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We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field
using a fully nonlinear �full-f� continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations
are discretized on a five-dimensional computational grid in phase space. The present implementation is a
method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit
backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model
is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation
with self-consistent poloidal variation. With a four-dimensional �� ,� ,� ,�� version of the TEMPEST code, we
compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclas-
sical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present
work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical
transport and electric field in toroidal magnetic fusion devices.
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I. INTRODUCTION

An outstanding scientific problem in the plasma boundary
lies in understanding the structure of the edge transport bar-
rier, which forms spontaneously in high-performance
�H-mode� discharges in tokamaks. At present, the physics
governing the structure of the edge pedestal remains contro-
versial because of the wide range of physical processes, scale
lengths, and time scales that come into play. First, the fact
that the fundamental character of the medium changes from a
collisional fluid plasma to a collisionless Vlasov plasma as
one moves inward across the pedestal forces one to go be-
yond the theoretical descriptions of plasma transport pres-
ently used in simulations. Second, the radial width of the
pedestal observed in experiment is comparable to the radial
width of individual particle orbits �leading to large distor-
tions of the local distribution function from a Maxwellian�.
Third the mean free path is long compared to the connection
length in the hot plasma at the top of the edge pedestal �vio-
lating the assumptions underlying a collisional fluid model�.
In contrast to several gyrokinetic code developments using
the particle-in-cell �PIC� technique �1,2� in the pedestal re-
gion, we adopt the continuum method for our fully nonlinear
�full-f� code development for the following reasons: �1� To
avoid the intrinsic noise issue associated with a finite number
of particles. When simulating equilibrium and fluctuations at
the same time, the concern over noise is even more serious
for fully nonlinear particle code development because the
equilibrium particle noise in full-f simulations could become
the order of the turbulent fluctuation due to ��e�noise /T�2�
�1 /Ncell �3,4�. Here Ncell is the number of particles in one
grid cell. In fusion edge plasma simulations it has been esti-
mated that a large number of particles �on the order of 1000�
per grid cell is required to reduce the particle noise level
down to the experimentally measured turbulence intensity
��e�expt /T�2��10−4 for high confinement mode �5�. �2� To
utilize existing Fokker-Planck collision packages developed
in the community over the years by solving the nonlinear
Fokker-Planck collision operator on velocity meshes.

In a magnetized plasma with straight field lines, the par-
ticle orbits are circular gyrations, and classical diffusion re-
fers to the transport of particles due to Coulomb collisions,
taking the particle gyro-orbits in the magnetic field into ac-
count. In a toroidal magnetic field, a single particle primarily
undergoes parallel streaming along the magnetic field line
and drifts across the field. The combination of the two mo-
tions produces various particle orbits when projecting its
three-dimensional orbit onto a poloidal cross section. The
orbits of passing particles are closed curves which do not
quite coincide with flux surfaces because of the drift motion
across the magnetic field. The banana orbits of trapped par-
ticles are traced by bounce motion along the field lines, ac-
companied by a slow drift motion across the magnetic field
with the shape of a banana. Trapped particles are confined
inside a magnetic well, typically outboard of the torus. Neo-
classical transport refers to the random scattering of particle
orbits by Coulomb collisions. The particle radial displace-
ment in one collision time is typically enhanced, because the
displacement of the gyrocenter from the original magnetic
surface is generally larger than the gyroradius. Neoclassical
turbulent transport refers to the random scattering of particle
orbits due to small-scale turbulent decorrelation. Therefore,
the success of neoclassical simulations relies on the accurate
numerical description of the passing and trapped particle or-
bits, Coulomb collisions and turbulence.

In neoclassical plasmas, a radial electric field arises be-
cause of the different diffusion rates of ions and electrons.
This electric field ensures quasineutrality and makes the ra-
dial fluxes of electrons and ions equal. This flux corresponds
to the flux arising from ion-electron collisions. So far, either
in particle simulations or continuum simulations, the electro-
static potential is typically assumed to be constant on a flux
surface �1,2,6�. The radial electric field development is
evaluated according to the radial Ampére-Maxwell law aver-
aged over a closed-flux surface 4��J ·���+��E ·��� /�t=0
�see the Appendix� where � is the poloidal magnetic flux,
�¯� represents the flux surface average, and J is the sum of
all the current in the plasma, including the classical polariza-
tion current, gyroviscosity current, and the ion guiding-
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center current due to its orbital dynamics �the electron cur-
rent is typically neglected in tokamak geometry, because it is
smaller than the ion current by a factor of the mass ratio
me /mi�. The steady-state neoclassical radial electric field E�

