows according to �� t1/z, with z�1.27�3�, independently of the degree of order of the initial configu-
ration, in marked contrast with the behavior of the XY model.
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I. INTRODUCTION

The study of far-from equilibrium systems involving
many interacting agents, such as those typically found in
biology and social sciences, by using well-established meth-
ods in the field of statistical physics, has recently become the
subject of interdisciplinary interest �1,2�. Within this broad
context, physicists have made a great effort in order to con-
tribute to the understanding of the collective motion of self-
propelled individuals. Among others, one can identify theo-
retical studies based on the application of microscopic rules
to describe the interaction among agents �i.e., the discrete
or Lagrangian approach �3�� �3–34� and continuous ap-
proaches based on the formulation of “hydrodynamic”-like
differential equations �i.e., the Eulerian approach �3��
�3,10,16,32,35–39�. On the other hand, in various studies the
comparison of theoretical predictions and the results of mea-
surements of real systems, either in nature or in laboratories
�13,33,40–44�, has been attempted. It is worth mentioning
that a considerable amount of papers have also been
devoted to the study of order-disorder transitions emerging
from the collective displacement of individuals
�4–6,8,9,12,14,15,18,21,23,24,32,34–38,40,44�.

Collective motion is a fascinating feature displayed by
quite diverse types of individuals at almost every spatial
scale range in nature. In fact, it can be observed from large
scales such as herds of quadrupeds �3,25�, human crowds �3�,
bird flocks �33�, and fish schools �44� to microscopic scales
such as unicellular organisms �41,45� and single cells �42�.

While most biologists tend to describe collective motion
phenomena based on a detailed description of each particular
case, the approach used by physicists focuses on the under-
standing of universal features of generic models. Within this
context the model proposed by Vicsek et al. �4� �VM� has

become archetypical due to its simplicity and interesting
critical and complex behavior. The VM considers N pointlike
individuals in two dimensions. Individuals at �off-lattice� po-

sitions xi
� have velocities vi

� and move in the direction �i;
here, i=1,2 , . . . ,N. For the sake of simplicity and in order to
account for the self-propelled nature of the motion, the mag-
nitude of the velocity is fixed at v0 for all individuals. Indi-
viduals interact locally by trying to align their directions of
motion with that of their neighbors, in the presence of some
perturbation �noise�. For practical purposes this rule is imple-
mented by assuming that at each time step a given individual
assumes the average direction of motion of the individuals
located within its local neighborhood �a circle of radii
R0�—namely,

�i�t + �t� = ���t��R0
+ �i�t� , �1�

where the noise ��� has been introduced as a random variable
with uniform distribution in the interval �−�	 ,�	� and the
local average direction of motion ���t��0 is defined as the
average direction of the velocities of individuals �including
the ith one� within the radii of interaction R0. Also, the loca-
tions of the individuals are updated in each time step accord-
ing to

xi
� �t + �t� = xi

� �t� + vi
� �t��t . �2�

In order to describe the collective behavior of the indi-
viduals, the normalized average velocity given by


 	
1

Nv0

� vi

� 
 �3�

has been introduced as order parameter. In fact, for individu-
als moving almost randomly one has ��0, whereas when
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all individuals tend to move in the same direction one has

→1.

The analogy of the VM with simple ferromagnetic models
�Ising, XY, etc.� becomes evident by considering that the
Hamiltonian tending to align the spins in the same direction
is replaced by the tendency of the individuals to align in the
same direction �Eq. �1��, and the amplitude � of the random
perturbation � plays the role of the temperature. However,
the VM is a far-from-equilibrium system that obeys a quite
different dynamics than that of standard ferromagnetic mod-
els �46,47�. Based on this analogy, it is not surprising that the
VM exhibits order-disorder transitions. In fact, within the
low-velocity regime �v�t�1�, it has been shown that indi-
viduals tend to move in an ordered fashion when the noise is
decreased below a �particle density �
� and velocity depen-
dent� critical value ��c�
��. Furthermore, at criticality the
order parameter behaves, as in the case of standard second-
order transitions, according to

� � ��c�
� − ���, �4�

where � is the order parameter critical exponent. In spite of
the considerable effort devoted to the study of the order-
disorder transition of the VM, it is surprising that only a few
critical exponents have already been determined. In fact,
most simulation results are consistent with � values smaller
than the mean-field value given by �=1 /2—namely, �
=0.45�0.07 �4� and �=0.42�0.03 �8�.

