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We study the self-healing process of materials with embedded “glue”-carrying cells, in the regime of the
onset of the initial fatigue. Three-dimensional numerical simulations within the percolation-model approach are
reported. The main numerical challenge taken up in the present work has been to extend the calculation of the
conductance to three-dimensional lattices. Our results confirm the general features of the process: The onset of
material fatigue is delayed, by development of a plateaulike time dependence of the material quality. We
demonstrate that, in this low-damage regime, the changes in the conductance and thus in similar transport and
response properties of the material can be used as measures of the material quality degradation. A new feature
found for three dimensions, where it is much more profound than in earlier-studied two-dimensional systems,
is the competition between the healing cells. Even for low initial densities of the healing cells, they interfere
with each other and reduce each other’s effective healing efficiency.
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I. INTRODUCTION

Design of “smart materials” has been an active new re-
search topic. Specifically, self-healing composite materials
�1–5� restore their mechanical properties with time, thus re-
ducing material fatigue caused by the formation of microc-
racks. Microcracks in such materials break embedded fibers
or capsules �6� which contain the healing agent—a “glue”
that then delays further microcrack development. In recent
experiments �1,6–11�, an epoxy �polymer material� was stud-
ied, with microcapsules containing a healing agent. Cracks
induce rupture of microcapsules �1,11�. Then the glue is re-
leased, permeates the crack, and a catalyst triggers repoly-
merization that delays further material damage.

Nanosize defects are randomly distributed in the material:
Fatigue and ultimately degradation of the material due to
mechanical loads during its use are caused by the formation
of craze fibrils along which microcracks develop. Therefore,
it is particularly interesting to have a self-healing process at
the nanoscale: This might offer �10� a more effective preven-
tion of growth of microcracks. It is expected �10,11� that
nanoporous fibers with glue will heal smaller, damage fea-
tures, thus delaying the material fatigue at an earlier stage
than larger capsules �1,9� which reglue large cracks. Further-
more, on the nanoscale, the glue should be distributed or
mixed with the catalyst more efficiently because transport by
diffusion alone will be effective �10�, eliminating the need
for external uv irradiation �9�, etc.

Presently, theoretical and numerical modeling of such a
self-healing process is only in the initiation stages
�10,12–14�. Theoretical works and numerical simulations
�15–18� �without self-healing� have largely considered for-
mation and propagation of large cracks which, once devel-
oped, cannot be healed by embedded nanofeatured capsules.
We have instead focused �10,12� on modeling of the time
dependence of a gradual formation of damage �fatigue� and
its manifestation in material composition and properties, as

well as its healing by nanoporous fiber rupture and release of
glue.

We have formulated phenomenological rate equations
�10,12� for the self-healing process. These are not reviewed
here. In fact, further work is planned, with the ultimate goal
of extending the rate equation approached to a full phase-
field-type theory of fatigue development and self-healing,
along the lines of similar approaches to crack formation �19�.

In addition to continuum modeling, numerical Monte
Carlo simulations can yield useful information on the self-
healing process. We have reported �10,12� numerical simula-
tions for a two-dimensional �2D� lattice model. Furthermore,
the calculated material composition and structure must be
related to macroscopic properties that are experimentally
measured. The relation between composite material compo-
sition and properties is an important and rather broad field of
research �20�.

Recently, it has been demonstrated experimentally �21�
that a dilute network of carbon nanotubes, incorporated in
epoxy, can provide a percolation cluster, the conductance of
which reflects the degree of the fatigue of the material and
also shows promise for probing the self-healing �21�. We
consider conductance as a representative property. However,
we point out that different transport properties can be used to
probe material integrity, including thermal conductivity
�22,23�, photoacoustic waves �24,25�, and electrical conduc-
tivity �21,26–29�.

Transport properties can be highly nonlinear functions of
the degree of damage. Specifically, the conductance can
sharply drop to zero if the conducting network density drops
beyond the percolation threshold. However, for probing the
initial fatigue, in the regime of low levels of damage, one
expects most transport properties to decrease proportionately
to the damage. Our numerical 2D simulations confirmed this
expectation �12�.

