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We analyze the generalized Fick-Jacobs equation, obtained by a rigorous mapping of the diffusion equation
in a quasi-one-dimensional (quasi-1D) (narrow 2D or 3D) channel with varying cross section A(x) onto the
longitudinal coordinate x. We show that for constructing approximations and understanding their applicability
in practice, it is crucial to study the 2D (3D) density inside the channel in the regime of stationary flow. We
present algorithms enabling us to derive approximate formulas for the effective diffusion coefficient involving
derivatives of A(x) higher than A’(x) and give examples for 2D channels. Effects of the boundary conditions

at the ends of a finite channel and the case of nonsmooth A(x) are also discussed.
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I. INTRODUCTION

The study of transport through such complex systems as
microporous materials (zeolites, biological membranes) usu-
ally requires appropriate simplifications in their description.
Many of these can be understood as dimensional reduction; a
model defined originally on a space of many variables is
reformulated as a lower-dimensional or even one-
dimensional (1D) problem.

We deal with a simple example of such models: confined
diffusion. Consider a narrow 2D or 3D channel with hard
reflecting walls, confining noninteracting pointlike particles
of density p(x,y,t) diffusing inside; x denotes the longitudi-
nal and y=(y;,...) the transverse coordinates. In general,
one should solve the diffusion equation

a,p(x.y.1) =D<a§+2 a%.)p(x,y,r), (1.1)
J

)
7

with some initial condition p(x,y,f)=py(x,y) at time =0,
Neumann boundary condition (BC) on the walls, and un-
specified BC at the ends of the channel; D denotes the dif-
fusion constant. As usually only movement of the particles
along the narrow channel is interesting, we ask whether this
task can be formulated as purely one dimensional—i.e.,
whether there is some partial differential equation (PDE)

ap(x,1) = O(x,0,)p(x,1) (1.2)

governing the 1D density p(x,7), defined as p(x,y,?) inte-
grated over the local cross section A(x),

p(x,y.t)dy, (1.3)

A(x)

plx,t) =

with the spatial operator Q acting only upon the longitudinal
coordinate x. We demand the same result seen in 1D; one
should get the same p(x,7) either by solving first Eq. (1.1)
starting from some py(x,y) and then calculating p(x,?) ac-
cording to (1.3) or calculating first the 1D initial condition
po(x) for po(x,y) substituted in (1.3) and then solving Eq.

(1.2). The goal is to find such Q that this request is met (at
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least) for some reasonably wide class of initial conditions
Po(x’Y)~

This task becomes nontrivial due to nonhomogeneity of
the channel if the cross section A(x) is not constant. The
simplest approximation of (1.2) is known for decades as the
Fick-Jacobs (FJ) equation [1]

9p(x,1) = DI, A(x)d,(p(x)/A(x)).

This approximation is not satisfactory in many cases, and so
improvements were looked for especially during recent
years. We mention the correction derived by Zwanzig [2],

ap(x,1) = DIAM[1 = A"*(x)/3]0,(p(x)/A(x),

(1.4)

ap(x,t) =DJ,AX)[1 - R"*(x)/12]0,(p(x)/A(x)), (1.5)

for 2D and symmetric 3D channels; R(x) is the radius of the
channel and A(x)=mR?(x) in the 3D case. Tests on exactly
solvable geometries exhibited improvement only in regions
of small |A’(x)|, indicating that this correction is only the
first term of some series.

Reguera and Rubi [3] presented consistent arguments
coming from mesoscopic nonequilibrium thermodynamics to
suggest that the corrected FJ equation has the form

dip(x,1) = d,A(x)D(x)d,(p(x,1)/A(x)),

(1.6)

with an effective diffusion coefficient D(x), a function,
whose physical interpretation is well understood, but it can-
not be fixed from this phenomenological theory.

A procedure for systematic calculation of the spatial op-

erator Q was proposed in [4-6]. By introducing anisotropy
in Eq. (1.1) and supposing the transverse diffusion coeffi-
cient D,> D, we gain a small parameter e=D/ Dy, in which
we can express iteratively the perturbation expansion of
Q(x,é'x) up to an arbitrary order [4]. The generalized FJ
equation then has the form

ap(x,t) = A1 - €Z(x,3)10,(p(x,))/A(x)), (1.7)

where
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. 1
Z(x,0,) = gA’Z + %[A’(AzAB) +AA'A" - TA'3)

+(A%A?) 9]+ (1.8)
for the 2D case and
A 1
Z(x,0)==R">+ < [R'(RPR® + RR'R" - 14R"?)
2 48
+(R°R'?) 9]+ (1.9)

for symmetric 3D channels; we put D=1 in our consider-
ations. The parameter \ e has the meaning of a scaling factor
of the transverse lengths [y and A(x) in 2D and R(x) in 3D
geometry]; small € corresponds to a channel narrow com-
pared with the scale of variation of the cross section, and this

determines the form of the Z expansion.

Finally, we can return to the isotropic case and take e=1.
Notice that infinitely fast transverse diffusion (e=0) gener-
ates the FJ equation and the term ~e€' recovers the Zwan-
zig’s correction (1.5). As shown in [5], the first-order correc-
tion in (1.7), independently of dimension and cross-sectional
shape, involves no further derivatives, but changes the pref-
actor A(x) in the FJ equation (1.4) to one of the form (1.5).
This serves as a strong a posteriori justification for (1.6) as a
leading approximation.

Equation (1.7) represents an exact dimensional reduction
of the original diffusion equation [5]. Nevertheless, it is hard
to use it directly in calculations—the higher-order terms are
very complicated to be expressed explicitly. In addition, in-
stead of an expected function D(x), we have an operator 1
—€Z(x,d,) in Eq. (1.7); the spatial operator O contains de-
rivatives in x of an arbitrary order.

Still, the exact generalized FJ equation (1.7) becomes the
phenomenological one (1.6) in the regime of stationary flow
and the function D(x) can then be fixed unambiguously using

the € expansion of Z(x,r?x) [6]:

eA’
D(x) =154+~ (94" + AX'A" - 42A")

EA’
- %(13%'5 +45AA"3A" — 584%A" A"
—41A%A7A%) — 124%4"AP + 8A3A' AW +24%A0))
b (1.10)

for the 2D case and
€ €R’
D(x)=1- ER’Z + K(18R’3 +3RR'R" = R2R®) 4 -

(1.11)

for symmetric 3D channels. If A” (R”) and all higher deriva-
tives are neglected, the coefficients to any order of € can be
expressed explicitly and the infinite series are summed to

arctan VeA’

1
Dx)=———, D(x)=—
VeA’ V1 + €R'?

(1.12)

for 2D and 3D, respectively.
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The first question which we want to answer in this paper
is how to obtain better approximations, including more terms
of the expansion (1.10). As an example, we derive here the
formula

D(x) =AA"[yA' (1 + €A'? + eAA")arctan( \«";A’)/arctan(vrey)
+AA" A" (1+eA’D)] !, (1.13)

with y=V(1+eA"?)>~[1+e(AA") P/ Ve[ 1+€(AA")'], which
reproduces also the terms proportional to A” in (1.10).

Recently, the approximation (1.12) was tested numerically
by calculations of the mean first-passage time; Berezhkovskii
et al. [7] simulated diffusing particles in a long conical tube.
In spite of linear R(x), satisfying the condition of zero R” and
the higher derivatives, they achieved a good agreement with
the 3D formula (1.12) only for R">< 1.

Actually, the radius of convergence of the series (1.11) in
€R'? (for zero R” and the higher derivatives) is unity and one
can doubt its utility for large |[R’|. On the other hand, the
same formula for the linear cone of any slope can also be
derived nonperturbatively [6], within the variational formal-
ism [8].

Thus, our next task is to do a deeper analysis of applica-
bility of our approximations of the generalized FJ equation.
We base it mainly on a study of the full-space density p,
connected with the 1D density p of our interest. Let us stress
that the procedure of projecting p onto p [5] also involves the
backward mapping of p onto a specific subset of solutions p
of Eq. (1.1), containing no transients (modes decaying
quickly in the transverse directions). In the regime of station-
ary flow, there are no such modes, and any stationary 1D
density p(x) corresponds unambiguously to some full space
p(x,y), which also has to be understood if we are to work
only in the 1D picture.