Recently, the critical nature of the transition of the VM
has been challenged by Grégoire and Chaté �23� who claim
that the transition should actually be of first order. Subse-
quently, Nagy, Daruka, and Vicsek �34� have clarified the
issue by demonstrating that the presence of an inherent nu-
merical artifact strongly influences the results of Grégoire
and Chaté �23�, preventing a meaningful physical interpreta-
tion of the results.

In view of the interest attracted by the VM and its mini-
mal character, which makes it an excellent candidate for rep-
resenting a broad universality class, it is surprising that little
progress has been made in order to evaluate the complete set
of relevant critical exponents. Within this context, the aim of
the present work is to carry out extensive simulations of the
VM in order to determine its critical exponents. For this
purpose we performed both standard simulations, measuring
stationary properties that are subsequently analyzed by using
finite-size scaling methods, and short-time dynamic simula-
tions, which are interpreted on the basis of the dynamic scal-
ing theory already developed for standard �equilibrium� criti-
cal systems �48� and subsequently successfully applied to
far-from-equilibrium critical phenomena �49� and self-
organized critical �SOC� behavior �50�.

The paper is organized as follows: In Sec. II we provide a
brief overview of the theoretical background of the scaling
methods used in order to analyze the obtained results. In Sec.
III we briefly describe technical details of the simulation
method. The obtained results are presented and discussed in
Sec. IV. Finally, we state our conclusions in Sec. V.

II. BRIEF OVERVIEW OF THE THEORETICAL
FRAMEWORK

A. Finite-size scaling

From the study of critical phenomena in equilibrium sys-
tems, it has been established that, in numerical simulations
performed by using finite samples of linear size L, second-
order phase transitions exhibit rounding and shifting effects
that can be accounted for by means of the standard finite-size
scaling theory �51–53�. Within this framework, the scaling
ansatz for the order parameter of the VM can be written as


��,L� = L−�/�
̃„�� − �c�L1/�
… , �5�

where � is the correlation length critical exponent and 
̃ is a
suitable scaling function.

On the other hand, another useful observable is the sus-
ceptibility, which according to the fluctuation-dissipation
theorem, can be obtained by measuring the variance of the
order parameter �54�. Of course, the VM model describes a
far-from-equilibrium system that no longer obeys the
fluctuation-dissipation theorem. However, the fluctuations of
the order parameter given by

� = Var�
�L2, �6�

with

Var�
� 	 �
2� − �
�2, �7�

where Var�
� is the order parameter variance and �¯� de-
notes averages over configurations, still are a useful quantity
for the description of nonequilibrium systems �49,55,56�.
Also, the finite-size scaling ansatz for � reads

���,L� = L�/��̃„�� − �c�L1/�
… , �8�

where � is a critical exponent. In the thermodynamic limit �
diverges according to ����−�c�−�, where �̃ is a suitable
scaling function.

Another useful observable for the determination of critical
points is the static �fourth-order� Binder cumulant given by

U = 1 −
��4�

3��2�2 . �9�

B. Short-time dynamic scaling

For a dynamic process started from a fully ordered con-
figuration, such that 
�t=0�	1 for �	0, we assume that a
universal scaling dynamic of the order parameter holds when
the system is “annealed” close to its critical point, which is
valid up to the macroscopic short-time regime—namely,


�t,�,L� = b−�/�
5 „b−zt,b��� − �c�,b−1L… , �10�

where z is the dynamic exponent, b is an arbitrary scale
factor, and 
5 is a suitable scaling function �48�. The scaling
form of Eq. �10� has been well established for the case of
equilibrium systems �48�, and recently has successfully been
applied to far-from-equilibrium systems �49�. We will show
that it also holds for the VM. Now, by taking b	 t1/z and
neglecting finite-size effects, Eq. �10� leads us to the power-
law decay of the order parameter
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��t� � t−�/�z, �11�

while the second scaling argument of Eq. �10� indicates that
departures of the power-law behavior of Eq. �11� have to be
observed when the system is annealed off-criticality. Finite-
size effects can be neglected provided that the correlation
length �� t1/z remains smaller than the system size—i.e., �
�L.

