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Long-range interactions �LRIs� slow down the excitation trapping in quantum transport on a one-
dimensional chain with traps at both ends when compared to the case with only nearest-neighbor interactions.
This is in contrast to the corresponding classical case, in which LRIs lead to faster excitation trapping. The
reason for the slowing down is to be found in subtle changes—due to LRIs—in the spectrum of the Hamil-
tonian. Pertubation theory allows an analytical analysis of this fact.

DOI: 10.1103/PhysRevE.78.021115 PACS number�s�: 05.60.Gg, 05.60.Cd, 71.35.�y

Building a quantum system from scratch has become pos-
sible due to recent experimental advances in controlling and
manipulating atoms and molecules. It has actually become
possible to tailor the theoreticians’ favorite one-dimensional
systems using, e.g., ultracold atoms in optical lattices; see �1�
and references therein. From a dynamical point of view, this
allows for these systems to compare the theoretical predic-
tions for the transport of charge, mass, or energy to the ex-
perimental results. In turn, the experimental findings might
eventually lead to a refinement of the theoretical models.

The tight-binding approximation for the transport of a
quantum particle over a regular structure �network� is a
simple description which is equivalent to the so-called
continous-time quantum walk �CTQW� with nearest-
neighbor interactions �NNIs� �2,3�. Recently, several experi-
ments have been proposed addressing the CTQW, e.g., based
on waveguide arrays �4�, atoms in optical lattices �5,6�, or
structured clouds of ultracold Rydberg atoms �7�. In some of
these experiments one finds long-range interactions �LRIs�,
as in Rydberg gases, where also blockade �9� and antiblock-
ade �10� effects have to be considered. Recently, we analyzed
the behavior of CTQWs when the probability of jumps to
other sites depends on the mutual distance R between the
sites, the LRIs being of the form R−� �8�. We found that
CTQWs belong to the same universality class for ��2,
while for classical continuous-time random walks �CTRWs�
universality holds only for ��3.

Coupling a system to an absorbing site, i.e., to a trap,
allows the transport to be monitored by observing the decay
of the survival probability of the moving entity, say, the ex-
citation. In the long-time limit and for NNIs the decay is
practically exponential for both classical systems modeled by
CTRWs �11� and quantum systems modeled by CTQWs
�7,12�. At intermediate times, which are experimentally rel-
evant, there appear considerable, characteristic differences
between the classical and the quantum situations �7�.

Here, we study the quantum dynamics of a one-
dimensional CTQW with LRIs in the presence of traps and
use the similarity to a CTRW for a comparison with the
respective classical case. Without traps, we model the quan-
tum dynamics on a network of connected nodes by a tight-
binding Hamiltonian H0. For the corresponding classical pro-

cess, we identify the CTRW transfer matrix T0 with H0, i.e.,
H0=−T0; see, e.g., �2,3� for details. For undirected networks,
H0 is related to the connectivity matrix A0 of the network by
H0=A0. When the interactions between two nodes vary as
R−�, with R= �k− j � �1 being the distance between two nodes
j and k, the Hamiltonian has the following structure:

H0��� = �
n=1

N ��
R=1

n−1

R−���n�	n� − �n − R�	n��

+ �
R=1

N−n

R−���n�	n� − �n + R�	n��
 . �1�

We restrict ourselves to extensive cases ���1�, i.e., we ex-
plicitly exclude ultralong-range interactions. The correspond-
ing NNI Hamiltonian is obtained for �=�, in which case
only the leading terms with R=1 do not vanish.

The states �j� associated with excitations localized at the
nodes j �j=1, . . . ,N� form a complete, orthonormal basis set
of the whole accessible Hilbert space �	k � j�=�kj and
�k�k�	k�=1�. In general, the transition probabilities
from a state �j� at time t0=0 to a state �k� at time t read
�kj�t����kj�t��2��	k �exp�−iH0���t� � j��2. In the correspond-
ing classical CTRW case the transition probabilities follow
from a master equation as pkj�t�= 	k �exp�T0t� � j� �2,3�.