The purpose of the present work has been to carry out
three-dimensional �3D� numerical simulations for a lattice
model of �short-range �10�� self-healing of initial fatigue,
along the lines of approach within the framework of a bond-
percolation model, earlier developed for 2D. We point out
that the main challenge was numerical. Three-dimensional*Corresponding author. privman@clarkson.edu
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simulations for percolation are numerically demanding, par-
ticularly when calculation of conductance is involved. Our
simulations involved relatively large-scale simulations, as
described in Sec. II. In fact, to our knowledge no calculations
for bond-percolation conductance for regular 3D lattices
were earlier published. However, in our study we did not
focus on the critical-point behavior near the percolation tran-
sition, which has been of primary interest �30–32� to the
community of scientists studying percolation models per se,
because we were interested in the regime of the initial dam-
age, when the percolation network is largely intact.

Our results for the percolation model of self-healing in 3D
are presented in Sec. II. We find that the overall pattern of
time dependence is similar to that found earlier for 2D, for
short-range self-healing. However, an interesting new finding
for 3D, reported in Sec. III, is that, as the initial density of
the glue-carrying capsules �fibers, healing cells� is increased,
they begin to interfere with each other’s healing efficiency,
which results in a significant suppression of the healing ef-
fect. Unlike in 2D, where a similar effect is also expected, in
3D it sets in for rather low densities, well below the experi-
mentally relevant range �1,11� of roughly 10–15 % volume
fraction of the healing cells. Section III addresses this prop-
erty, as well as offers summarizing remarks.

II. BOND-PERCOLATION MODEL OF SELF-HEALING

Our Monte Carlo simulations were carried out for cubic
lattices of varying sizes, N�N�N cells, with periodic
boundary conditions. One cell of a cubic lattice is shown in
Fig. 1. The initial fraction � of the lattice cells, randomly
selected, were designated as glue carrying. The kinetic rules
were very similar to those used in the earlier 2D simulations
�10,12� for square lattices, but with some differences speci-
fied below. Initially, at time t=0, all the cell faces were in-
tact. We then assume that as time goes by the ongoing usage
of the material causes its degradation, such that the faces of
the cells break with the rate p.

However, if the face is that of a cell with glue in it, then
the rate of its breakage is assumed larger, P� p. The reason
for this assumption was explained in earlier works �10,12�: It

represents the “cost” of embedding the healing cells, which
generally should somewhat reduce the material integrity.
Here we took

p = 0.003 and P = 0.008. �1�

These are convenient values representing a slow rate of ma-
terial degradation per single unit of time, with the dimen-
sionless time measured as the number of Monte Carlo
sweeps through the system.

Once any two faces �of the total six� of a glue-carrying
cell become damaged, with the second of the two “damaged”
in a Monte Carlo event, then an additional process occurs.
We assume that the glue in that cell immediately “leaks out,”
and as a result a local neighborhood of this cell is “healed”
�i.e., structurally repaired�. Here we used the following local-
healing rule: All the six faces of this cell, as well as the faces
of all the 26 other cells which belong to the 3�3�3 cubic
group of 27 cells centered at our “active” cell, are set to the
“healthy”-state value. This means that, irrespective of the
earlier state of each of the 104 faces involved �healthy or
broken� and of the state of the two cells that adjoin each of
those faces �the cells can be regular, glue carrying, or for-
merly glue carrying but now used up�, all the 104 faces are
set to healthy. This models the self-healing effect. In fact,
once a face is damaged, both of its adjoining cells can be-
come leaky according to this rule, because each might have
had one face damaged earlier. In this case the 3�3�3
neighborhood of each is healed, which means setting all the
faces in a 4�3�3 box to healthy. A difference as compared
to the earlier 2D simulations was that, once healed, a face of
a formerly healing cell is later rebroken at the rate p, rather
than P, unless it happens to adjoin another, not yet used,
healing cell. This choice allows for a better visualization of
numerical results close to �=1, in Sec. III.

The quantity measured in the simulation, after averaging
over several Monte Carlo runs, was the fraction of the un-
damaged cells, n�t�, where n�0�=1. This represents an “in-
ternal” measure of the material integrity as a function of
time. Furthermore, as an example of a quantity measuring an
“external” material property that can actually be experimen-
tally probed, we also calculated the conductance G�t�. In
order to define it, let us consider a dual lattice with nodes at
the centers of the original-lattice cells and with bonds, that
connect these nodes, each crossing one of the original-lattice
faces, as shown in Fig. 1.