On the other hand, by taking the logarithmic derivative of
Eq. �10� relative to the variable �=�−�c and setting b= t1/z,
one obtains

� ln �

��
� t1/�z, � 	 0, �12�

which is a useful relationship if that replaced in Eq. �11�
allows the evaluation of the exponent �.

One can also obtain the dynamic exponent z indepen-
dently just by introducing the time-dependent Binder cumu-
lant �48� U*�t ,L�= �
2�−�
�2

�
�2 . In fact, it is well known that
upon quenching the initially ordered configuration to the
critical points, U* scales as

U* � td/z. �13�

For the sake of completeness it is worth mentioning that
by taking t→� �long-time stationary regime� and b	L, Eq.
�10� yields the standard scaling relationship for the order
parameter �Eq. �5��.

On the other hand, if a standard dynamic critical process
is started from a fully disordered configuration and subse-
quently quenched to the critical point, both theoretical argu-
ments and numerical simulations �48� are consistent with the
time divergence of the susceptibility. By assuming the same
behavior as in the case of the VM, we expect that the fluc-
tuations of the order parameter should scale according to

��t,�,L� � b�/��5 „b−zt,b��� − �c�,b−1L… , �14�

so that at criticality, by taking b	 t1/z and for ��L, one has

��t� � t�/�z. �15�

Finally, it is worth mentioning that for standard critical
phenomena the hyperscaling relationship

d� − 2� = � �16�

holds. So based on stationary and dynamic measurements of
the critical behavior of the VM, we will attempt to determine
relevant critical exponents with the aid of Eqs. �5�, �8�, �11�,
�12�, and �15� and test the validity of the hyperscaling rela-
tionship �Eq. �16�� for this far-from-equilibrium system.

III. TECHNICAL DETAILS OF THE SIMULATION
PROCEDURE

We performed numerical simulations of the VM within
the low-velocity regime by taking v0=0.1 for three different
densities of individuals �
=1 /8, 1 /4, and 3 /4� and by using
samples of different sizes �52.26�L�565.69�, which in-
volves �2048�N�40 000� individuals. Measurements
within the stationary regime are performed after disregarding

5�105 time steps in order to avoid memory effects of the
initial, randomly generated, configurations.

Dynamic measurements are performed by starting from
two different initial configurations: �i� disordered configura-
tions with individuals distributed and oriented at random,
such that 
�0, and �ii� ordered configurations, which are
generated by the dynamic evolution of the system at �	0
during the time necessary �typically of the order of �2–3
�105� time steps� to reach the threshold of 
=0.98. We
found that the degree of order corresponding to that thresh-
old ensures that reliable results are obtained. Of course, this
procedure implies that only “natural” configurations already
generated by the proper dynamics of the VM are only those
suitable to perform subsequent dynamic measurements. Mea-
surements corresponding to the dynamic behavior of the VM
are averaged over O�102� different samples, typically 200
and 400 for initial ordered and disordered configurations,
respectively.

IV. RESULTS AND DISCUSSION

Figures 1�a� and 1�b� show plots of the dependence of 
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FIG. 1. Plot of �a� the order parameter �
� versus the noise
amplitude ��� and �b� the fluctuations of the order parameter ���
versus �, respectively. Results obtained within the stationary regime
for samples of different size and by varying the number of individu-
als, as listed in the figure.
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and � on �, respectively. Numerical results were obtained for
three different densities and a wide range of the number of
individuals, as listed in Fig. 1. Here, we observed the round-
ing and shifting of the order parameter, as well as the diver-
gence of � with the system size, as typically expected for
systems exhibiting critical behavior.