Now, let the nodes m �m�M and M� 
1, . . . ,N�� be
traps for the excitation. Within a phenomenological ap-
proach, the new Hamiltonian is H����H0���− i�, with the
trapping operator i�� � i	�m�M�m�	m� �see Ref. �7� for
details�. As a result, H is non-Hermitian and has N complex
eigenvalues El=
l− i�l �l=1, . . . ,N� with �l�0, and N left

and N right eigenstates, denoted by ��l� and 	�̃l�, respec-
tively. The transition probabilities follow as

�kj�t� = ��
l

exp�− �lt�exp�− i
lt�	k��l�	�̃l�j��2
, �2�

where the imaginary parts �l of El determine the temporal
decay. Note that traps do not lead to decoherence but to
decaying probabilities. For the incoherent classical process
the description by CTRWs is quite similar: The new transfer
operator reads T���=T0���−�=−A0���−�, which is real
and symmetric, leading to the eigenvalues −
l �
l�0� and
corresponding eigenstates ��l�. Note that due to the different
incorporation of the trapping operator in T��� and H��� the*muelken@physik.uni-freiburg.de
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corresponding eigenvalues and eigenstates will differ. With-
out trapping we have T0���=−H0��� and thus 
l�El and
��l����l�.

In order to make a global statement for the whole net-
work, we calculate the mean survival probability for a total
number of M trap nodes,

�M�t� �
1

N − M
�

j�M
�

k�M
�kj�t� , �3�

i.e., the average of �kj�t� over all initial nodes j and all final
nodes k, neither of them being a trap node. Classically, we
will consider PM�t��1 / �N−M�� j�M�k�Mpkj�t�. For inter-
mediate and long times and a small number of trap nodes,
�M�t� is mainly a sum of exponentially decaying terms �7�:

�M�t� �
1

N − M
�
l=1

N

exp�− 2�lt� . �4�

If the imaginary parts �l obey a power law with an exponent
� ��l�al��, the mean survival probability scales as
�M�t�� t−1/�.

In Ref. �7� an experimental setup was proposed, which is
based on a finite linear chain of clouds of ultracold Rydberg
atoms with trapping states at both ends �m=1,N�. There, the
dynamics was approximated by a NNI tight-binding model,
which—for a ring without traps—has been shown to behave
in the same fashion as systems with LRIs of the form R−� for
which ��2 �8�. The Rydberg atoms interact via dipole-
dipole forces, i.e., the potential between two atoms decays
roughly as R−3.

For the finite chain with m=1,N, Fig. 1 shows a compari-
son of the quantum mechanical �M�t� and of the classical
PM�t� behaviors for different � and 	, which were obtained
by numerically diagonalizing the corresponding Hamiltonian
H��� and transfer matrix T���, respectively. Clearly, for both
	 values the LRIs lead to a slower decay of �M�t�, i.e., to a
slower trapping of the excitation, which is remarkable since
the opposite effect is observable for classical systems where
the decay of PM�t� becomes faster for decreasing �. The
classical behavior can be simply understood since, at least
for short and intermediate times, increasing the probabilities
for long-range jumps also increases the probabilities for vis-
iting new nodes and hence to encounter a trap. By increasing
the trapping strength 	, the difference between the quantum
and the classical behavior becomes even more pronounced
�compare Figs. 1�a� and 1�b��. Generally, for �M�t� the
change in 	 results mainly in a rescaled time axis, since the
imaginary parts �l are of the same order of magnitude when
rescaled by 	. For the specific case of the Rydberg atoms
��=3 and 	=1� one observes the largest difference between
the �M�t� and the PM�t� behaviors. To understand this phe-
nomenon, we continue to analyze �M�t� within a perturba-
tion theoretical treatment.

When the strength of the trap, 	, is small compared to the
couplings between neighboring nodes, we can evaluate the
eigenvalues using perturbation theory; see, for instance, �13�.
Let ��l

�0�� be the lth eigenstate and El
�0��R be the lth eigen-

value of the unperturbed system with Hamiltonian H0���. Up
to first order the eigenvalues of the perturbed system are
given by

El = El
�0� − i	 �

m�M
�	m��l

�0���2. �5�

Therefore, the correction term determines the imaginary
parts �l, while the unperturbed eigenvalues are the real parts

l=El

�0�. Having only a few trap nodes, the sum in Eq. �5�
contains only few terms. Moreover, from Eq. �5� we also see
that the imaginary parts �l are essentially determined by the
eigenstates ��l

�0�� of the system without traps. A change in
these states will also lead to a change in the �l. As we pro-
ceed to show, this is exactly what happens by going from
NNIs to LRIs: With decreasing � some of the unperturbed
eigenstates ��l

�0�� become more concentrated within the
system, i.e., they have a lower contribution from the nodes
m=1,N. This, in turn, leads to the slower decay of the sur-
vival probability, because the imaginary parts are related to
�	m ��l