In the following section, we study the mapping p— p and
backward for the stationary regime. We draw conclusions
which enable us to apply nonperturbative methods for calcu-
lating D(x) as well as to analyze applicability of the corre-
sponding approximations.

In Sec. III, we present derivation of the approximations of
D(x), which include A”(x) for 2D channels. We test them on
exactly solvable examples and analyze the range of their va-
lidity and possibility of the next improvements.

In Sec. IV, we discuss the mapping in the case of A(x)
with cusps and the effects of BCs at the ends of a finite
channel on the resulting D(x).

For simplicity, we restrict our detailed analysis to 2D
channels. Our conclusions and the proposed techniques can
be extended to more complicated (3D) geometries in a
straightforward way.

II. MAPPING OF THE STATIONARY STATE

To explain the mapping for the stationary state, we have
to go through the mapping procedure [4,5] in brief. We con-
sider a 2D channel bounded by the x axis and function A(x);
0<y<A(x). Neumann BCs are supposed:

Ayp(x,y,1) = 0|9, (2.1)
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&yp(-x’y’t) = EA,(X)&xp(x’y’tNy:A(X)'

The crucial point of the procedure is the search for two op-
erators: Aside from the operator 0 (or Z) of our primary
interest, it is necessary to look also for an operator ®, map-
ping the space of 1D densities p(x,#) back onto the space of
2D densities p(x,y,1)=d(x,y,d)[p(x,1)/A(x)]. The operator
@ has to satisfy the inverse relation

A(x)
P(x,t)=f dy a(x,y,d.)[p(x,0)/A(x)] (2.2)
0

for any function p(x, ). Both operators are rewritten as series
in €,

oo

B(x,y,d) = 2, €i(x,y.9,),
j=0

€Z(x,0,) = >, €Z;(x,9,), (2.3)
j=1

and the diffusion equation (1.1) with imposed anisotropy is
expressed using p(x,t) mapped backward onto the space of
2D densities:

plx,1)
A(x)

> ej+1<&,—ﬁ§—£&§>d)j(x,y,&x) =0. (2.4)

J=0

The time derivative d, commutes with the spatial operators,

and for d,p(x,r), we use Eq. (1.7) with Z expanded in e.
Comparing the coefficients at €*!' in Eq. (2.4), we get the
recurrence relation

Rdj (0,0, == F0(x,y,9,)

J
) 1 )
- E j—k(-x’y’ ax)A axA(-x)Zk(-x7 (9)() ax
k=0

(x)
(2.5)
coupled with
~ A’
Z(x,0,)0, = i)(?)_]-()C,A()c),&x) for j >0, (2.6)

A(x)

coming from the diffusion equation integrated over y.
These relations enable us to calculate simultaneously ®;

and 2j, starting from @g(x,y,d,)=1 and Zo(x,ax):—l.

Double integration  of @, fixing  the BC
Ay@;41 (x,Y,3,)]520=0, and the normalization

fé(x)dy @(x,y,d,)=08;, follow. Finally, 2j+1(x,ax) is found
from (2.6).

This scheme leads to the expansion of Z. Eq. (1.8), which
is coupled with the expansion of @ in the form

o(x,y,d,) =1+ en(x,y,d,) 0, (2.7)
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A/ y4
7(x,y,0) = —(3y* — A% + 3A'2—2AA"
7(x,y,dy) 6A(y ) 6{24A2( )
2 A2
+ (447 AY) - 2 (14AA" - A"?) |4,
12 360

4 13
A

T s 2(—AA(3>+4A’A"—3—)
24A A

2 13
A 2

+ y—<AA<3> _2ATA" - —)
12 A

A2 A!3
- —<7AA<3> —8A'A" 19—) +oe
360 A

(2.8)

generating unambiguously a specific set of solutions p(x,y,?)
of the original 2D diffusion equation, corresponding to the
ID dynamics (1.7).

The mapping becomes simpler in the stationary state. If
d,p(x,y,1)=0, the stationary longitudinal flux

A(x)
J(-x9t) == f axp(x’yat)dy
0

=—AW)[1 - eZ(x, z?x)]&xlM =J

A0 (2.9)

is constant in x and ¢, and then correspondence with the
description of Eq. (1.6) can be established [6]. Requirement
of getting the same flux, whether expressed from (1.6),

J==A(x)D(x)d(p(x)/A(x)), (2.10)

or by using (2.9) for any d,(p(x)/A(x)), results in the relation
defining the effective diffusion coefficient D(x),

L =AM)[1 - eZ(x,ax)]—lL

D(x) Alx)’ @11)

giving the expansion (1.10). Having D(x), we can also cal-
culate the corresponding 2D stationary density p(x,y). For
any 1D BCs p(x;), p(xg) (or J) at the ends of the channel, we
get

2,(p(IA) = - JTAWD(R)] (2.12)
from Eq. (2.10) and so

pW) _ oAt

AW "’L“'LA(x'm(x')’ (213

pp. denotes p(x;)/A(x;). Using the operator @, Eq. (2.7), we
obtain finally the stationary 2D density

X d/
p(x,y)=pL—J[f s

———— + enlx,y,d,
L AGHDG T )

A(x)D(x)
(2.14)

defined unambiguously as a series in €.

The expression in the square brackets in Eq. (2.14) is a
quantity independent of the BC p(x;) and J. Curves of con-
stant z,
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dx . 1
z(x,y) =f m + en(x,y,ﬂx)A—(x)D(x) , (2.15)

join the points of equal stationary 2D density, so (2.15) rep-
resents a transformation to a curvilinear variable z=z(x,y)
connected with the stationary flow, depending only on the
geometry of the channel. One can also define a variable ¢
orthogonal to z, but we omit now this step, as it is not nec-
essary for our next considerations.

If we substitute for D(x) and 7(x,y,d,) in (2.15) from
(1.10) and (2.8), we obtain z(x,y) in the form

z(x,y) = 2 2 ej}’Zij,k(x),

(2.16)
j=0 k=0
where the first few coefficients z;, are
dx
Zo,o(x) = f A)
1 A/2 A’ Al
Zl,O(x) = 5 f de - Z Zl,l(x) = E
1
Z0(x) = 1 f (AA'A® — A"2A" — 4A"*A)dx
1 2403) PAn 13
- —(7TA°A>) = 224AA'A" + 2A"°),
360
1
= AA®) —4AAA" 42473
ZZ,I(x) 12A2( ),
20(x) =~ L(AZA“) —6AA'A"+6A"%).  (2.17)
2,2 24A4 . .

One can check that Eq. (2.16) with the coefficients (2.17)
satisfies  the  stationary = mass  conservation [é‘ﬁ
+(1/e)(9§]z(x, y)=0 as well as the boundary condition
dyz(x,y)= €A’ (x)d,z(x,y)|y-a(- Going from the opposite
side: if the BCs (2.1) are applied to (2.16), understood as an
ansatz for z=z(x,y), we get

J*l J
> 2kA2k_l(x)Zj+l,k(x) =A" (x> AZk(x)Z_,{,k(X), (2.18)
k=1 k=0

in the jth order of €; the stationary mass conservation gives

77 (x)
2k+1)(2k+1)

Zj+l,k+1(x) == (2.19)
at €y, These conditions represent closed systems of differ-
ential equations for groups of coefficients z; ;(x) (formed by
Zj0 and zj,1 3 k>0). If solved, we recover (2.17) up to two
integration constants, corresponding to p; and J, which is
consistent with the linear relation between the stationary p
and z in (2.14).

An example of transformation to z=z(x,y) for the exactly
solvable linear cone is given in Appendix A.