It is expected that the critical threshold of the VM would
depend on the density according to

�c�
� � 
�, �17�

with �=0.45�0.05 �numerical �8�� and �= 1
2 �theoretical

�37��. So we have replotted the data shown in Fig. 1 by
rescaling the horizontal axis, obtaining excellent data col-
lapses that correspond to the functions 
��� �Figs. 2�a� and
2�b�� and Var�
���� �Figs. 2�c� and 2�d��, parametrized by
various densities. Notice that according to Eq. �6� we took
�=L2 Var�
�. The excellent data collapse observed in Fig. 2
for both 
 and Var�
� strongly suggests a deeper and more
interesting physical property of the VM. In fact, Fig. 3 shows
that after proper rescaling according to Eq. �17�, the prob-
ability distribution function �PDF� of the order parameter,
and consequently all of its physical meaningful moments,
exhibits universal features within the low-density regime.

The results shown in Figs. 2 and 3 are essential in order to
develop the generalization of Eqs. �5� and �8�, which will
describe the finite-size scaling behavior of 
 and � for the
VM in a single fashion for different densities �see below�,
respectively.

Now in order to have a first estimate of the critical noise,
in Fig. 4 we plot the Binder cumulant, as depicted by Eq. �9�,
as a function of the scaled noise. It is found that, for all
densities, the crossing point of all the curves that determines
the scaled critical noise is close to Xc=0.268�0.004. So the
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FIG. 2. Plots of �a�, �b� the order parameter and 
��� �c�, �d� versus the rescaled noise according to Eq. �17�. Data corresponding to
simulations involving 16 384 and 32 768 individuals, as indicated in the figures.
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FIG. 3. Plot of the probability distribution function of the order
parameter as obtained for two densities and different noises. The
data are grouped in five sets of two curves each, with 
=1 /8 and

=1 /4, respectively. Each set is obtained for the noises amplitudes
0.2, 0.15, 0.12, 0.095, and 0.07 �
=1 /8� and the corresponding
rescaled noises �according to Eq. �17�� for 
=1 /4.
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corresponding critical noises are �c�
=1 /8��0.095�0.001,
�c�
=1 /4��0.134�0.002, and �c�
=3 /4��0.232�0.003.

Also, from the scaling ansatz of � �Eq. �8�� one expects
that the maximum fluctuation of the order parameter �max,
which corresponds to the position of the peaks in Fig. 1�b�
and is located at L-dependent pseudocritical noises, will
scale with the lattice size according to

�max � L�/�. �18�

In fact, Fig. 5 shows log-log plots of �max versus L as ob-
tained for the larger lattices and different densities. The best
fit of the data is achieved for � /�=1.45�2�, which is our first
estimate of a relationship between critical exponents ob-
tained by means of stationary measurements. For the sake of
comparison, all the determined exponents and the corre-
sponding evaluation method are listed in Table I.

Now, before attempting to perform a finite-size scaling
analysis of the data obtained under stationary conditions, let
us discuss the dynamic measurements. Figures 6�a�–6�c�
show log-log plots of the time evolution of the order param-
eter �
�t��, the logarithmic derivative of 
�t� �see Eq. �12��,
and the Binder cumulant U�t�, respectively. All these results
were obtained by starting the simulations with ordered con-

figurations, naturally generated by the dynamic process,
which are subsequently “annealed” to the critical noise
�c�
=1 /8��0.095. Results are averaged over 200 different
configurations, each of them requiring approximately 1 day
of CPU time in a dual-core processor working at 2.6 GHz.
The best fits of the data shown in Fig. 6 give the following
relationships between critical exponents: � /�z�0.25�2� �Fig
6�a��, 1 /�z�0.60�3� �Fig. 6�b��, and d /z�1.57�1� �Fig.
6�c��. So, since simulations are performed in d=2, our first
estimation of the dynamic exponent is z�1.27�2�. Further-
more, by using these results the estimations ��0.42�4�, �
�1.3�2�, and � /��0.32�3� can also be performed �for a
detailed list of all the obtained exponents see Table I�.

