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Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics
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The Boltzmann-Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L% Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of ¢ # 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., SqOCLd. Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,
Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked

by a maximum of the special entropic index g.
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I. INTRODUCTION

The aim of statistical mechanics is to establish a direct
link between mechanical microscopic laws and classical
thermodynamics. The most famous classical theory in this
field was developed by Boltzmann and Gibbs (BG) and it is
considered as one of the cornerstones of contemporary phys-
ics. The connection between the micro- and macroworld is
usually described by the so-called BG entropy,

W
SBG=_k2pi In p;, (1)

i=1

where k is a positive constant, W is the number of micro-
scopic states, and {p;};=; .. w is a normalized probability dis-
tribution. The subtle concept of entropy lays the foundation
of classical thermodynamics. The BG entropy is additive,
i.e., Spg(A,B)=Spg(A)+Spg(B), where A and B are two
probabilistically independent subsystems. One of the crucial
properties of the entropy in the context of classical thermo-
dynamics is extensivity, namely, proportionality with the
number of elements of the system, when this number is large.
The BG entropy satisfies this prescription if the subsystems
are statistically (quasi-)independent, or typically if the corre-
lations within the system are generically local. In such cases
the system is called extensive.

In general, however, the situation is not always of this
type and correlations may be far from negligible at all scales.
In such cases the BG entropy (of the entire system or a large
part of it) may be nonextensive. Nonetheless, for an impor-
tant class of such systems, an entropy exists that is extensive
in terms of the microscopic probabilities [1]. The additive
BG entropy can be generalized into the nonadditive
g-entropy [2,3]

w
1-2p!
s =kl—=1,

q g-1 gER (S,=Spc)- (2)

This is the basis of the so-called nonextensive statistical me-
chanics [4,5] (see [46] for a regularly updated bibliography),
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which generalizes the BG theory. In the context of cybernet-
ics and information theory, the same type of entropic form
has been advanced in [6].

Additivity (for two probabilistically independent sub-
systems A and B) is generalized by the following pseudoad-
ditivity: S, (A,B)/k=8,(A)/k+S,(B)/k+(1-q)S,(A)S,B)/
k?. For subsystems that have special probability correlations,
extensivity is not valid for Sgg, but may occur for S, with a
particular value of the index g # 1, called the g-entropic in-
dex gy Such systems are sometimes referred to as nonex-
tensive [1,5]. The physical relevance of the g-entropy is re-
lated also to the recent generalization of the central limit
theorem (q-CLT), where g-Gaussian distributions take the
place of the usual Gaussians when considering systems with
strong correlations [7]. Much experimental evidence of pre-
dictions of nonextensive statistical mechanics is available;
see, for instance, [8,9]. Let us emphasize the difference be-
tween additivity and extensivity for the entropy. Additivity
depends only on the mathematical definition of the entropy;
therefore, S, is additive, whereas S, (¢# 1) is nonadditive.
Extensivity is more subtle, since it also depends on the spe-
cific system, as we will show in this paper.

A physical system may exhibit genuine quantum aspects.
In particular, quantum correlations, quantified by entangle-
ment, can be present. The classical probability concepts are
replaced by the density matrix operator p, in a more general
probability amplitude context. The quantum counterpart of
the BG entropy, which is called the von Neumann entropy, is
thus given by S;(p)=—k Trplnp, while the classical
g-entropy is replaced by

R 1-Tr p?
S,(p) =k——L. (3)
q-1
The pseudoadditivity is now given by
S0 ® 5 _S,() , S0
k k k

Sq(p1) Sg(p)
(==

from now on k=1.
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In the following we will analyze fermionic and bosonic
quantum systems in which strong nonclassical correlations
exist between their components. The appearance of long-
range correlations in the ground state of a quantum many-
body system, undergoing, for instance, a quantum phase
transition at zero temperature, is deeply related to entangle-
ment [10]. Quantum spin chains, composed of a set of local-
ized spins coupled through exchange interaction in an exter-
nal transverse magnetic field, capture the essence of these
intriguing phenomena and have been extensively studied
[11-16]. The degree of entanglement between a block of L
contiguous spins and the rest of the chain in its ground state
is measured by the von Neumann entropy of the block. For
large block size, it typically saturates off criticality, whereas
it is logarithmically unbounded at the critical point.