Summary and consequences. We showed in this section,
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that the effective diffusion coefficient D(x), which was an
unfixed function in the original phenomenological theory [3],
becomes a well-defined quantity in the stationary regime (for
any stationary flux J flowing through the channel) and it can

be expressed unambiguously using the operator Z, Eq. (2.11),
coming from the exact mapping [4-6]. Then, within the
mapping procedure, also the stationary 1D density p(x), Eq.
(2.13), and the corresponding 2D density p(x,y), Eq. (2.14),
are fixed up to two (irrelevant) integration constants.

On the other hand, the stationary density p(x,y) is a so-
lution of the Laplace equation (for e=1) with the BCs (2.1).
So we can avoid the perturbation expansion (1.10) and cal-
culate D(x) directly from the Laplace equation for exactly
solvable geometries. Taking its solution p(x,y) and integrat-
ing p(x) according to (1.3), we get D(x) from (2.10). We use
this method for deriving higher-order approximations of
D(x) in the next section.

Finally, we showed that the stationary flow defines a cur-
vilinear coordinate system in the channel, depending only on
its shape [on A(x)]. The longitudinal curvilinear coordinate
z=z(x,y) is assigned to the curves (surfaces) of the same
stationary density (isodensities). In this curvilinear coordi-
nate system, the 2D density p(x,y) becomes a function of the
only spatial variable z; p(x,y)=p(z). Of course, the relation
between p and z in our calculations (2.16) and (2.17) is
trivial, p(z)=p;—Jz. Nevertheless, the important finding is
the existence of such a coordinate system, independent of J
and p;. In general, we can hardly use directly the transfor-
mation (2.16) and (2.17), but now we are justified to suppose
a spatial variable s such that p is a function only of s. If there
is a relation s=s(z), introducing s instead of z does not vio-
late the structure of the (stationary) isodensities in the chan-
nel and also p(z)=p(z(s))=p(s).

Supposition of such a coordinate is a crucial point of the
variational mapping [8]. We reexamine this method and pro-
pose it also for the construction of approximations of D(x).
Finally, we show that properties of the curvilinear system are
important for understanding and applicability of the approxi-
mations of the generalized FJ equation.

III. APPROXIMATIONS OF D(x)

Although the mapping procedure presented above allows
us to calculate the expansion of the exact stationary density
p(x,y) and D(x) up to an arbitrary order in € for any analytic
function A(x), it is more convenient in practice to have for-
mulas in a compact form. Tests show [2] that even simple
approximate formulas can give more usable results than the
truncated series. One way is to sum an infinite subgroup of
terms of the exact expansion; e.g., summing the terms de-
pending only on A’(x) gives (1.12). Finding a larger sum-
mable subgroup of terms may be difficult.

Another way is to use nonperturbative methods. First, we
apply a procedure based on replacing the real boundary y
=A(x) by a boundary of some exactly solvable geometry in
the vicinity of a chosen x=X. For the 2D stationary density
p(x,y) in this geometry, we integrate p(x) and gain D(x)
from (2.10).
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FIG. 1. Linear approximation takes the linearized boundary
(thick dashed line) instead of A(x) in the vicinity of a chosen x=x.
So the real isodensities (solid lines) are replaced by the circles
(dashed lines), corresponding to the 2D density in the linear cone.

A. Linear approximation

The simplest approximation of that kind replaces A(x) by
its tangent A(x)=y(x—a,) at x=x (Fig. 1), where

y=A'(%),

True isodensities (solid lines) are approximated by a system
of concentric circles (dashed lines), which depict the 2D den-
sity p(x,y)=p;—C In[(x—ay)*>+y*] in a linear cone (bounded
by the thick dashed line and x axis) with particles imposed
steadily at the point (ay,0) and diffusing inside the cone to
infinity. If we fix the constant C to fit the flux J=

- é(x)dy d.p(x,y), we arrive at the stationary density (A2) for
e=1:

ag=x—-A(X)/A"(X). (3.1)

px,y) =pp - In[(x—ap)*+y*].  (3.2)

2 arctan vy

Now, integrating (3.2) over the approximated cross section,
we get the stationary 1D density

J

arctan y

A(x)
plx) = f p(x,y)dy = y(x - ap) [pL -
0

arctan
ey

» —1+In[V1+ 9y (x—- ao)])} (3.3)

entering the formula (2.10). If the linearized boundary A(x)
instead of A(x) is used there, too, the relation
p) Iy J

Ax)d Alx) " arctan vy N D(x)

(3.4)

immediately gives D(x)=(arctan y)/y=(arctanA’)/A’. We
obtained the relation (1.12) for e=1 as A” and the higher
derivatives were neglected by linearizing A(x) in this con-
struction. Notice also that the integration constants p; and J
are irrelevant in the calculation of D(x).

B. Circular approximation

Replacing the boundary y=A(x) at x=X by a circle A(x)
(Fig. 2) enables us to gain an approximation involving also

PHYSICAL REVIEW E 78, 021103 (2008)

FIG. 2. Approximation of the boundary y=A(x) (thick solid
line) at x=X by a circle (thick dashed line) of radius R, and centered
at (0,yy). The thin solid circles represent the isodensities in the
circular cavity; the thin dashed lines are circles orthogonal to them.

A" in the final formula for D(x). We utilize here an exactly
solvable model supposing that particles are steadily imposed
at the point (—w,0) and drained away at (w,0). [The equiva-
lent model in electrostatics supposes a couple of opposite
charges placed at (=w,0) in the plane; we consider the 2D
logarithmic Coulomb potential.] The isodensities are circles
(thin solid lines) centered at the x axis; the current flows in
the perpendicular direction to them along the thin dashed
circles, centered on the y axis at (0,y,) (for details see Ap-
pendix B). So any of the dashed circles can serve as a bound-
ary of a channel and the BCs (2.1) for the corresponding p in
this model are satisfied. Of course, the origin of the coordi-
nate system can be shifted in the x direction by any x,, so
finally, we have three parameters x,, y, and w (or the radius
Ro=\w?+y;) of the circular boundary to be set (keeping the
model solvable) to fit A, A’, and also A” of the true boundary
at x=x. Taking the equation of the approximating circle,

[A(x) = yol* + (X—xo)2=R3, (3.5)
and the first two derivatives
_ _ - R?
A= pyo R g
A(x) - yo [A(x) - yo?

we get three equations for x,, yy, and R, to be expressed
using A(x)=A(x), A’'(x)=A"(x), and A”(x)=A"(x) taken at x
=X. The solution reads

. A® e o N+AZ®T
x—xO—A”(f)[l+A ™1, Ry= °m
1
Yo= A”—(x_)[l +A"?(X) +A(X)A"(%)] (3.7)
and
w=—ﬁ\r’/(1+A’2)3—(1+A’2+AA”)2. (3.8)

The 2D density in the channel defined by y=A(x) and x axis
is known,
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J +x-x0)2 +y°
(w +x = xp) yz, (3.9)

X,y)=p; —
p(x.y) =py (v —xtx) 4y

2 arctan vy
the prefactor of the logarithm is fixed again from the condi-

tion J=—[4 ®dya p(x,y), and y——\R —vilyo. If p, Eq.
(3.9), is integrated over the approximated cross section, we
get

plx) J 1 wi+l

A(x) 2

arctan y| 2 wi+1

+ w, arctan(1/w,) —w_arctan(1/w_) |, (3.10)

+—[\"Ro yg = (x=x0)]/A(x). After completing the deriva-

tive [p(x)/A(x)]’, we express the parameters x,, yo, and R,
using A, A’, and A” at x=Xx according to (3.7), which con-
verts the final formula for D(x) to the form

D(x) = = HAW)[p(x)/A)]'}!

X (arctan A")/(arctan y) + AA" — A

=AA"[yA' (1 +A"? + AA")
12(1 +A'2)]_1,
(3.11)

\’(1 +A/2)3 (1 +A,2+AA”)2
1+A"? +AA"

(3.12)

(at x=Xx). Keeping J=—[ é(x)(?xp(x, y)dy requires us to take
arctan y from the interval (77/2, ) for negative y. ¥ can be
also a pure imaginary number, y=iu, O<u<1. Then
arctan y=i In[y(14u)/(1-u)]. The last case corresponds to
the approximating circle lying thoroughly above the x axis.