�0���2 by Eq. �5�.
Without loss of generality, an eigenstate of a finite chain

with NNIs can be written as �l=1, . . . ,N�
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FIG. 1. �Color online� � dependence of the quantum mechanical
�M�t� and the classical PM�t� decay behaviors for a chain of
N=100 sites; here 	= �a� 0.001 and �b� 1. The inset in �a� shows a
closeup picture of the region where �M�t� and PM�t� cross. The
inset in �b� shows power-law fits �see arrows� to �M�t� in the inter-
mediate time regime with exponents 1 /�, where the � are taken
from Fig. 3�b�.
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��l
�0�� = ��

1

N
�
j=1

N

�j� , for l = N ,

� 2

N
�
j=1

N

cos��2j − 1��l/2��j� else, �
�6�

where for convenience we take �l���N− l� /N� �0,��; the
corresponding eigenvalues are El

�0�=2−2 cos �l �note that the
smallest eigenvalue is EN

�0�=0�. Thus, in first-order
perturbation theory we obtain from Eqs. �5� and �6� as
imaginary parts �N=2	 /N and �l= �4	 /N�cos2��l /2�
= �2	 /N��1+cos �l� for l=1, . . . ,N−1, which for l�N yields
�l� l2. In this case the mean survival probability will scale in
the corresponding time interval as �M�t�� t−1/2.

Formally, we can perform the continuum limit N→� �by
taking now 4	 /N�a finite�. Then the sum in Eq. �4� turns
into an integral such that

�M�t� � e−at 1

�
�

0

�

d� e−at cos � = e−atI0�at� , �7�

where I0�at� is the modified Bessel function of the first kind
�14�. From this we get for large t that �M�t�� t−1/2, which
confirms the previous results. Note, however, that for small
N the smallest �l value is finite and, therefore, the scaling of
�l holds only in a quite small interval of l values. Hence, also
the time interval in which �M�t� scales with the exponent
−1 /2 is rather small. A lower bound for scaling is given by
the behavior of �l for l�N /2 �corresponding to smaller
times than for l�N�. Here, �l is linear in l, which leads to a
lower bound of ��1 for the scaling exponent. An exponent
� which is valid over a larger l interval will therefore be in
the interval �1,2� and, consequently, the exponent for �M�t�
will lie in the interval �−1,−1 /2�.

In the case of periodic boundary conditions, one finds
translation-invariant Bloch eigenstates regardless of the
range of the interaction �8�. In the case of Eq. �1�, however,
the eigenstates for LRI differ from the ones for NNI �Eq.
�6��; in Eq. �1� the finite extension of the chain destroys the
translational invariance. As is immediately clear from Eq.
�5�, this also implies that the imaginary parts of the eigen-
values, evaluated based on first-order perturbation theory,
will change.

For large exponents � we can regard the LRI as a small
perturbation to the NNI, i.e., having H0���=H0+H�, where
H� contains only the correction terms to the NNI case H0.
This allows us to calculate from the unperturbed states ��l

�0��
the perturbed eigenstates ��l� up to first order. Taking the
states ��l� to be the eigenstates of the LRI system without
traps, we readily obtain the imaginary parts �l for small trap-
ping strength from Eq. �5� as �l=2	�	1 ��l��2, where

	1��l� = 	1��l
�0�� + �

r�l

	�r
�0��H���l

�0��
El

�0� − Er
�0� 	1��r

�0�� . �8�

It is straightforward, although cumbersome, to calculate
the corrections to the imaginary parts �l from Eq. �8�. For
large � the coupling to the next-next-nearest neighbor is by a

factor of �3 /2�� smaller, for �=10 this is about one and a half
orders of magnitude. Taking, for fixed �, only nearest- and
next-nearest-neighbor couplings into account allows us to
obtain simple analytic expressions. The perturbation term
H� is now tridiagonal. Its nonzero elements are
	j−2 �H� � j�= 	j+2 �H� � j�=−2−� and its diagonal elements
follow from 	j �H� � j�=−�i	i �H� � j�, thus 	j �H� � j�=2−� for
2� j�N−1 and 	j �H� � j�=2−�+1 else. We hence obtain from
Eq. �8�

	1��l� =� 2

N
cos��l

2

 + 2−�� 2

N
sin�2�l�sin��l

2

 . �9�

Figure 2 shows the difference 	1 ��l�− 	1 ��l
�0�� for

N=100 and for �= �a� 10 and �b� 5. The numerical exact
value �solid black line� is obtained by computing separately
	1 ��l� and 	1 ��l

�0�� and subsequently taking the difference;
the result is then confronted with Eq. �8� �dash-dotted green
line�, determined numerically, and to Eq. �9� �dashed red
line�. For �=10, the agreement between all three curves is
remarkably good �see Fig. 2�a��, which justifies the assump-
tions leading to Eq. �9�. For smaller � ��=5 in Fig. 2�b��
there is still a reasonable agreement between Eq. �8� and the
exact result; however, taking only nearest and next-nearest
neighbors into account leads to evident deviations, see the
dashed red line in Fig. 2�b�.