Here we show that the nonadditive entropy [2,5] S,(p,)

Ek%rlﬁz, py. being the density matrix of a block of L spins

of the ground state of quantum spin chains in the neighbor-
hood of a quantum phase transition, is extensive [i.e.,
S,(py) =L for L> 1] for special values of g <1. The additive
von Neumann entropy S;(p;)=—k Tr p; In p; is nonexten-
sive [indeed, lim;_,., S;(p;)/L=0] in all considered cases;
the same happens with the additive Renyi entropy.

A similar behavior can be observed for another important
class of quantum systems, harmonic lattice Hamiltonians,
i.e., bosons interacting through a quadratic Hamiltonian in
dimension d=2. These systems are discrete versions of the
free scalar Klein-Gordon field. The degree of entanglement
between a square block of L? oscillators and its exterior, as
measured by the additive von Neumann entropy of the
square block, S;(p;2), is linear in L (area law), i.e., it is
nonextensive [17-21]. Here we show that the nonadditive
entropy S,(pr2) is extensive [i.e., S (p;2) < L* for L>1] for
special values of g<1.

Therefore, we present here two physical realizations, in
many-body Hamiltonian systems, of the abstract mathemati-
cal examples recently exhibited by M. Gell-Mann, Y. Sato,
and one of us (C.T.) in Ref. [1], that, for anomalous values of
g, the nonadditive entropy §,, can be extensive, as expected
from the Clausius thermodynamic requirement for the en-
tropy. In other terms, we show explicitly two physical ex-
amples of the fact that the nonadditive entropy reconciles the
area law (e.g., typical of black holes) with classical thermo-
dynamics. In addition to the considerable advantage of S,
enabling thus the use of all standard thermodynamic rela-
tions, this constitutes a powerful tool to detect strong nonlo-
cal correlations in quantum many-body systems, by a nonad-
ditive measure [22-28]. Indeed, this entropic index ¢
presents a maximum when the correlation length is divergent
in the ground state of these quantum systems.

II. QUANTUM SPIN CHAINS

First of all, we focus our investigations on a one-
dimensional spin-1/2 ferromagnetic chain with an exchange
(local) coupling and subjected to an external transverse mag-
netic field, i.e., the quantum XY model. The Hamiltonian is
given by
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N-1

Fr== D11+ P&, + (1= PEd, + 0], (4)
j=1

where &f(a=x,y,z) are the Pauli matrices of the jth spin, N
is the number of spins of the chain, and vy and \ characterize,
respectively, the strength of the anisotropy parameter and of
a transverse magnetic field along the z direction. This model
for 0<|y|=1 belongs to the Ising universality class and it
actually reduces to the quantum Ising chain for |y|=1. At T
=0, this system undergoes a quantum phase transition at the
critical point |[\./=1 in the thermodynamic limit N — c. For
=0 it is the isotropic XX model, which is critical for |\|
=1[10].

Entanglement in the neighborhood of the quantum phase
transition has been recently widely investigated [11-16]. In
particular it has been shown that one-site and two-site en-
tanglement between nearest or next-to-nearest spins display a
peak near or at the critical point [11,12]. Moreover, the en-
tanglement between a block of L contiguous spins and the
rest of the chain in the ground state, quantified by the von
Neumann entropy, presents a logarithmic divergence with L
at criticality, while it saturates in a noncritical regime
[13-15].

The inadequacy of the additive von Neumann entropy as a
measure of the information content in a quantum state was
pointed out in Ref. [23]. A theoretical observation that the
measure of quantum entanglement may not be additive has
been discussed in Refs. [22-28]. Recently, Ref. [29] sug-
gested abandoning the a priori probability postulate going
beyond the usual BG situation.

Here we propose to extend the definition of the von Neu-
mann entropy to a wider class of entropy measures (see also
Ref. [30]) which naturally include it, thus generalizing the
notion of the block entanglement entropy. The block
g-entropy of a block of size L is simply defined as the
g-entropy, Eq. (3), of the reduced density matrix p; of the
block, S,(p,), when the total chain is in the ground state. In
the following we show that, in contrast to the von Neumann
entropy, there exists a ¢ value for which S,(p,) is extensive.
This value does depend on the critical properties of the chain
and it is consistent with the universality hypothesis.

The XY model in Eq. (4) can be diagonalized exactly with
a Jordan-Wigner transformation, followed by a Bogoliubov
rotation [15,31-33]; this allows one to analytically evaluate
the spectrum of p; in the thermodynamic limit N — . More
details are shown also in Ref. [34].