For small A”, y=|A"|-AA"/|A’|+- -, and the leading term
of (3.11) expanded in A” recovers the formula (1.12).

If the transverse length A and its derivatives A’ and A" are
scaled by 6 we arrive at the formula (1. 13) In the limit €
—0, y— VA'2—2AA" is finite and arctan\ ey can be replaced
by Vey. The leading term of D(x) is unity, as required by the
FJ approximation, valid in this limit. The next terms of the
Taylor expansion in € are

e
D(x)=1- A"+ A"(9A" + AA") - ——A"
37 s 945

X (135A"* + 45AA A" + 5A’A") + -
(3.13)

If compared with (1.10), this approximation sums correctly
also the terms proportional to A”.

C. Other approximation

Any exactly solvable geometry with n free parameters
ai,...,a, can be used for deriving an approximate formula
for D(x) by this algorithm; then, the derivatives of A(x) up to
A" (x) will be involved. For 2D channels, formulation in
the complex plane offers various possibilities; we present
this theory in Appendix B. Here, we pick out only several
results for comparison with the linear approximation (LA)
and the circular approximation (CA).
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The following formulas correspond to approximations of
the boundary by solutions A(x) of specific polynomial equa-
tions, for which the stationary density p(x,y) is solvable. In
the lowest-order case n=2, the approximating boundary is
the hyperbola

A(x) = 1/(a; + 2a,x). (3.14)

Two parameters a; and a, allow us to involve only A and A’
in the formula (derived by the same algorithm as the CA)

1 1
——=1+-A"(x);

5 3 (3.15)

we get the extrapolation Mod2 in [2]. Although it depend
explicitly only on A’, it differs from (1.12), because, here,
the higher derivatives are not neglected. For the hyperbola

(3.14), A"(x)=2A"*(x)/A(x), and also the higher derivatives

can be expressed using A and A’. If these relations are sub-
stituted into (1.10), we get an expansion, which is identical
(for e=1) with the expansion of D(x) from (3.15) in A’ It
means that Mod2 (in 2D) has a good physical interpretation;
it corresponds to approximation of the boundary by hyper-
bola (3.14).

The approximations for n=3,

3-A@A"(x) =A% (x)
3-A@A"(x) —A"*(x)’

D(x) = (3.16)

and n=4,

D(x)=5(9— 124" — 12AA" + 3A"* + 3A2A"* - 24%A’AY)

X (45 —45A"* — 60AA" — 9A"* + 15424
—21AA?A" —9A2A’A®) + 33470 — 17AA'*A"
+3A%A472A"% — AA3AC)H (3.17)

involve explicitly also A” and A(_3) in the formulas. If we
rescale A and its derivatives by Ve, the expansion of (3.17)
reproduces also the complete term ~ € in (1.10).

Finally, we test the presented results on two exactly solv-
able geometries. The first one is a 2D hyperbolic cone (Fig.
3)

Ax) = W2 +d%(1 + ), (3.18)
for which we can find the exact D(x) (Appendix B):
2
1+ ’fx ( Y —1); (3.19)
D(x) A*(x) \ arctan y

v e (0,) characterizes the opening of the cone and a is the
transverse length unit. A comparison of our approximations
is given in Fig. 4. The CA (thick dotted line) slightly im-
proves the LA (thick dashed line); the thick solid line repre-
sents the exact result. The approximation Mod2 by hyperbola
(3.15) (thin dashed line) exhibits wrong asymptotics for large
x. The formula (3.16) gives even worse results and (3.17) has
singularities, so they are not plotted in the figure.
The second test is done on a channel shaped by
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FIG. 3. Hyperbolic cones (3.18) for a=1 and various 7y (the
dotted and solid thick lines). The thin solid lines are the exact
isodensities for any 7 (ellipses); the thin dashed lines are circles,
replacing the ellipses in the LA and CA; small dots depict hyper-
bolic isodensities corresponding to the Mod2 approximation (3.15)
(drawn for y=1).

A(x) = arcsin( ); (3.20)

cosh x

0<g=1 (Fig. 5). For g— 1, the bulge at x=0 turns to a
cusp. Using the algorithm described in Appendix B, we de-
rive
1 1 g tanh® x
= 2 + 3 !/ 2 2 :
D(x) cosh”x  arcsin[g/cosh(x)]Vcosh®> x — g
(3.21)

The results for g=0.87 and 1 obtained by applying all
derived formulas for D(x) are depicted in Fig. 6. Also, for
this geometry, the numerical results for the CA formula
(3.11) (large dotted lines) exhibit almost no change with re-
spect to the much simpler LA formula (1.12) (thick dashed
lines). On the other hand, the approximations (3.16) and
(3.17) (small dotted and thin solid lines), which were unus-

0.9

0.8

D(x)
0.7

0.6

0.5 :
0 0.2 0.4 0.6 0.8 1

FIG. 4. D(x) for the hyperbolic cone (3.18) for a=1 and y=2.
The solid line represents the exact solution , the thick dashed line is
the LA (1.12), and the thick dotted line is the CA (3.11). The thin
dashed line depicts Mod 2, Eq. (3.15).
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A(x)=arcsin [g/ch(x)]

FIG. 5. Testing channels defined by (3.20) (thick lines). The
solid thin lines describe the exact isodensities; the dashed lines are
the isodensities approximated by circles for g— 1.

able for the cone, are much closer to the exact D(x) (thick
solid line) in the troubling region x~0 for g=0.87. The case
g=1 corresponds to the boundary with a cusp, which makes
problems for any formula based on the first few derivatives
of A(x). The formula (3.17) becomes unstable, and its data
are not plotted.

Our algorithm of calculating D(x), based on replacing the
true boundary by an exactly solvable geometry in the vicinity
of a chosen x, has a transparent physical interpretation and
enables us to obtain higher-order formulas for D(x) with

1
0.98
0.96

D(x)

0.94

0.92

0.9

(@

0.95
0.9

D(x)
0.85

0.8

075 Lozt
o 2 o o

FIG. 6. The effective diffusion coefficient D(x) for the channel
bounded by the function (3.20) for g=0.87 and 1, calculated by
using all derived formulas. The thick solid line is the exact solution
(3.21). The thick dashed line is the LA (1.12); the thick dotted line
is the CA (3.11). The thin lines depict the approximations
(3.15)—(3.17). The approximation by hyperbola (Mod 2 or n=2)
corresponds to the dashed line; the dotted line plots n=3 and the
solid line n=4.
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relative ease. The first problem indicated by solving our ex-
amples is that these formulas might not be universal. In con-
trast to the LA (1.12), certain higher-order approximations
are usable only for the channels of specific types (cones,
bulges, etc.). Nevertheless, one should have other controls to
check how reliable some approximation is.

The basic test is to rescale the transverse lengths [A(x)
and its derivatives] by Ve and expand the approximated D(x)
in e. After comparison with the exact expansion (1.10), one
can see which groups of terms were summed in the formula.
Still, the higher derivatives of A(x) are often not neglected,
but included implicitly via existing relations between them
and the lower-order derivatives, valid on the approximating

boundary y=A(x), and so this analysis can be biased.

Understanding the applicability of any formula for D(x)
requires mainly a study of the 2D stationary density p(x,y),
corresponding to the approximating exactly solvable geom-
etry, or a study of the corresponding curvilinear coordinate
system. From this viewpoint, we can easily explain our test
results: in both examples, the CA does not improve markedly
D(x) in comparison with the LA (1.12), although it involves
correctly A” terms in its expansion. It may be caused by
using the same (circular) shape of isodensities. For large x in
the hyperbolic cone, the exact (elliptical) isodensities are
close to circles (Fig. 3), used by the LA and CA. So both
approximations exhibit correct asymptotics, in contrast to
Mod 2, Eq. (3.15), which supposes hyperbolic isodensities.
On the other hand, the circular isodensities are not capable of
fitting the true isodensities in the bulge of the second ex-
ample (thin solid lines in Fig. 5). In the limit g— 1, the
circles (dashed lines) cross one another; the approximated
curvilinear coordinate system based on them crashes and so
the LA as well as the CA fails.