For our calculations, we assumed that all the bonds cross-
ing healthy faces have the same maximal conductance,
whereas all the bonds crossing damaged faces do not conduct
at all. Due to our choice of periodic boundary conditions,
which reduces numerical noise, the conductance of the sys-
tem was calculated between two parallel planes, each of area
N�N �these were really tori, due to periodicity�, at the dis-
tance N /2 from each other. We adapted a standard algorithm
�33� to the 3D case. These two tori are connected by two
equal-size system halves �we took N even for simplicity�,
and the conductivities via these two pathways were included
in the overall calculation.

Our typical results are illustrated in Fig. 2, where we plot
the fraction of healthy bonds, n�t�, and in Fig. 3, where the

FIG. 1. Illustration of a cell of the cubic lattice, and of two of
the six bonds of the dual lattice that connect this cell’s center with
the centers of its nearest-neighbor cells. These bonds cross the
original-lattice cell faces, and we use the convention that a bond
crossing an undamaged face is conducting, whereas a bond crossing
a damaged face is not.
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conductance G�t� is shown, normalized such that initially
G�0�=1. The results shown correspond to the choice of the
initial healing-cell density �=1 /8=12.5%. We also show the
results of a numerical simulation without any healing cells.
We note that is the latter case we have

n�t� = e−pt for � = 0. �2�

Since the model with �=0 corresponds to ordinary bond
percolation in 3D, the percolation transition value
is known from the literature �32�: npercolation

��=0�

=0.248 812 6�0.000 000 5, and corresponds to time
tpercolation
��=0� �464, for the value of p assumed in �1�.

Furthermore, since for �=0 the bonds break without any
correlation with each other, then any deviation from �2�, not
visible on the scale of Fig. 2, as well as noise and size �N�
dependence in the data, are due only to the statistical noise in
the Monte Carlo simulation. We note that npercolation

���0� for the
model with self-healing is not known and cannot be accu-
rately estimated from our data �because the lattice sizes are
too small; see further comments below�. Fortunately, inter-
esting features of the self-healing effect occur at n�t� values
well over those of the percolation transition �i.e., for times
much earlier than tpercolation�.

With self-healing, for ��0, there is some correlation in
the bond-kinetics stochastic history, and therefore the size
dependence of n�t� can be real, though it is obviously ex-
tremely small; see Fig. 2. Due to this correlation, the above
value for npercolation

��=0� is not valid for the self-healing case,
though the deviation is expected to be small.

The data in Figs. 2 and 3, and especially in Fig. 4, illus-
trate the general features of the self-healing process. At a
small initial cost of a faster drop in the material integrity
�represented here by our model assumption that P� p�, a
plateaulike behavior is gained, at intermediate times, result-
ing in an overall delay in the buildup of larger damage. For
the regime of interest, of small overall degree of damage, the
externally measurable material properties, exemplified here
by the conductance, follow this trend and provide a reliable,

FIG. 2. Time dependence of the fraction of healthy bonds for the
3D lattice model. The upper �for larger times� set of data corre-
sponds to self-healing, whereas the lower set is without self-
healing. The time variable is dimensionless, measured as the num-
ber of Monte Carlo sweeps through the system. The data in each set
correspond to lattice sizes N=6,8 ,10,12, but there is no measur-
able size dependence within the accuracy of the statistical noise.
The data shown were averaged over 240, 120, 60, and 20 Monte
Carlo runs, for the four N values, respectively.
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FIG. 3. Time dependence of the conductance for the 3D lattice
model. The conductance is normalized in dimensionless units such
that the value G=1 corresponds to the fully connected lattice �with
all the bonds conducting�. The upper �for larger times� set of data
corresponds to self-healing, whereas the lower set is without self-
healing. The curves in each data set correspond, from top to bottom,
to lattice sizes N=6,8 ,10,12. Notice the marked size dependence.
The data shown, were averaged over 240, 120, 60, and 20 Monte
Carlo runs, for the four N values, respectively.
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FIG. 4. Fraction of the unbroken bonds, n�t� �top solid curve�,
and the normalized conductance G�t� �bottom solid curve�, in our
3D model with self-healing, for the initial healing-cell fraction �
=12.5%, with the parameter values the same as in Figs. 2 and 3.
The data shown were obtained for the largest system size simulated,
N=12, averaged over 20 runs. The dashed curves illustrate similar
results with all the same parameters but with no healing cells. The
inset shows the data for short times, illustrating the initially slightly
faster drop for the case with self-healing.
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approximately proportional measure of the material me-
chanical condition. This is illustrated in Fig. 4. The corre-
spondence breaks down once the regime of large damage,
and the percolation transition, is approached.