on a magnetic surface is obtained from the condition �j��
=0. However, this method is incomplete in the sense that the
poloidal electric field cannot be solved simultaneously in a
consistent way. This is an unsatisfactory situation since the
potential varies significantly in the edge plasma around the X
point and in the divertor leg region due to contact with di-
vertor plates. The gyrokinetic Poisson equation is seldom
used because the small coefficient in front of the Poisson
operator associated with the gyroradius makes the equation
nearly singular when �i /Lp	1. Here, Lp is a characteristic
gradient scale length of the plasma profile. For this reason,
no single code exists to simulate both neoclassical transport
and turbulence. However, there are efforts being undertaken
to try to solve this dilemma �7,8�. In this paper, we develop a
method to efficiently solve the gyrokinetic Poisson equation
to remove the singularity and to correctly yield the neoclas-
sical radial electric field.

Also in this paper, we report our present study of neoclas-
sical transport with a self-consistent electric field using full-f
continuum techniques. Because the problem is high dimen-
sional with complicated particle orbits in phase space, it is
not a trivial task to construct good difference schemes and
choose a good set of coordinates. For example, when the
particle energy and magnetic moment are used as the veloc-
ity coordinates, there are difficulties at the internal bound-
aries on the v	 =0 surface in phase space, such as the turning
points for the trapped particles in real space, and cut cells on
the v	 =0 boundary surface when two sheets of the distribu-
tion function �f+ for v	 
0 and f− for v	 �0� meet. The cut
cells are generated by the boundary v	

2= �2 /M���E0−�B
−q
0�=0 line in velocity space �E0 , �� for a given spatial
location, which cuts through the background grid and results
in irregular cut cells at the boundary. A full-f neoclassical
simulation involves several types of physics interacting over
several scales in time and space: Ion orbital dynamics is on
the fast time scale �
�b�=vTi /qR0� or �ii�, and small spatial
scale length �i�; while the transport is on the slow time scale

q2�ii�i

2 /LTi
2 for the evolution of ion temperature, and oper-

ates over the large spatial scale 
LTi. The time necessary to
establish a rotational steady state is even longer, of order
�−3/2 times the neoclassical thermal equilibration times. Here
�i is the ion gyroradius, ��,i is the ion gyroradius at the po-
loidal magnetic field, �ii is the ion-ion collision rate, q is the
safety factor, � is the inverse aspect ratio, LTi is a character-
istic gradient scale length of ion temperature, and �i	LTi.
We employ an implicit iteration method to solve the multi-
scale physics phenomena. The paper is organized as follows:
Gyrokinetic equations are given in Sec. II, numerical
schemes are presented in Sec. III, Sec. IV describes simula-
tion results, and a summary is given in Sec. V.

II. GYROKINETIC EQUATIONS

Nonlinear gyrokinetic formalism focuses on low-
frequency electromagnetic fluctuations that are observed in

inhomogeneous magnetic plasmas �9,10�. It has been proven
to be a useful theoretical foundation for analytical nonlinear
kinetic models, gyrokinetic PIC and continuum simulations
�11�. In TEMPEST, evolution of the plasma species is deter-
mined by coupled ion and electron kinetic equations for the
time-dependent five-dimensional �5D� distribution functions
simplified from Qin et al. �12� and Hahm �13�, which
is described in Ref. �14�. We present them here again
for the sake of completeness. The gyrocenter distribution
function F��x , �̄ ,E0 , t� in gyrocenter coordinates, Z
��x , �̄ ,E0 , t� , x=x−� , �=b�v /�c�, evolves in electro-
static approximation as
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Here, Z�e and M� are the electric charges and masses of
electrons ��=e� and ions ��= i�. �̄ is the magnetic moment.
The left-hand side of Eq. �1� describes the particle motion in
the electric field and magnetic field. C represents the Cou-
lomb collision operator. vBanos is the Banos drift �15�. The
overbar is used for the gyrocenter variables and �¯� denotes
the gyroangle averaging. The field 
 is separated into two
parts: 
0 has large amplitude and slow variation; �� is small
in amplitude and has rapid variation. E0 is the total energy
absent the perturbed potential energy �“almost energy”�.