If the shape of isodensities is so important, one should
start by looking for approximations for them instead of first
approximating the boundary. In other words, we should find
an ansatz for the relation s=s(x,y) such that the 2D density p
becomes a function of the only spatial variable s; p(x,y,?)
=p(s,?) in general. This task is solvable within variational
mapping [8], so we reexamine this method in the rest of this
section and in Appendix C.

D. Variational mapping

We start from the functional F[p(x,y,?),p(x,y,1)],

n XR A(x) 1 )
F[p,ﬁ]=f dtf dxf dy(i(ﬁp—ﬁp)
ty Xp, 0

1
+0.pdp+ —é’yﬁﬁyp> (3.22)
PO

(keeping the parameter of anisotropy €), whose stationary
condition 8F[p,p]=0 generates a pair of diffusion and “an-
tidiffusion” equations

p= (a§+ iﬂi)p, -p= <a§+ éﬁi)ﬁ, (3.23)

governing the evolution of the density p(x,y,?), defined in
the domain x; <x<uxg, 0<y<A(x) in the time ¢ running
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from £, to f;, and the complementary function p(x,y,?), de-
fined in the same domain, but evolving in the time ¢ running
backward. In the functional F, Eq. (3.22), we complete the
integral over the transverse variable along the supposed
isodensity s, obtaining a new functional F,p[p(s,?),p(s,)].
Then, from the stationary condition 6F =0, we arrive at the
mapped 1D equation for the 2D density p(s(x,y),?) in the
curvilinear coordinate s,

1

O')tp(sat) = _é).vK(S)asp(sst)v

e (3.24)

and its complementary 1D equation for p(s,#) (unimportant
for our next considerations) in a simple FJ form. In the 2D
case [8], the functions a(s) and «(s) are given by the rela-
tions

AG) [ gx\ ! 1{ ox\?
K(S)=f0 (g) {l+;<5) :|dy; (3.25)

x=x(s,y) is the function inverse to s=s(x,y) and x, is the x
coordinate of intersection of the curve s=s(x,y) with the
boundary; s=s(x,,A(x,)).

The transformation relation s=s(x,y) is understood here
as a variational ansatz, unfixed by the method itself. For any
choice of s(x,y), this variational technique finds some a(s)
and «(s), Egs. (3.25), optimizing the functional generating
the diffusion equation.

Our analysis in Sec. II shows that we are justified to sup-
pose the existence of such a curvilinear coordinate. If s=z of
the form (2.16) and the coefficients z;(x) are fixed accord-
ing to (2.17), Eq. (3.24) describes the limit of the stationary
flow (slowly changing, but finite fluxes) exactly. The full
dynamics is then understood in the background of the curvi-
linear coordinate system (z,¢), generated by the stationary
state, and the variational mapping represents an approxima-
tion allowing evolution of the density only in the correspond-
ing longitudinal curvilinear coordinate z.

For calculations of D(x), we deal only with the stationary
regime and our task is to find an ansatz s=s(x,y), approxi-
mating properly the isodensities defined by z=z(x,y), Egs.
(2.16) and (2.17). Our goal is to make it flexible enough to fit
the true isodensities in various types of channels, but still
allowing us to calculate the corresponding D(x) analytically.
We present this theory in Appendix C; we demonstrate that
the basic approximations, using circles, are the LA and CA,
and then we formulate general rules for their next improve-
ments.

IV. NONSMOOTH BOUNDARIES

The problem of crossing approximate isodensities, visible
in Fig. 5 (the dashed lines), when the curves of a chosen
approximate form are not able to describe consistently the
stationary 2D density inside the channel, appears naturally in
the channels of nonsmooth boundaries. The mapping method
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|
|

o

X

FIG. 7. Finite 2D linear cone bounded by the thick solid lines;
x; <x<xg. The mapping procedure finds the circular (thin dashed
lines) isodensities, corresponding to the uncut cone (bounded by the
thick dashed lines). The true isodensities (thin solid lines) in the
finite cone have to respect the BC at its ends (dotted lines)
p(xz ,y)=pr.g, not depending on y.

using the operator Z(x,d,), Eq. (1.7), supposes that the func-
tion A(x) defining the boundary is analytic. Then the isoden-
sities, generated by the mapping in the vicinity of some x
=X, correspond to a channel shaped by the Taylor series of
the function A(x) in the neighborhood of x. Of course, this
continuation differs from the real boundary behind a cusp
and so the structure of the stationary density obtained by the
mapping and finally D(x), too, becomes wrong.

In many cases, the ends of the channel also behave like
nonanalytic points. The stationary density calculated by the
mapping procedure corresponds to an infinite channel con-
tinuing behind its ends x; and xjp according to the Taylor
series of the function shaping its boundary. If the imposed
boundary conditions at the ends p(x;,y) and p(xg,y) do not
fit the stationary density at x=x; g in the uncut channel, then
the true D(x) differs from that one obtained by the mapping
procedure.

An example: finite linear cone. Consider a 2D linear cone
with A(x)=yx, where x is restricted by 0<x; <x<xp (Fig.
7). In the uncut cone (beginning at x=0), the mapping gen-
erates the stationary density p(x,y)=p,—(J/2 arctan v)In(x?
+y?) according to (A2), giving D(x)=(arctan y)/y, which is
the exact result for this geometry for any 7y. The usual BCs
for the finite cone, imposing constant densities at the ends
p(xz g.y)=prr (along the dotted lines in Fig. 7), do not fit
the circular isodensities, appearing in the uncut cone, and so
the corresponding D(x) differs from (1.12).

The case of x;=0 and y=1 can be easily calculated by the
method of images. An infinite lattice of sources and sinks at
the points (2nxg,2mxg) with integer n and m (the sources
placed at even n+m and the sinks at odd n+m) generates the
correct BC at the boundary x=xg; p(xz,y)=const. The 2D
density is then

PHYSICAL REVIEW E 78, 021103 (2008)

A(X)=x
0.95
0.9 finite cone
D(x)
0.85
0.8 uncut
0 0.2 0.4 0.6 0.8 1

FIG. 8. Effective diffusion coefficient D(x) for the finite linear
cone A(x)=x; 0<x<1 (solid line) compared with the exact result
for the uncut cone (dashed line), the constant D(x)=1/4.

2
) == 2 (= 1Y (=207 + (= 2m)], (@)

n,m

taking xz=1 as a unit length and keeping the total flux
—[3dp(x,y)dy=J. Integrating p(x)=[3p(x,y)dy and using
(2.10), after numerical summation, we obtain the resulting
D(x) (Fig. 8), which differs significantly from the formula
(1.12) for the uncut cone D(x)=arctan 1=0.785 especially
near the boundary x=1.

This calculation also probably explains why the check of
the formula (1.12) by simulations of diffusion in a 3D linear
cone [7] failed for |R’|> 1. Despite the fact that the uncut
cone is an exactly solvable geometry for any slope (also for
3D symmetric channels), the effect of the boundaries at the
ends x=x; p becomes important for steep finite cones and the
real D(x) differs from the formula (1.12).

Any finite channel defined on an interval x; <x<xp can
be extended by mirrors with respect to the planes placed at
its ends, so we can work finally with an infinite channel of
periodic boundary A(x)=A(x+2[xg—x,]) and the symmetry
A(x)=A(2xg ; —x). Due to these symmetries, the stationary
2D (3D) density at the ends also becomes constant in y and
the usual BCs p(x; g,y)=py g can be imposed there. If the
extended periodic boundary A(x) remains an analytic func-
tion, there is no problem using the mapping; at least the
smooth extended boundary [A’(x)|X=XLR=O] allows us to use
lower-order approximations like (1.12).