We first analyze the anisotropic quantum XY model, Eq.
(4) with y# 0, which has a critical point at \.=1. The block
g-entropy as a function of the block size can show com-
pletely different asymptotic behaviors, when the entropic in-
dex ¢ is varied. In particular, here we are interested in a
thermodynamically relevant quantity, namely, the slope, de-
noted s,, of S, versus L. It is generically not possible to have
a finite value of s;: the entanglement entropy, evaluated by
the von Neumann entropy, either saturates or diverges loga-
rithmically in the thermodynamic limit, for, respectively,
noncritical or critical spin chains [13—15]. The situation dra-
matically changes when the g-entropy formula in Eq. (3) is
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FIG. 1. (Color online) Block g-entropy S,(p;) as a function of
the block size L in a critical Ising chain (y=1,\=1), for typical
values of g. Only for =g, =0.0828 is s, finite (i.e., S, is exten-
sive); for ¢ <{qent (¢ qeny) it diverges (vanishes).

used: qualitatively it happens that, regardless of the presence
or absence of criticality, a A-dependent value of ¢, denoted
Gent €Xists such that, in the range 1 <L <& (¢ being the cor-
relation length), s, is finite, whereas it vanishes (diverges)
for ¢> Gy (q<qe:$. We note that here the nonextensivity
(i.e., g # 1) features are not due to the presence of, say, long-
range interactions [35,36] but they are triggered only by the
fully quantum nonlocal correlations. In Fig. 1 we show, for
the critical Ising model (y=1, A=1), the behavior of the
block g-entropy with respect to the block size: S, (p;) be-
comes extensive [ie., 0<lim; ., S, (p))/L<oc] at a
g-entropic index g.,=0.0828+10~* (with a corresponding
entropic density sqemz3.56i 0.03), thus satisfying the pre-
scriptions of classical thermodynamics.

A very similar behavior is shown for the noncritical Ising
model, as well as for critical and noncritical XY models with
0<y<1. The value of g, for which S (p,) is asymptoti-
cally extensive is obtained by maximizing numerically the
linear correlation coefficient r of S,(p;), in the range 1 <L
< ¢, with respect to ¢, as shown in the inset in Fig. 2. Let us
stress that, at precisely the critical point, & diverges, hence L
is unrestricted and can run up to infinity. The index ¢, de-
pends on the distance from criticality and it increases as A
approaches \. (Fig. 2). It is worth stressing that our numeri-
cal results satisfy the duality symmetry A — 1/\, investigated
in Ref. [37]. For the sake of clarity, notice that the value of
Gen: May be vanishing off criticality, and this could not be
found numerically because of the presence of finite-size ef-
fects.

We have also checked other values of 7y for the XY model
and the results are very similar to those presented here. This
fact is consistent with the universality hypothesis. On one
hand, the XY and Ising models (Ising universality class) have
the same behavior as regards the extensivity of S,(p,). In
Fig. 3 we report the variation of - with respect to A. On
the other hand, for the isotropic XX model (y=0) in the
critical region [\|=1 we find ¢, =0.15+0.01 for which
S,(p,) becomes extensive.
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FIG. 2. (Color online) A dependence of the index g, in the
Ising (y=1, solid circle) and XY (y=0.75, empty circle) chains.
Inset: determination of g, through numerical maximization of the
linear correlation coefficient r of S,(5,). The error bars for the Ising
chain are obtained considering the variation of g, when using the
range 100=L =400 in the search for S,(p,) linear behavior. At the
present numerical level, a vanishing ¢ cannot be excluded off criti-
cality because of finite-size effects.