In the long wavelength limit k���	1, the self-consistent
electric field is computed from the full-f gyrokinetic Poisson
equation for multiple species �14,16,17�
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where two additional assumptions are used in the simplifica-
tion from the general gyrokinetic Poisson equation �12�: �1�
Inhomogeneities in � dominate those in the gyrokinetic mo-
ments in evaluating the ion polarization density; �2� the per-
pendicular distribution function is Maxwellian in evaluating
the higher-order terms in the gyrokinetic moments. Here n�

and T�� are the ion density and temperature, respectively.
The ion gyroradius is ��=vT� /��, where the ion thermal
velocity is vT�=�2T�� /M�, the ion gyrofrequency is ��

=Z�eB /M�c, and the ion Debye length is �D�
2

=T�� /4�n�Z�
2e2. Our gyrokinetic Poisson equation is fully

nonlinear with the gyrocenter density N� and perpendicular
ion pressure p��, calculated from the gyrocenter distribution

function F��x , �̄ , Ē0 , t�. The last term of Eq. �7� is the dia-
magnetic density from the long wavelength expansion of the
gyroaveraged gyrocenter density N��x , t� �i.e., from the pull-
back transform�. Although the diamagnetic density is small
compared to the ion gyrocenter density, it is of the same
order as both the polarization density in high-� plasmas and
the difference between the ion and electron gyrocenter den-
sities. This equation is an extension of the typical neoclassi-
cal electric field model including poloidal variation.

III. NUMERICAL SCHEMES

We report applications of TEMPEST, a full-f initial-value
gyrokinetic code, to simulate neoclassical transport and
geodesic-acoustic mode �GAM� relaxation in edge plasmas.
This five-dimensional �� ,� ,� ,E0 ,�� continuum code repre-
sents velocity space via a grid in equilibrium energy �E0� and
magnetic moment ��� variables, and configuration space via
a grid in poloidal magnetic flux ���, poloidal angle ���, and
toroidal angle ���. The geometry can be a circular annulus or
that of a diverted tokamak and includes boundary conditions
for both closed magnetic flux surfaces and open field lines.
The same set of gyrokinetic equations is discretized for both
geometries. The description of the TEMPEST equations, nu-
merical scheme, and verification tests have been given in
Ref. �14�. Since this work will focus on the neoclassical
simulations of a tokamak plasma in the absence of turbu-
lence, for rapid parameter scans a four-dimensional �4D�
�� ,� ,E0 ,�� TEMPEST running option will be used for a neo-
classical transport without an electric field first to benchmark
with available theory and then for the development of the
neoclassical electric field.

In an axisymmetric configuration, the equilibrium mag-
netic field is written as B= I��+����� where I=RBt. Be-
cause the magnetic field is inversely proportional to the ma-
jor radius �B�1 /R�, for a given energy E0 and magnetic
moment �, there are inaccessible regions for particles where
v	

2= �2 /M���E0−�B−q
0��0, as indicated on the left-hand
side of the annulus with a black �bluish-violet� color in Fig.
1. The crosses are TEMPEST radial and poloidal meshes of the
annulus in a tokamak geometry with a circular cross section.
The contours of the distribution function F0�� ,� ,E0 ,�� in
gray �orange� represent regions occupied by trapped particles
for a given energy E0 and magnetic moment �. As the
trapped particles move radially outward, the orbit size in-
creases with minor radius, indicated by the green curves in

Fig. 1. Therefore, there exist internal boundaries for trapped
particles in the radial direction. The straightforward upwind-
ing difference yields instabilities near the internal boundary
points. Therefore a fifth-order Weno scheme �18� is routinely
used for particle radial drifts.