For nonanalytic A(x), one does not expect to find any
reliable universal approximate formula for D(x), composed
from the first few derivatives of A(x). One should solve such
a geometry separately, as is done, e.g., in [9,10]. The most
general way is to look for the stationary density p(x,y) and
then, after integrating p(x), to calculate D(x) from the rela-
tion (2.10). In a finite channel with constant densities p; p
=p(xy g.y) at its ends, the stationary density is equivalent to
the electrostatic potential inside the channel of the perfectly
dielectric walls closed by two conducting plates and charged
on the potentials p; and pg. One can use methods developed
for solving such problems in electrostatics. Also the formu-
lation in the complex plane does not put any restrictions on
the analyticity of A(x). Nonsmooth channels can be solved as
well, if the corresponding f(z) are found.
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V. CONCLUSION

Our analysis can be summarized as follows.

The key point is that the effective diffusion coefficient
D(x), as introduced in Eq. (1.6) (but unfixed) within the me-
soscopic nonequilibrium thermodynamics, is a well-defined
quantity in the limit of stationary diffusion (a slowly chang-
ing, but finite flux). Using the mapping procedure [4—6], we
can fix D(x) unambiguously in the form of an expansion in
the parameter of anisotropy € (the ratio of the longitudinal
and the transverse diffusion coefficient) for any channel with
the boundary defined by an analytic function A(x). The map-
ping shows that then also the stationary 1D density p(x) and
the corresponding full-space density p(x,y) are fixed up to
two integration constants.

Thus, for calculating D(x), we can use the stationary den-
sity p(x,y), solving the Laplace equation Ap=0 and satisfy-
ing the Neumann BC on the walls of the channel and the
Dirichlet BC at its ends. Then D(x) can be expressed from
the relation (2.10), after integrating p(x) according to (1.3).

For an arbitrary boundary, this task is still difficult, so we
proposed nonperturbative techniques for deriving approxi-
mate formulas for D(x). The first one replaces the true
boundary by some exactly solvable geometry in the vicinity
of a chosen point x and uses the corresponding p(x,y) in-
stead of the exact density. We showed that we can include A”
in the formula for D(x) [e.g., Eq. (1.13)]. The second tech-
nique, based on variational mapping [8], optimizes the shape
of surfaces of the same stationary density (isodensities) or
the transformation s=s(x,y) to the corresponding curvilinear
coordinate system.

We tested our approximations on two exactly solvable
channels and analyzed their applicability. We demonstrated
that the formulas for D(x) are connected with the corre-
sponding full-space stationary density in the channel and
knowing it is important for understanding reliability of the
approximation.

The expansions in €, Egs. (1.10) and (1.11), as well as the
approximate formulas depending on the first few derivatives
of A(x) suppose that the function A(x) is analytic. The
nonanalytic points (like cusps) cause the full-space density,
obtained by the backward mapping from 1D picture, to be
not consistent. Similar problems can appear near the ends of
finite channels if the BCs imposed at the ends are not con-
sistent with the stationary full-space density of the corre-
sponding infinite (uncut) channel. One should use other
methods solving the Laplace equation to find p(x,y) and to
calculate p(x) and finally D(x) in such cases.

The effective diffusion coefficient D(x), if defined in the
limit of the stationary flow, bears information about the cor-
responding stationary curvilinear coordinate system in the
channel. The best possible approximation of that kind, taking
the exact stationary curvilinear system into account, sup-
poses that the nonstationary density evolves only in the lon-
gitudinal curvilinear coordinate s. In the limit of very slow
changes of the density and flux, we should get the exact
results. The question of how appropriate is this description
[Eq. (1.6)] for full dynamics, far from the stationary regime,
is the province of future study.
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APPENDIX A: LINEAR CONE

We give here an example of the transformation to the
curvilinear coordinate z=z(x,y), calculated for the linear
cone A(x)=y(x—ag,), which is an exactly solvable problem in
the stationary diffusion. We refer here to the calculation done
in the Appendix of [6].

The coefficient D(x)=arctan(\ey)/ ey is constant in x
for this geometry, so 7#(x,y,d,) can be commuted in
M1/Ax)D(x)]=[1/D(x)]7[1/A(x)]. The expression
711/A(x)] is known from the derivation of D(x) [6]:

e L [_(_ evzyz)f_ (—eyz)-’}
Taw =" yE 12\ T A2/ T2+ 1)

1 + ey’y?IA?
1+ ey ’

1 l arctan \rrey 1
=—|1- + =
4 Vey 2"

(A1)
z(x,y) reads
2+ eyy’
1+ey

(A2)

hence, according to definition (2.15),

\fe {1 arctan \’/;‘)/

Z(X’}’) = ~ .

/ ,/_ 2
arctan \ey Vey

plus an integration constant. We thus obtained the expected
result: the curves joining the same density are ellipses
(circles for e=1) of radius \(_ a0)2+ey =r; the stationary
2D density is then p=pL- (VeJ/arctan Vey)ln r. If (A2) is
expanded in € and y?, we get the coefficients (2.17).

APPENDIX B: COMPLEX PLANE METHOD

The stationary density satisfies the Laplace (mass conser-
vation) equation Ap(x,y)=0, so for solving it, we can apply
methods used in electrostatics. In this appendix, we formu-
late this problem in the complex plane, which enables us to
complete the calculation of D(x) for 2D channels in a very
concise way.

Let us consider an analytic function f(z) of the complex
variable z:

Jf(2) = Jf(x +iy) = o(x,y) + ip(x,y). (B1)
The Cauchy-Riemann conditions
dep(x,y) = dyp(x,y), dyp(x,y) == dip(x,y)  (B2)

tell us that both ¢(x,y) and p(x,y) satisfy the Laplace equa-
tion and also that the curves ¢=¢(x,y) and p=p(x,y) with
constant ¢ and p are orthogonal; Ve(x,y)-Vp(x,y)=0. So, if
we choose p(x,y) to satisfy the Neumann BC on the bound-
aries y=0 and A(x), ¢(x,y) has to be constant along them.
We can now identify p(x,y) as the 2D stationary density and
@=¢(x,y) corresponds to the transverse curvilinear coordi-
nate, orthogonal to p, as mentioned in Sec. I
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The value of ¢(x,0) can be set to zero; then, ¢(x,A(x)) is
fixed by the definition of the total flux J:

A(x)
J=_f (7xP(x’)’)dy
0

J Al(x)
-2 f [0/(x + iy) — 0 x i) dy
tJo

J A(x)
=—J [Ouf(x + iy) + 3y f(x = iy) Jdy = @(x,A(x)),

2 0
(B3)

so the function f(z), corresponding to the stationary density
inside a channel bounded by y=A(x) and the x axis, has to
satisfy the equations

Ref(x)=0 and Ref[x+iA(x)]=1. (B4)

Knowing the solution f(z), its primitive function g(z)
=[f(z)dz enters the formula for 1D density p(x):

A(x)
plx) = f plx,y)dy=1J f Im[ g’ (x + iy)]dy

A(.X) 1
=JJ Im| - }g(x+ iy) |dy

0
=—JRe[g(x +iA(x)) — g(x)], (B5)
so the definition (2.10) finally results in
1
) =A(x )—<mRe[g(x +iA(x)) - g(X)]) (B6)

We can easily test both the LA and CA. Taking Eq. (3.2)
for the density in the linear cone A(x)=y(x—a,) and rewrit-
ing it in terms of z=x+iy and z=x-1y,

p(x,y)=p,— ———— In[(x - 00)2 + )’2]
2 arctan vy
J _
=p.— s Inz-ay(Z-ap), (B7)
2 arctan vy
we obtain
—i xX+iy—a
1) = fx +iy) = 2% ()
arctan y o

whose imaginary part reproduces (B7) (p, is replaced by the
length scale r,) and the real part gives ¢,

arctan J , (B9)
X—a

e(x,y) =
arctan y

which is proportional to the angle in the cone. Calculating
the function g(z),

' {(z—a&ln(z_ao)—z] (B10)
arctan y o

and substituting it into Eq. (B6), one arrives at the LA (1.12).
The circular approximation is based on the model of a
couple of source and sink at points (¥w,0), which is equiva-

g(2)=
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lent to a couple of opposite charges in electrostatics, placed
at (¥w,0) and interacting by the 2D logarithmic Coulomb
potential. So p(x,y) (equivalent to the potential from both
charges) is

() = J (w+x)?+y*
Py = 2arctan y  (w—x)?+y?
J + +
- g WHIWED gy
2arctany (w-2z)(w-2)

if rewritten in the complex variables z,z=x*1iy. Then we
have the corresponding function f(z) in the form

w+Zz
f@) = — (B12)
arctany w-—z
The circular isodensities, given by the equation
(x+wis)> +y> = (1/s* - 1)w? (B13)

coming from (B11), define a longitudinal curvilinear variable
s=tanh[ (arctan y)p/J], which is orthogonal to

J 2w
e=JRe[f(z)]= arctan — zy 5. (B14)
arctan y W =Xx"—y
From (B14), the lines of constant ¢ are also circles,
X+ +wo)’=(1+d*)w?, (B15)

now centered on the y axis; o=tan[(arctan y)¢/J]. By set-
ting y, we choose a circle (B15) of o=, for which the
condition ¢=J, Eq. (B4), is satisfied, and thus it can serve as
a boundary of our channel.