Let us point out that the self-healing effect here is short
range and limited to the vicinity of each healing cell. Two-
dimensional studies of longer-range healing yielded interest-
ing results �10�. However, in 3D the lattice sizes amenable to
simulation with present-day computer facilities, specifically
if we include the calculation of the conductance, were lim-
ited to N up to 12. This is further explained in the next
paragraph and also commented on later. Therefore, study of
longer-range self-healing in 3D was not practical. We point
out that the most important difference between the present
3D study and the earlier 2D results was the randomness in
the initial placement of the healing cells, mentioned earlier.
This matter will be addressed in the next section.

Our numerical simulations were parallelized on a six-
processor LINUX cluster with average CPU speeds of
2.4 GHz. The largest calculation consisted of averaging over
20 Monte Carlo runs the results for the conductance, for
lattice size N=12 �a 12�12�12 cubic lattice with periodic
boundary conditions�, and took approximately 70 CPU hours
of parallel run. In fact, as mentioned in Sec. I, no calcula-
tions of a 3D percolation-cluster conductance were ever pub-
lished in the literature to our knowledge. The reason has
been that studies of percolation are usually focused on the
percolation transition point and require large lattice sizes.
However, in our case the interesting self-healing effect—the
delay in the sample quality degradation—occurs in the re-
gime when the lattice is still relatively intact, away from the
percolation transition. Still, it is important to check to what
extent the lattice size 123 is “large.” This has been the reason
for us presenting the size dependence of the results, for lat-
tices with N=6,8 ,10,12, in Figs. 2 and 3.

Due to the local nature of the self-healing rules selected,
and the use of periodic boundary conditions, the size depen-
dence of the fraction of undamaged faces �bonds, of the dual
lattice� is extremely weak, and sizes 123 de facto give the
infinite lattice size results, as seen in Fig. 2.

Since the conductance is not a local quantity, it has a more
pronounced size dependence with and without self-healing,
as seen in Fig. 3. As the system size grows, the conductance
becomes somewhat lower. In the N→� limit, it approaches
zero for all the time values at and larger than the percolation
transition time. We did not attempt a detailed study of this
critical-phenomenon-type finite-size scaling dependence
�34�, because, as mentioned earlier, we were interested in the
behavior in the low-damage regime, well before the percola-
tion transition times are reached. Once the material is de-
graded to approach the percolation-transition n�t� values, it
should simply be discarded in practical situations. Thus, we
believe that for a relevant regime of low damage, our results
up to size 12 provide a qualitatively and semiquantitatively
correct picture of the behavior of the conductance, valid in
the N→� limit.

III. HEALING EFFICIENCY IN THREE DIMENSIONS

The size dependence of the healthy-bond fraction was
found to be negligibly small, unlike that of the conductance.

In fact, if we calculate only this quantity, without the
computer-resource-demanding conductance, and use size N
=10, then we can obtain a high-precision �large number of
runs� evaluation of n�t�. We carried out such a simulation
with the aim of covering the initial healing-cell fraction val-
ues up to �=100%. These results are shown in Fig. 5.

The figure illustrates the overall pattern of behavior, with
a more efficient self-healing for larger values of �. Let us
define a measure of the healing efficiency by the delay time
�t, calculated as the displacement of the curve with ��0
with respect to the curve with �=0 at n=1 /2, along the
dotted line in Fig. 5. These values are plotted in Fig. 6. It is
obvious that the healing efficiency is not proportional to �.
The cells interfere with each other and, even for rather small
values of �, markedly decrease each other’s healing effi-
ciency.