There are three constants of motion in an axisymmetric
configuration: The total energy E=M�v	

2 /2+�B+q
, the
magnetic moment �=M�v�

2 /2B �19�, and the canonical an-
gular momentum P�= �q /c��� �I /B�M�v	. The advantage of
choosing �E0 ,�� coordinates is that �E0 ,�� remain constant
along particle orbits �in the absence of collisions and turbu-
lence ���; this prevents orbit mixing by numerical differenc-
ing, and the dynamics associated with particle orbits can be
accurately simulated. The disadvantage is in association of
the cut cells at the bottom of E0 and top �-boundary meshes
as shown in Fig. 2�a�, where the boundary v	

2= �2 /M���E0
−�B−q
0�=0 is a straight line cutting through the back-
ground grid and separates the physical �above, v	

2�0� and
nonphysical �below, v	

2�0� zones. The dotted line with E0
=�B�� ,�� when 
0=0 inside the physical zone �v	

2�0�
separates the circulating and trapped particles, where the
B�� ,�� is the local magnetic field. Obviously, the advantage
in using �E0 ,�� velocity coordinates is that this physical
boundary is not a numerical boundary in velocity space �al-
though it is in real space at turning points where v	 =0�, and
therefore, there is no additional boundary condition for a
numerical finite difference across this boundary. The real nu-
merical boundary conditions are as follows. �1� There is no
flow out of the � boundary at �=0 and E0=0. �2� The two
sheets of distribution are continuous at E0=E0 min and �
=�max as shown in Fig. 2�b�, where v	�=0. Here the two
sheets of the distribution refer to the distribution with the
sign of velocity: f+ for v	 
0 and f− for v	 �0 for any given
energy E0 and magnetic moment �. At the top of the � mesh,
the mesh size for a cut cell is ��iv,jv=2d�, where d� is the
distance between the �max= �E0−q�
0�� /B at v	 =0 and the
maximum �-boundary grid point before reaching the �max at

FIG. 1. �Color online� TEMPEST radial and poloidal meshes of an
annulus in a tokamak geometry with a circular cross section, indi-
cated by the cross. The contours of the distribution function
F0�� ,� ,E0 ,�� with E0=15 and �=6 in gray �orange� represent
regions occupied by trapped particles for a given energy E0 and
magnetic moment �, and is overlaid by trapped particle orbits
which are the contour plots of canonical toroidal angular momen-
tum Ptor�� ,� ,E0 ,��= �q /c��� �I /B�M�v	.
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v	 =0 as shown in Fig. 2�b�, and where the factor of 2 comes
from the equal distance d� to the �max for the two sheets of
the distribution function. At the bottom of the E0 mesh, the
mesh size for a cut cell is �E0iv,jv=2dE0, where dE0 is the
distance between the E0 min= ��MaxB+q�
0�� at v	 =0 and the
minimum E0-boundary grid point above the E0 min at v	 =0 as
shown in Fig. 2�b�. The cut cells dE0 and d� will have to be
merged with the neighboring regular cells if they are too
close to the v	 =0 line to avoid arbitrarily small cut cells,
which can potentially lead to code blowup. The detailed two-
dimensional �2D� description of the cell-cut and merging
scheme is given in Ref. �20�. �3� At the top of the energy
mesh E0 max exponential extrapolation of the distribution F�

in energy is used, assuming F�=F��E0 max�exp�−�E0
−E0 max� /Ti� beyond the simulation domain for E0�E0 max.

Radial Robin boundary conditions are used for F� and the
potential 
 at the inner core surface �=�c and the outer wall
surface �=�w. Robin boundary conditions consist of speci-
fication of a linear combination of a field value and its nor-
mal derivative at all points of the boundary surface �=�c,w,
such as �b
b+�b�
b /��, where �b ,�b ,
b and �
b /�� are
being prescribed. This is a generalization of Dirichlet ��b

=1 and �b=0� and Neumann ��b=0 and �b=1� boundary
conditions. Since the gyrokinetic equation has only a first-
order radial advection term, only one boundary condition is
used and then only where the convection is into the domain.
No boundary condition should be imposed for particles con-
vecting out of the domain; therefore, an extrapolation is used
at that boundary.