An additional consistence test for the value of the dy-
namic exponent can be performed just by rescaling the time
axis upon relaxation measurement from the ordered states, as
already shown for the case of a far-from-equilibrium driven
lattice gas �57�. In fact, by taking b=L and replacing it in Eq.
�10�, at criticality one has


�t,L� � L−�/�
̃̃̃�t/Lz� , �19�

where the factor L−�/� simply reflects the scaling behavior of
the order parameter for the long-time stationary regime, in
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�
�
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FIG. 5. Log-log plots of the maximum fluctuation of the order
parameter ��max� given by Eq. �18� versus the system size. Data
obtained under stationary conditions for three different densities.
The �solid� straight lines correspond to the best fits of the data that
yield � /�, as listed in Table I. More details are given in the text.
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FIG. 4. Plots of the fourth-order Binder cumulant �Eq. �9�� ver-
sus the scaled noise �X= �




�, as obtained under stationary conditions

for lattices of different size and by using different densities. The
vertical solid line shows the location of the intersection of all curves
that sets Xc=0.268�4� for the rescaled critical point.

TABLE I. Exponents of the VM as obtained by using different methods. The acronyms S, RD, and DDC refer to stationary measure-
ments, relaxation dynamics from ordered states, and dynamic measurements starting from disordered configurations, respectively.

�

�
z

�

�z

�

�z

1

�z
� � �

�

�

�

�

S 1.45�2� 0.45�3� 1.6�3� 2.3�4� 0.275�5� 1.45�2�
RD 1.27�2� 0.25�2� 0.6�1� 0.42�4� 1.3�3� 0.32�3�
DDC 1.12�3�
DDC+RD 1.43�3� 1.87�4�
S+RD 1.13�3� 0.22�2� 0.5�1� 0.45�7�a 1.89�4�
S+DDC 1.29�3� 0.5�1�
aThe value of � evaluated by means of the S+RD methods corresponds to the average taken between two possible combinations. More
details are given in the text.
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agreement with Eq. �5�. More interesting, the argument of

the scaling function 
̃̃̃ suggests that log-log plots of the order
parameter versus the rescaled time �t /Lz� should exhibit data
collapse within the short-time regime, as is shown in Fig. 7.
In fact, the collapse obtained by using z=1.27 not only con-
firms the validity of the scaling ansatz, but also provides a
confidence test for the evaluated dynamic exponent.

On the other hand, dynamic simulations started from dis-
ordered configurations �
�t=0�	0� that are subsequently
annealed to the critical noise allow us to determine the rela-
tionship between exponents given by � /�z�1.12�3� accord-

ing to Eq. �15�; see Fig. 8. Inserting this result in the rela-
tionship � /�=1.45�2� obtained from stationary
measurements of the divergence of �max with the lattice size
�Fig. 5�, one obtains z�1.29�3�, in excellent agreement with
the independent estimation z�1.27�2� already obtained by
measuring the time dependence of the cumulant �see also
Table I�.

These results strongly suggest that the dynamical expo-
nent for both quenching and annealing dynamics is the same,
as predicted by field-theoretical calculations of model A
�standard critical behavior� �58�. However, our findings go
one step further by implying that even for the far-from-
equilibrium VM, the time divergence of the correlation
length ��t�� t1/z holds independently of the initial state.

After obtaining independent and self-consistent estima-
tions of the critical exponents and the critical point, we are
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now in condition to attempt a finite-size scaling analysis of
the raw data already shown in Figs. 1�a� and 1�b�. In fact, we
found that the best collapse of the data corresponding to both
the order parameter and � can be obtained by assuming
� /��0.275�5�, � /��1.45�2�, and ��1.63�3�, as shown in
Figs. 9�a� and 9�b�, respectively. In this way, data corre-
sponding to three different densities and a wide interval of
lattice sizes can be collapsed in single curves, strongly sug-
gesting the validity of the finite-size scaling ansatz given by
Eqs. �5� and �8�.