The effect is quite important in 3D. To qualitatively un-
derstand this, we note that short-range healing means that
cells affect their neighborhood approximately within a dis-
tance equal to their size. Thus, in order not to interfere �lit-
erally, not to waste glue�, other healing cells should not be
healing this whole neighborhood; thus they must be about
two “shells of influence” away. The exclusion radius is thus
at least three times the cell radius, in terms of the center to
center separation. It is likely even larger, depending on the
specific geometry and on how strict we want the “don’t heal
each other’s neighborhoods” restriction to be. Let it take the
less restrictive value, of three cell radii: In 2D the maximal
fraction of the cells that can be placed without interference
with each other is then approximately �1 /3�2�11%. How-
ever, in 3D it is �1 /3�3�3.7%.

The difference is that 10% �up to 15%� are typical values
of the healing-cell volume fractions in experiments �1,11�.
Thus, in 2D the cell-interference effect is of marginal impor-
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FIG. 5. Fraction of the unbroken bonds, n�t�, as a function of
time for the initial healing-cell densities �=5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, and 100%. These data were
obtained for N=10, and each data set was averaged over 2000 runs.
The dashed curve corresponds to �=0, and increasing � values then
yielded curves with larger n�t�, except for the shortest times. The
delay-time measure of the healing efficiency, �t, was calculated as
the displacement of the curve with ��0 with respect to the curve
with �=0 at n=1 /2, i.e., along the dotted line.
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tance, and indeed earlier 2D simulations used small enough �
values to allow initial placement �10,12� of the cells suffi-
ciently far apart �but otherwise random� to avoid all or most
of the healing region overlap effects �for short-range heal-
ing�.

However, in 3D the loss of healing efficiency due to over-
lap is much more profound. We reran the simulations that
yielded the data in Fig. 5, for a couple of very small values
of ��1 /27, with initially well-separated, but otherwise ran-
domly placed, healing cells. The resulting data defined the
slope of the straight line shown in Fig. 6. The continuation of
this straight line to larger values of � measures the would-be

healing efficiency had the cells not interfered with each
other. At �=1, the loss of the efficiency is by a factor of close
to 4, which is a significant effect.

Actually, our simple model of self-healing may not be
fully representative of the more global effects, including the
cell-cell interactions. Indeed, the self-healing effect cannot
be entirely local. The glue cannot literally decompress to fill
cracks in the material. In reality, it will form bridges that will
relieve stress and therefore delay further growth of the ad-
vancing edges of affected microcracks. Still, our present re-
sults suggest that not just the cell density but their uniform
dispersion in the medium �to avoid clumping�, is of impor-
tance in designing self-healing materials.

Presently, experiments with self-healing materials are
very preliminary and do not yield quantitative data that could
be directly modeled. Therefore, the modeling of relevance is
qualitative, with the goal of guiding future experiments. For
example, consideration of the offset in the formation of cer-
tain damage features, as studied in our case in terms of the
delay time �t was motivated by experimental work, but for
materials with embedded microcapsules �35� that did not
contain glue �i.e., were without the self-healing mechanism�.

In summary, the present model has illustrated the overall
pattern expected for the self-healing process, and also helped
us uncover an interesting new, basically geometrical feature
of stronger cell-cell interference in 3D as compared to 2D.
However, more realistic, likely very demanding, numerical
model simulations are needed, as well as development of
new continuum models, to further advance the theory of self-
healing composites. We hope to address some of these chal-
lenges in our future work.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support of this re-
search by the ARO under Grant No. W911NF-05-1-0339 and
by the NSF under Grant No. DMR-0509104.

�1� S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R.
Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, Na-
ture �London� 409, 794 �2001�.

�2� C. Dry, Compos. Struct. 35, 263 �1996�.
�3� R. P. Wool, Soft Matter 4, 400 �2008�.
�4� C. M. Dry and N. R. Sottos, Proc. SPIE 1916, 438 �1996�.
�5� E. N. Brown, N. R. Sottos, and S. R. White, Exp. Mech. 42,

372 �2002�.
�6� Y. Kievsky and I. Sokolov, IEEE Trans. Nanotechnol. 4, 490

�2005�.
�7� E. N. Brown, S. R. White, and N. R. Sottos, J. Mater. Sci. 39,

1703 �2004�.
�8� M. Zako and N. Takano, J. Intell. Mater. Syst. Struct. 10, 836

�1999�.
�9� J. W. C. Pang and I. P. Bond, Compos. Sci. Technol. 65, 1791

�2005�.
�10� V. Privman, A. Dementsov, and I. Sokolov, J. Comput. Theor.