For neoclassical transport problems, the scale length of
the potential L� is determined by the drift orbit size ��,i and
is typically much larger than the gyroradius ��i, L�
��,i
��i�, Here ��,i is the ion gyroradius using the poloidal mag-
netic field. Hence, there is a boundary layer �a gyrosheath� in
Eq. �7� associated with small parameter �� /L�	1. There-
fore, the Poisson equation �7� is rarely solved. Instead, a
simplified equation for the radial electric field is used �1,2,6�
with the assumption that the electrostatic potential is con-
stant on the flux surface. For edge plasmas, the potential has
both radial and poloidal variations due to the end loss in the
scrape-off layer, and the assumption is clearly violated. In
order to efficiently solve Eq. �7�, we develop a scheme here
to impose the Neumann boundary conditions E�=−�� /��
=const at both radial boundary surfaces to eliminate the
boundary layer effects. However, when the Neumann bound-
ary condition is used for both radial boundaries �=�c and
�=�w, the Poisson problem is ill posed. A technique used is
to remove the global net charge from the simulation domain
to ensure that the Poisson problem is well posed. This con-
straint is naturally consistent with the plasma quasineutrality
condition. The same technique has been used for doubly pe-
riodic boundary conditions �14�. As an illustration, here is a
simple example. A one-dimensional �1D� Poisson equation
on a domain 0�x�a with Neumann boundary conditions is
�i

2�2� /�x2=sin�2�x /a� with �� /�x=0 at x=0 and x=a.
Here �i /a	1. The solution to the corresponding equation
exists only if there is no net source in the domain; that is, by
integration, ��� /�x�x=a�−�� /�x�x=0=�0

adx sin�2�x /a�=0. The
solution can be obtained by integration as ��x�
= �a /2��i�2��2�x /a�−sin�2�x /a��+C0. There are three no-
ticeable features of the solution. �1� The solution has an un-
determined constant C0. However, the global constant poten-
tial has no physical consequence to the gyrokinetic equation.
�2� The solution is a linear composition of a general solution
and a particular solution. The general solution is a linear
function in radial variable due to the gyro-Poisson operator
and the particular solution is a periodic function in radial
variable determined by the source. �3� The scale length of
potential is determined by the scale length of the source a,
not by the small scale length �i at the boundary surfaces. But,
when the small scale �
�i� turbulence along with large-scale
orbit size 
��,i
10�i coexists in the source, the same equa-
tion can be solved for multiple spatial scale lengths. These
are the properties needed for the neoclassical turbulent trans-
port simulations.

IV. SIMULATION RESULTS

In our 4D TEMPEST neoclassical simulations, we consider
a simple axisymmetric tokamak with the magnetic field in a
circular geometry, given by B=B�e�+B�e�, where � and �

µB /T0
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FIG. 2. �Color online� �a� TEMPEST energy E0 and magnetic
moment � meshes. The boundary v	

2= �2 /M���E0−�B−q
0�=0 is
a straight dashed line cutting through the background grid and sepa-
rating the physical �above, v	

2�0� and nonphysical �below, v	
2�0�

zones. �b� A sketch of cut cells at bottom of the energy E0 and top
of the magnetic moment meshes �max: d� and dE0.
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are the toroidal and poloidal angles of a torus, respectively.
The poloidal angle � is chosen such that �=0 corresponds to
the outboard midplane of the torus. The inverse aspect ratio
�=r /R0 is not assumed to be small, where r is the minor
radius. The major radius is given by R=R0�1+� cos �� and
toroidal magnetic field B�=B0R0 /R. The plasma consists of
deuterium ions and electrons. For the physics problems stud-
ied in this paper, the gyrokinetic Poisson equation �7� has
been used without the diamagnetic density term and 
0 has
been set to zero. The typical resolution is n�=32, n�

=64, nE0
=25, and n�=50.

A. Neoclassical radial fluxes

Neoclassical transport results from the random scattering
of particle orbits by collisions in a toroidal geometry with an
inhomogeneous magnetic field. In this section, we demon-
strate how TEMPEST simulation results agree very well with
neoclassical theory when using the same collision model.
The simulations presented here are carried out for a large
aspect ratio circular geometry with magnetic field Bt
=7.5T , R0=45.6 m, the safety factor q=�B� /B�=3 and �
=0.1. The large B0 and R0 are used for the global simulations
in order to benchmark with analytical theory in the limit
�i /Lp	1 for local analysis. Here Lp is a characteristic gra-
dient scale length of the plasma profile. The ion guiding
center density and temperature profiles are initialized as a
hyperbolic tangent �tanh� function of radius centered around
the middle of the simulation domain �such as, N���=n0
+nm tanh���−�m� /�n�, where �m= ��0+�L� /2, �n
=�n ln�N��0� /N��L����L−�0��, and �n is a parameter to con-
trol the radial scale length. The boundary ion distribution is a
fixed Maxwellian with N0=N��0� , nL=N��L�=0.9N0 , Ti0
=Ti��0�=3 keV, and TiL=Ti��L�=0.9Ti0 during a simula-
tion. In this simulation �n=50.5, a Lorentz collision model is
used. Given boundary conditions and initial profiles, the in-
terior plasmas in the simulations should evolve into a neo-
classical steady state.