Now, from Eq. �9� we get

�l � �l
�0� + 2−��l

�1� + O�2−2�� , �10�

where �l
�0� is the NNI expression given above and

�l
�1�= �8	 /N�cos��l /2�sin�2�l�sin��l /2� the correction due to

the LRIs. Again, the smallest �l values are those for which
l�N, which leads to a decrease of the imaginary parts �l
because �l

�1��0 for l�N. Here, one can approximate the
imaginary parts by a power law, i.e., �l� l�. A rough esti-
mate of the scaling exponent �, assuming ��1 can be
readily given. For this we note that from Eq. �10� we
have ln�l+1−ln�l� ln�l+1

�0� −ln �l
�0�+2−���l+1

�1� /�l+1
�0� −�l

�1� /�l
�0��.
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FIG. 2. �Color online� Correction term 	1 ��l�− 	1 ��l
�0�� for

N=100 and for �= �a� 10 and �b� 5. The direct numerical evaluation
�solid black line� is compared to the perturbation theory expression
Eq. �8� �dash-dotted green line� and to the approximate expression
Eq. �9� �dashed red line�.
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Moreover, the term ��0���ln �l+1
�0� −ln �l

�0�� / �ln�l+1�−ln l�
gives the exponent for the NNI case and the term ��1�

���l+1
�1� /�l+1

�0� −�l
�1� /�l

�0�� / �ln�l+1�−ln l� is the LRI correction.
Thus

� �
ln �l+1 − ln �l

ln�l + 1� − ln l
� ��0� + 2−���1�. �11�

Since ��1� is strictly positive for small l, the inclusion of
LRIs leads to a decrease of �l when compared to the NNI
case. In turn, this results in a slower decay of �M�t�.

Figure 3 shows the imaginary parts �l for a chain of N
=100 nodes with LRIs ��=3,4 ,5�, and with NNIs. For small
l and NNIs, the �l obey scaling with the exponent �=2, as
discussed above. Introducing LRIs, i.e., decreasing �, in-
creases the scaling exponent to ��2. Consequently, the
scaling exponent 1 /� for �M�t� decreases, leading to a slow-
ing down of the excitation trapping due to LRIs.

In the classical case decreasing � leads to a faster excita-
tion trapping, which is observable in a quicker decay of

PM�t�. This can also be deduced from a perturbation theoret-
ical treatment. As can be seen from Fig. 1 �see also Fig. 2 of
Ref. �7��, the decay of PM�t� is exponential already at inter-
mediate times and is dominated by the smallest eigenvalue

N and the corresponding eigenstate ��N� of the transfer op-
erator T���:

PM�t� =
1

N − M
�
l=1

N

exp�− 
lt�� �
k�M

	k��l��2

�
1

N − M
exp�− 
Nt�� �

k�M
	k��N��2

. �12�

Calculating 
N and the prefactor ��k�M	k ��N��2 for large �
and small 	 shows that with decreasing � the smallest eigen-
value 
N increases while the prefactor decreases. Together,
this confirms our numerical result of a quicker decay for
PM�t�, see Fig. 1.

Finally, we comment on the impact of our results on the
experiment proposed in Ref. �7�. Here, clouds of laser-cooled
ground state atoms are assembled in a chain by optical dipole
traps �15�, which are then excited into a Rydberg S state �see
�7� for details�. The Rydberg atoms interact via long-range
dipole-dipole forces which is advantageous in many ways.
As can be deduced from Fig. 1, the time intervals over which
the decay follows the power law are enlarged by the LRIs.
For �=3 the transition to the long-time exponential decay
occurs at times which are about two orders of magnitude
larger than the ones found for the NNI case. The difference
between a purely coherent �CTQW� and a purely incoherent
�CTRW� process is enlarged due to the LRIs, allowing for a
better discrimination between the two when clarifying the
nature of the energy transfer dynamics in ultracold Rydberg
gases.

In conclusion, we have considered the quantum dynamics
of excitations with LRIs on a network in the presence of
absorbing sites �traps�. The LRIs lead to a slowing down of
the decay of the average survival probability, which is re-
markable since for the corresponding classical process one
observes a speedup of the decay. Using pertubation theory
arguments we were able to identify the reason for this slow-
ing down; it results from changes in the imaginary parts of
the spectrum of the Hamiltonian.
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