Nanosci. 4, 190 �2007�.

�11� J. G. Kirk, S. Naik, J. C. Moosbrugger, D. J. Morrison, and I.
Sokolov �unpublished�.

�12� A. Dementsov and V. Privman, Physica A 385, 543 �2007�.
�13� S. R. White, P. H. Geubelle, and N. R. Sottos, U.S. Air Force

Research Report No. AFRL-SR-AR-TR-06-0055, 2006 �un-
published�.

�14� J. Y. Lee, G. A. Buxton, and A. C. Balazs, J. Chem. Phys. 121,
5531 �2004�.

�15� S. Hao, W. K. Liu, P. A. Klein, and A. J. Rosakis, Int. J. Solids
Struct. 41, 1773 �2004�.

�16� H. J. Herrmann, A. Hansen, and S. Roux, Phys. Rev. B 39,
637 �1989�.

�17� M. Sahimi and S. Arbabi, Phys. Rev. B 47, 713 �1993�.
�18� J. Rottler, S. Barsky, and M. O. Robbins, Phys. Rev. Lett. 89,

148304 �2002�.
�19� H. Henry, Europhys. Lett. 83, 16004 �2008�.
�20� G. W. Milton, The Theory of Composites �Cambridge Univer-

sity Press, Cambridge, U.K., 2001�, Chap. 10.
�21� E. T. Thostenson and T.-W. Chou, Adv. Mater. �Weinheim,

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

400
t

ρ

∆

FIG. 6. Delay-time measure of the healing efficiency, �t, as a
function of the initial healing cell density � extracted from the re-
sults presented in Fig. 5. The solid line does not represent any data
fit; it was drawn to guide the eye. The broken line represents the
would-be maximal healing efficiency had the cells not interfered
with each other. It was obtained by a procedure described in Sec.
III.

THREE-DIMENSIONAL PERCOLATION MODELING OF … PHYSICAL REVIEW E 78, 021104 �2008�

021104-5



Ger.� 18, 2837 �2006�.
�22� I. Sevostianov, Int. J. Eng. Sci. 44, 513 �2006�.
�23� I. Sevostianov and M. Kachanov �unpublished�.
�24� M. Navarrete, M. Villagrán-Munizb, L. Poncec, and T. Flores,

Opt. Lasers Eng. 40, 5 �2003�.
�25� A. S. Chekanov, M. H. Hong, T. S. Low, and Y. F. Lu, IEEE

Trans. Magn. 33, 2863 �1997�.
�26� K. Schulte and C. Baron, Compos. Sci. Technol. 36, 63

�1989�.
�27� I. Weber and P. Schwartz, Compos. Sci. Technol. 61, 849

�2001�.
�28� M. Kupke, K. Schulte, and R. Schüler, Compos. Sci. Technol.

61, 837 �2001�.

�29� R. Schueler, S. P. Joshi, and K. Schulte, Compos. Sci. Technol.
61, 921 �2001�.

�30� S. Kirkpatrick, Rev. Mod. Phys. 45, 574 �1973�.
�31� H. E. Stanley, Introduction to Phase Transitions and Critical

Phenomena �Oxford University Press, Oxford, 1993�.
�32� C. D. Lorenz and R. M. Ziff, Phys. Rev. E 57, 230 �1998�.
�33� H. A. Knudsen and S. Fazekas, J. Comput. Phys. 211, 700

�2006�.
�34� V. Privman, Finite Size Scaling and Numerical Simulation of

Statistical Systems �World Scientific, Singapore, 1990�.
�35� E. N. Brown, S. R. White, and N. R. Sottos, J. Mater. Sci. 41,

6266 �2006�.

ALEXANDER DEMENTSOV AND VLADIMIR PRIVMAN PHYSICAL REVIEW E 78, 021104 �2008�

021104-6