The coordinate system can be shifted by any x; in the x
direction, so we can work with the function

- w—Xxo+2
In

flz)= (B16)

arctany w+xy—2

of three parameters w, 7y (related to y, and R), and x, al-
lowing us to fit A, A’, and A" of the true boundary at a
chosen x=x. If integrated in z, we get

[(z —xonn(%‘)”) +1In[w? - (z —xoﬂ] ,
0

-z

g(2)=

arctan y
(B17)

and after substituting into (B6), we restore the CA formula
(3.11) before replacing x, v, and R, by A and its deriva-
tives.

In general, the crucial problem is to solve Egs. (B4) to
find f(z) for an arbitrary A(x). Our method inverts this task;
for a chosen ansatz for f(z), becoming imaginary at the real
axis, we look for the line y=A(x), where Ref(z)=1. If we
find such an ansatz, depending on a set of parameters
{ag,a,,...,a,}, which enables us to express analytically the
relations between a; and the corresponding A(x) and its first

j
n derivatives at a point x=X, then D(x), depending on the a;
as calculated from Eq. (B6), can be rewritten using the de-
rivatives of A(x), yielding the formula for a higher-order ap-

proximation.
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The function (B16) can be taken as an example of such an
ansatz with the parameters x,, w, and v, yielding the CA.
Another interesting ansatz is

. )
- z+\Z"+a
In s

flz)= (B18)
arctan y a
fixing the hyperbolic boundary
Ax) = ywWxl+a* (1 + ) (B19)

from the condition Re[f(z)]=1; 7 characterizes the opening
of the cone and a is the transverse length unit. The corre-
sponding isodensities are ellipses

x*/sinh? s + y*/cosh? s = a? (B20)
for any v; s denotes a longitudinal curvilinear coordinate,

related to the stationary density p. We gain g(z) by integrat-
ing (B18), and after substituting into (B6), we obtain

-

=1+ -
D(x) A?(x) \ arctan

(B21)

which is used in Sec. III for testing the other approximations.

Also, here, we can shift the coordinate system by x in the
x direction and earn the third parameter for fitting the general
boundary. Taking Eq. (B19) with x replaced by x—x and its
first two derivatives, we get equations for a, 7y, and x, al-
lowing us to express them using A, A’, and A” of the true
boundary at x=x:

AA’

A4 AA", X —xgm —e——
v AERYENYPY

, AA"(1+A"7+AA")
a =
(A/2+AA//)2

(B22)

Substituting for these parameters into (B21) with x shifted by
Xg, we derive the approximating formula

A7 ( VA2 1+ AA" 1)
— =1+ [ - s
D(x) A2+ AA”\ arctan VA'2 + AA”
(B23)

WhiC[ll also involves A”. If A and its derivatives are rescaled
by Ve, we can expand it in e

€ e
D) =1- <A+ A4+ AA") - ——A"
3 45 945
X (135A"% + 144AA A" + 44A%A") + -+ .
(B24)

In contrast to the CA, this expansion does not recover the
terms proportional to A” in the exact expansion (1.10).
Finally, we examine the polynomial ansatz

f@=-iXad, (B25)
j=0

enabling us to introduce more than three parameters a;. In its

simplest form n=2, the equation Re[f(z)]=a;y+2a,xy=1

defines the hyperbolic boundary
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y=A(x)=1/(a, + 2a,x); (B26)

the density p(x,y)=Im[f(z)]1==[ag+a;x+a,(x*~y?)] forms
hyperbolic isodensities

(x+a,/2a,)* = y* = (a,2ay)* = (p+ag)la,  (B27)
in the channel. The function g(z),
-
8@ = | fdz=-iX —a*!, (B28)
=0J+1

gives Re[g(x+iy)]=(ag+a,x+ayx>)y—a,y*/3 in this case, so
after substituting into (B6), we get

1 4a3 1
2 =1+-A"%(x);

D(x) =1+ 3(ay +2a,x)* 3 (B29)

a, and a, were expressed using A(x), Eq. (B26), and its
derivative; i.e., the real boundary is replaced by the hyper-
bola (B26) at a chosen x. There are only two effective pa-
rameters here, so we can include only A’ (and A) into D(x).
Including higher derivatives in D(x) requires taking larger n.
For n=3, solution of the equation

Re[f(x)] = (a; + 2a,x + 3ax*)y —a;y® =1 (B30)

defines the boundary y=A(x) of a complicated form, but we
do not need to know it explicitly. The real part of
g(x+iA(x)), Eq. (B28), for n=3, substituted into (B6), gives

1 1
) =A(X)<M(X) - gu'(X)A(X)A’(X) - asAz(X)> .
(B31)
where u(x)=a,+2a,x+3a;x>. Now, we express the functions
u(x), u'(x), and a;=u"(x)/6 using A, A’, and A” directly
from (B30); solving u(x)A(x)—a;A%(x)=1 and its two deriva-
tives yields
_ 3(2-A4")
T OAB-AT-AA"Y

~ 3A7(A?-1)
u _A2(3_A72_AAH)’

B 2A72_AAH (B32)
BT (3-A—AA")
Substituting it into (B31), we get
3_A(x)A” _ArZ
DO = (x)A” (x) (x) (B33)

T3-AA"(x) —AM ()

The same treatment can be used also for higher n. Fixing
a; to fit the boundary at a point x requires us to solve the
system of equations (B4) for Eq. (B25), and its first n—1
derivatives, which are linear in a; and so solvable for any n.
Taking n=4 gives the formula (3.17).

For testing our approximations, we use the exactly solv-

able geometry defined by the function
f(z) ==~ sinh z. (B34)
8

The condition (B4) yields the corresponding boundary
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y=A(x)= arcsin( ); (B35)

cosh x
0<g=<1. From the function g(z)=—(i/g)coshz, using the
formula (B6), we derive the exact D(x), Eq. (3.21).

APPENDIX C: VARIATIONAL MAPPING

In calculation of D(x), the variational method helps to
optimize an ansatz for the curvilinear coordinate s=s(x,y),
defining the (stationary) isodensities in a channel. For an
exactly solvable geometry, there is no problem to take di-
rectly s=z, Eq. (2.15), which is known explicitly, but in gen-
eral, we know the coefficients (2.17) of its expansion (2.16)
in € only up to a finite order. So we try to construct a variable
s independently of this expansion, supposing that s=s(z) and
thus also the 2D stationary density p(x,y)=p(s). Then the
BCs (2.1) have to be satisfied

p’ (S) a\'s(x’Y) = 0|y:0’

p'(s)dys(x,y) = ep'(5)A' (x)d,5(x,y)|ycaey  (C1)

[p’(s) becomes irrelevant here], and the stationary mass con-
servation [o’é+(1 / e)&)z,]p(s(x,y)) =0 becomes

p”(s)((&xs)z + l(&ys)2) + p'(s)(a§ + 1a§)s =0. (C2)
€ €

Here, p'(s) will be expressed as the stationary solution of Eq.
(3.24), using «(s). It depends on x(s,y), Eq. (3.25), inverse
to s(x,y), and so the condition (C2) fixing s(x,y) becomes
closed, too. We demonstrate this construction in the follow-
ing calculations. For comparison with the perturbation ex-
pansion, we keep the parameter of anisotropy € unequal to 1.