Reference [38] enables us to analytically confirm (only at
the critical point) our numerical results. The continuum limit
of a (1+1)-dimensional critical system is a conformal field
theory with central charge c. In this quite different context,
the authors rederive the result S,(p;) ~ (c/3)In L for a finite
block of length L in an infinite critical system. To obtain the
von Neumann entropy, they find an analytical expression for
Trp¢, namely, Trpl~ Lc®l4=1/4) Here, we use this expres-
sion quite differently. We impose the extensivity of S (p;)
and we find the value of ¢ for which —¢/6(qen—1/Gen) =1,
ie.,

R
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FIG. 3. (Color online) N dependence of the g-entropic density
84, in the Ising (y=1, solid circle) and XY (y=0.75, empty circle)
models. For A=1, the slopes are 3.56 and 2.63, for y=1 and 0.75,
respectively. Notice the considerable variation in the values of the
slope for even slightly different values of N\ out of criticality.
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FIG. 4. gy versus ¢ with the g-entropy, S,(p.), being extensive,
ie., limy . S(95c2-3)(fr)/L<<oc. When c increases from 0 to in-
finity, gn increases from O to unity (von Neumann entropy). For
the critical quantum Ising and XY models ¢=1/2 and qemzv‘ﬁ
—-6=0.0828, while for the critical isotropic XX model c¢=1 and
Gen=V10-3=0.16.

o= (5)
c

consequently, lim; ., S(o5:2_3).(pr)/L<. When c¢ in-
creases from 0 to infinity (see Fig. 4), gqy increases from 0 to
unity (von Neumann entropy). It is well known that for the
critical quantum Ising and XY models the central charge is
equal to ¢=1/2 (indeed they are in the same universality
class and can be mapped to a free fermionic field theory). For
these models, at A=1, the value of ¢ for which S,(p,) is
extensive is given by g.,,=V37—-6=0.0828, in perfect agree-
ment with our numerical results in Fig. 2. The critical isotro-
pic XX model (y=0 and |\|=<1) is, instead, in another uni-
versality class, the central charge is ¢=1 (free bosonic field
theory), and S (p;) is extensive for g.,= V10-3=0.16, as
found also numerically. Therefore, the universal behavior of
the g-entropic index g, is strictly related to the universal
role played by the central charge in conformal field theory.
Equation (5) represents an additional connection between
nonextensive statistical mechanical concepts and BG statis-
tical mechanics at criticality. See Ref. [39] for another con-
nection, where once again we verify that the g-entropic index
typically characterizes universality classes. Let us note that,
when the critical one-dimensional (1D) system is a semi-
infinite chain, one has to replace ¢ with ¢/2 in Eq. (5) [38].

It is worth mentioning that the Renyi entropy of a block
of critical XX spin chains has been derived analytically in
Refs. [40,41]. Since the Renyi entropy is simply connected
to the g-entropy, it is possible to rederive g, for the critical
XX model also from that analytical expression. Finally, let us
point out that the reduction of the pure ground state of the
full chain (at T=0) to a finite block of L spins results in a
mixed state with quantum fluctuations. A mapping of this
subsystem within a zero-temperature XX infinite chain to a
finite system which is thermalized at some finite temperature
has been recently exhibited [42], thus defining an
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L-dependent effective temperature of the block. The use of a
non-Boltzmannian distribution (e.g., the one emerging within
nonextensive statistical mechanics) might enable definition
of an effective temperature which would not depend on L, as
physically desirable. Indeed, this approach has been success-
fully implemented for e-e* collision experiments [43].

II1. 2D BOSONIC SYSTEMS

Now we present a second physical realization of the ex-
tensivity of S, in a bosonic 2D system at 7=0. We start from
a bidimensional (square lattice) system of infinite coupled
harmonic oscillators studied in Ref. [17], with Hamiltonian

1
H= I + 007+ (D = @y )P+ (0 = )],
X,y

(6)

where (I)x,y, Hx’y, and wq are the coordinate, momentum,
and self-frequency of the oscillator at site 7=(x,y).
The system has the dispersion relation  E(k)
=Vog+4 sin? k,/2+4 sin” k,/2, i.e., a gap w, at k=0. Apply-
ing_the canonical transformation b;=\%(®;+II;) with o
_ a2 . 2 . . . .
=Vwy+4 and i=1,...,L% the Hamiltonian in Eq. (6) is
mapped to the quadratic canonical form

+ 1
H=2 (Q;Al]a]'i' _(aj'Bi]'aT'i'H.C.)), (7)
7 4 2 )

where a; are bosonic operators and i,j range from 1 to L2, In
Ref. [17], the authors find an asymptotic linear behavior (i.e.,
area law) of the block entanglement entropy as a function of
the linear size L (they consider square blocks of area L?), for
several w [lim; .. S;(p,)/L*=0], no matter how close the
gap energy is to zero.