Table I summarizes all critical exponents determined by
using different methods. By combining determinations based
on stationary measurements with those obtained by applying
the critical dynamic approach, starting with both ordered and
disordered initial configurations, Table I provides a self-
consistent picture of the relevant critical exponents of the
VM.

V. CONCLUSIONS

We performed extensive Monte Carlo simulations of the
VM for the collective displacement of self-propelled indi-

viduals, aimed at clarifying the issue of the nature of the
observed order-disorder transition. Our simulations involve
the measurement of both stationary observables, as well as
the evaluation of their dynamic critical behavior. Conse-
quently, the obtained data are analyzed in terms of the finite-
size scaling theory and the dynamic scaling approach. Our
results are fully consistent with the critical nature of the tran-
sition, in agreement with other numerical results �4,34�, but
in contrast to the claims of Grégoire and Chaté �23� on the
first-order behavior of the transition.

It has been argued that the VM can be somewhat consid-
ered a non-Hamiltonian version of the well-known XY model
�4�, since the VM presents almost the same symmetry prop-
erties as the XY model. Of course, a major difference is that
the VM involves the off-lattice displacement of the particles,
while in the XY model the spins remain at fixed positions in
a lattice. Also, it is well known that in d=2, the XY model
undergoes a Kosterlitz-Thouless transition. Our results point
out that, in contrast to the XY model, the critical behavior of
the VM can be well described by using the standard finite-
size scaling theory, as well as the classical dynamic scaling
approach. It is worth mentioning that Bray et al. �59� have
shown the breakdown of the dynamic critical scaling for the
case of the d=2 XY model. In fact, for the XY model the rate
of approach to equilibrium depends on the initial condition,
giving ��t�� t1/2 �z=2� if the initial state is ordered and
��t���t / ln�t��1/2 when the initial state is disordered. In con-
trast, we determined z�1.28�3� independently of the initial
state. Furthermore, instead of the exponential divergence of
the fluctuations of the order parameter expected for the XY
model �60,61�, we found a standard power-law divergence
�see Fig. 5�.

On the other hand, it is also useful to compare our results
on the universality class of the VM with other out-of-
equilibrium systems; e.g., very recently, Wood et al. �62�
have reported that a nonequilibrium �on lattice� model for
stochastic coupled oscillators, which formally can be de-
scribed with the same order parameter than the VM, exhibits
dimensionality-dependent phase transitions. In fact, d=2 is
the lower critical dimension for the observation of long-
range order, and in d=3 the model undergoes a continuous
phase transition displaying signatures of the XY equilibrium
universality class �62�. Again, a remarkable difference is
that, in contrast to the VM, oscillators are placed at fixed
positions. These findings suggest that the coupling between
orientation and displacement is essential for the onset of
long-range order in d=2.

It is also worth mentioning that universality classes of
far-from-equilibrium systems exhibiting continuous phase
transitions have extensively been reviewed by several au-
thors �63–65�. After a careful analysis, we concluded that the
VM may define its own universality since the set of expo-
nents determined in the present paper is quite different from
those characteristics of other well-established universality
classes.

Let us now analyze the validity of the hyperscaling rela-
tionship given by Eq. �16� for the case of the VM. First, by
considering critical exponents determined by using station-
ary measurements one has that

d − 2�/� − �/� = 2 − 2 � 0.275 − 1.45 = 0.00�3� .
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On the other hand, by using exponents determined by
means of dynamic measurements only, it follows that

d/z − 2�/�z − �/�z = 1.55 − 2 � 0.25 − 1.12 = 0.10�9� .

These results provide two independent and consistent
tests of Eq. �16�, strongly suggesting the validity of the hy-
perscaling relationship, which is well established in the case
of standard �equilibrium� second-order phase transitions.

Summing up, we think that this paper provides the set of
relevant exponents of the VM whose validity has been cross
checked by using different measurement methods and scal-

ing approaches. We hope that this work will contribute to the
understanding of phase transitions and critical phenomena
occurring under far-from equilibrium conditions, also stimu-
lating theoretical work aimed at identifying the universality
class of the VM in particular and describing the collective
behavior of self-driven individuals in general.
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