1. Circular isodensities

We begin with an ansatz s=s(x,y), describing isodensities
as circles, which are consistent with the LA and CA.
Let us define the variable s as the x coordinate of the inter-
section of the corresponding isodensity with the boundary;
s=s(x=s,y=A(s)). To keep the BC (2.1) at y=0, the circles
have to be centered on the x axis. Then the relation s
=s(x,y), expressed implicitly as

[~ ag(s) P + €% =[5 — ag(s) > + €A™ (s),

complies with all these requirements. The only parameter
ay(s) is fixed to fit the BC. Completing the derivatives of
(C3) and substituting for d,s, d,s in (C1), we obtain

ag(s)=s—A(s)/A'(s);

(C3)

(C4)

a similar relation to (3.1) for the linear cone, but now the
position of the center ay(s) changes along the channel, to set
the correct BC for any circle s=s(x,y).

Our next step is to calculate the stationary 2D density
p(x,y)=p(s) from Eq. (3.24). In the stationary state d,p=0,
the coefficient a(s) becomes irrelevant and p(s) can be im-
mediately integrated:
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p(s)=pL—JJ %; (C5)

pr. and J stand for the integration constants. [Equation (3.24)
represents the mass conservation law for the 1D density p(s)
in the curvilinear system, calculated at a given s: p(s,?)
=[O dy(9x)p(s(x,y),0)=a(s)p(s). So —k(s)p'(s)=J has to
be the total flux, which is the same, whether integrated over
the cross section either at constant s or at constant x.]

The coefficient «(s), Eq. (3.25), requires us to express the
inverse relation x=x(s,y), which can be easily done for our
definition of s:

1
A'(s)

x=s5+——{VAX(s) + A 2(5)[A%(s) - y*] - A(5)};
(C6)

the integration in (3.25) can be also carried out explicitly,
with the upper limit A(x,)=A(s). Then

) A(s)[1 + €A"?(s)]arctan \’Fey(s)
K(s) =

1+ €A’ (s) + eA(s)A”(S)]\/;’y(S)’ 7

where

V(1 + €A —(1+ €A’ + eAA”)?
1+ €A’ + eAA”

Vey(s) = (C8)
The integration of the inverted «(s) in (C5) cannot be
completed analytically for a general A(s), so we have to
make another approximation. One possibility is to approxi-
mate the boundary in the vicinity of some x by a function
that makes arctan vey(s) in (C7) constant. This requirement
is satisfied by the ellipses
elA(s) = Yol + (s — x0)> = Ry, (C9)
solving the differential equation y(s)=y=const; xy, y,, and
R, are constant, connected with two integration constants
and 7. Differentiating (C9) twice, we get

2

= (s —xp) - Ry
Al(s)=——————~, A'(s)=—5 7 —3, (C10)
€(A(s) = yo) €(A(s) - yo)’?
which fixes 7y after substituting into (C8):
—
y=R;— ey/(- ey0). (C11)
Now, «(s) has the simplified form
r
VEA(s)|A(s) — I
s)= M arctan \ ey, (C12)

BT

and if A(s) is expressed from (C9), the integration in (C5)
can be carried out explicitly:

021103-13



PAVOL KALINAY AND JEROME K. PERCUS

\e’:./
pls) = pp———
2 arctan \ €y
— oVevVRZ = (5 — x1)? _
<In V€Y VR, = (s = xp)~ + w(s xo)'
R~ o eyg VR — (s = x0)> = w(s — xp)

(C13)

o=sgn[A"(s)] and w abbreviates VRj— €y;.

For A(s) approximated by the ellipse (C9), we can express
s from (C3) explicitly and rewrite the stationary p(s) in the
Cartesian coordinates; putting e=1, we arrive at the relation
(3.9). Then the calculation of D(x) continues in the same
way as in Sec. III. The ellipses (C9) are equivalent to the
approximating circular boundary (3.5) for e=1 and s=x;
hence, we get the same relations between the constants x,
vo» Ryand A, A’, A” at x=X, and finally the formula (3.11) for
D(x).

Supposing circular isodensities (C3) and the simplifying
condition y(s)=7y=const, Eq. (C8), we recover the CA; a
simpler condition neglecting A” in (C8) gives y(s)=|A'(s)|
and leads to the LA.

2. Generalization of the method

Achieving better approximations for D(x) requires finding
a more sophisticated ansatz for system of isodensities than
the circles. We formulate here some rules helping us to
choose such an ansatz and to estimate the precision which
can be reached with it.

In general, the inverse transformation x=x(s,y) can be
written in the form

©
x(s,y) = 2 €2 x;4(s)y*, (C14)
=0 k=0
which is inverse to the expansion (2.16) and so it is able to fit
both the BC (C1) and the stationary mass conservation (C2).
To express «(s), Eq. (3.25), in a usable form, we retain the
definition of s as the x coordinate of intersection of the cor-
responding isodensity with the boundary y=A(x). Then the
form of x(s,y), Eq. (C14), reduces to

2k2

x(s,y) =5+ (A%(s) - y2>2 efE

J=1 k=1

.k s)y

satisfying the condition x(s,y=A(s))=s; the upper limit A(x,)
of the integrals in (3.25) becomes A(s).

The next restriction is given by the BC (C1). If it is re-
written using the inverse relation, d,s(x,y)=1/dx(s,y) and
dys(x,y)==dyx(s,y)/ dx(s,y), we get

9x(8,)|y=a()= = 2A(S)E 6’2 (AP (s) =

j=1 k=1

—€A'(s),

(C15)

so finally the ansatz for x(s,y) of the form
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=5+ €& 1 (5)[A%(s) =71 + 2 6’2 &x()A%(s) =T,

=2 k=2
(C16)

with

&11(s) =A"(5)/2A(s) (C17)

also fits the boundary condition. The remaining coefficients
£;  are to be fixed by the mass conservation law. The opera-
tor A, (92 +(1/ 45)(92 is expressed in the coordinates s and y,

-1 2 -1 2
AF{(@) as] +l{a},-@<@) a] (C18)
Js € dy \ ds

and applied on p(s). Taking into account that p'(s)
=-J/ k(s), we have the condition

{l|:(9x<r9x)_l ]&x (&x)_l }(&x )_1
| —{= o-0,|—+|—| | —«(s)|] =0.
€l dy\ds T lady as os
(C19)

Now, k(s) is calculated according to (3.25) using x(s,y) in
the form (C16). Finally, the expansion of the left-hand side
of (C19) in € and y? gives the conditions fixing unambigu-
ously &; e.g., in €', we get

AB(s) (A’(s)>3
24A(s) \24(s)/)

52,2(3) = (CZO)

The circular isodensities used in the LA and CA have the
form (C16). If the relation (C6) is expanded in e,

A'(s) A"3(s)
2A(s) 8A%(s)

[A%(s) =] = € -5 ~[A(s) =y + -+,

(C21)

xX=5+€

the coefficients of €' and € recover £ ; and &, up to A”,

which is the precision achieved by setting the only parameter
ay(s) in (C3), to satisfy the BC. The next improvements need
to choose a curve with more parameters than a circle, to fit
independently more §; ;. The analysis presented restricts the
choice of ansatz, fixes its free parameters, and shows the
precision that can be reached.

Having an ansatz x=x(s,y), we need to integrate x(s) ac-
cording to (3.25), the density p(s), Eq. (C5), to switch to
Cartesian coordinates and to find p(x). The results of these
three integrations should be expressed analytically in order
to get the final formula for D(x) from (2.10) in a compact
form. This procedure presumably cannot be completed for
general A(x); one has to make another approximation(s) dur-
ing this calculation. One way is to approximate A(x) by a
function for which 1/«(s) becomes integrable, as is demon-
strated for the CA. Then this analysis becomes complemen-
tary to the method replacing the true boundary by an exactly
solvable geometry, as described in Sec. III.
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