Here we study, instead, the behavior of the block
g-entropy of the reduced density operator of a square block
as a function of its area L2, when the bosonic infinite two-
dimensional system is in its ground state. We follow a similar
procedure to the one used above for quantum spin chains
(see Ref. [17] for more details). In Fig. 5 we show, in the
case of wy=0.01, that S (p;) becomes extensive [ie., 0
<lim; ., Sq(ﬁL)/L2< ] at an index g, =0.87 (with a cor-
responding entropic density sqemzo.Ol 1; see inset in Fig. 6).
A very similar behavior is shown for other values of the gap.
Let us point out that, unlike the linear behavior (for any gap
energy) of the von Neumann entropy, now the index g
depends on the gap and therefore measures the presence of a

progressively divergent correlation length, as shown in Fig.
6.

IV. FINAL REMARKS

We present two quantum many-body Hamiltonian physi-
cal realizations of the mathematical probabilistic models
with scale-invariant correlations recently shown by M. Gell-
Mann, Y. Sato, and one of us (C.T.) in Ref. [1], in which the
nonadditive entropy S, can be applied successfully (i.e., sat-
isfying the classical thermodynamic requirement of extensiv-
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FIG. 5. (Color online) Block g-entropy S,(p;) as a function of
the square block area L? in a bosonic 2D array of infinite coupled
harmonic oscillators at 7=0, for typical values of g. Only for ¢
=qen=0.87 is s, finite (i.e., S, is extensive); for g <qen (¢> geny) it
diverges (vanishes). Inset: determination of g, through numerical
maximization of the linear correlation coefficient r of Sq(ﬁL) in the
range 400=L*=1600.

ity). In this basic manner, we reconcile the entropy area law
characterizing many quantum systems with classical thermo-
dynamics. In addition to that, the present results show clearly
the difference between additivity and extensivity for the en-
tropy. Additivity depends only on the mathematical features
of the entropy, e.g., S; is additive while S, (¢ # 1) is nonad-
ditive. Extensivity is a more subtle concept and relies on
both the mathematical features of the entropy and the spe-
cific physical system. Indeed, the 7=0 block entropies of the
1/2-spin d=1 quantum system at criticality are given by
Si(L)*In L (i.e., nonextensive), and S o;2_3).(L) <L (i.e.,
extensive). Moreover, the T=0 block entropies of the d=2
bosonic system are given by S,(L)xL (i.e., nonextensive),
and S,(L) & L? for special values of ¢ <1 (i.c., extensive); for
instance, g.,,=0.87 for vanishing gap energy.

More generally, it is known (see Refs. [17,18] and refer-
ences therein) that, for d-dimensional bosonic systems (e.g.,
a black hole [19-21]), S, follows the area law, i.e., S,(L)
o« L% (nonextensive). Let us point out that the behavior of
the block entropy S;(L) for these quantum systems matches
well-known results in conformal field theory (as noted
above), where the analog of the block entropy is the so-
called geometric entropy, defined in the continuum
[19-21,38]. As first suggested by 't Hooft [[21](d)] and later
shown by Callan and Wilczek [[21](e)], the geometric en-
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FIG. 6. w, dependence of the index g, in a bosonic 2D array of
infinite coupled harmonic oscillators at 7=0. Inset: the w, depen-
dence of the g-entropic density Squ

tropy is the first quantum correction to a thermodynamical
entropy, which reduces to the Bekenstein-Hawking entropy
for black holes [19-21]. A direct connection between entropy
and boundary area has been clearly suggested and numeri-
cally implemented in Refs. [19,20] (compare with Refs.
[17,18] and references therein). Finally, the relation among
entanglement entropy, the black hole area law, and other con-
cepts such as the holographic bound is still an open problem
[44]. In this context, it is interesting to note that a logarith-
mic behavior for d=1 and the area law for d>1 for a large
class of fermionic and bosonic d-dimensional many-body
Hamiltonians with short-range interaction at 7=0 can be uni-
fied through §,(L)= (L4 '=1)/(d=1)=In,_, L (i.e., nonex-
tensive, In L for d=1, and L4 for d>1, area law) [45],
which would correspond to a large class (not yet completely
identified) of fully entangled quantum systems. For all these
systems, one could expect that a value of ¢ exists such that
S,(L)<L? (i.e., extensive). In this paper our conjecture is
verified for d=1 quantum spin chains and d=2 bosonic sys-
tems and is therefore promising also in higher dimensions.
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