A series of TEMPEST simulations are conducted to
investigate the scaling characteristics of the neoclassical
transport as a function of ��i via a density scan with N0
= �1�1012,5�1012,1�1013, 2�1013, 5�1013,1�1014, 5
�1014,1�1015,5�1015,1�1016� cm−3. Here ��i is
the effective collision frequency, defined by ��i

=�−3/2�ii
�2qR0 /vTi, �ii is the ion-ion collision, and the ion

thermal velocity is vTi=�2Ti��0� /Mi. The peaks of both par-
ticle and heat fluxes due to the peak radial gradient drives of
density and temperature are shown in Fig. 3, along with the
analytical predictions of Lin et al. �21� using a Lorentz col-
lision operator with a constant frequency. The radial particle
and heat flux here and in the rest of the paper imply the
corresponding flux-surface-averaged fluxes. A time history of
the radial heat flux profile in Fig. 4�a� for ��i=4.5 in the
plateau regime from TEMPEST shows that the simulation
reaches steady-state solutions; the same is true for other ��i
simulations in the scan. A good agreement is obtained both in
the banana and collisional regimes, where the analytical
theories are valid. The differences between Fig. 3 here and
Fig. 2 of Ref. �16� are simulation parameters and the Lorentz

collision model used, besides the plotting variables �fluxes vs
diffusivities�. Here a simple constant-� Lorentz model is
used for better comparisons with the same constant-� theory,
while in Ref. �16�, an energy-dependent Lorentz collision
operator was used. In the plateau regime with ��i=4.5 as
shown in Fig. 4, the peak ion heat flux converges with ve-
locity resolution, 1.1% variation over the following scans:
�nE0

=25, n�=50, E0 max=10Ti�, �nE0
=50, n�=75, E0 max

=10Ti�, and �nE0
=50, n�=75, E0 max=20Ti�. For all cases,

n�=32 and n�=128. However, no clear neoclassical plateau
regime is observed in Fig. 3 for the peak ion heat flux from
simulations with these parameters and the detailed investiga-
tion will be cast in a future presentation.

An interesting property of the neoclassical radial fluxes is
checked in the ��i	1 regime. Because in this regime colli-
sions are negligibly small, the particle orbits should be al-
most closed; and therefore there should be almost no net
radial fluxes. A time history of the radial heat flux profile is
shown in Fig. 4�b� for ��i=0.0006 with N0=1�1010 cm−3 in
the deep banana regime from TEMPEST simulations. The ra-
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FIG. 3. �Color online� Radial particle �r �a� and heat flux Qr �b�
vs dimensionless collision frequency ��i from TEMPEST simulation
of neoclassical ion transport with �=0. Here a Lorentz collision
operator is used. The solid lines are analytical predictions of Lin et
al. �21�.
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dial heat flux oscillates in time at all radial locations with the
same frequency. Figure 5 shows that after an initial adjust-
ment due to the arbitrary initial conditions, the oscillation

frequency is the thermal trapped particle bounce frequency
with �b=�� /2�vTi /qR0� ,vTi=�2Ti��0� /Mi. The time-
averaged flux is nearly zero during the late time, which is
consistent with the physical expectation.

Note that in a truly steady state, the particle and heat
fluxes should be radial constants in the absence of the vol-
ume sources and sinks; however it is apparently not the case
in Fig. 4�a�. As we discussed in the last paragraph of the
introduction, a full-f neoclassical simulation involves several
types of physics interacting over several scales in time and
space: �1� ion orbital dynamics; �2� the neoclassical trans-
port; and �3� a global truly rotational steady state involving
the radial boundary conditions. Neoclassical transport is a
local transport which depends on the local radial gradient of
the profile. During the development of neoclassical transport
due to the random scattering of particle orbits by Coulomb
collisions in stage �2�, the profile has not been changed ap-
preciably from the initial one. Because of the scale separa-
tion, we see a relatively steady state for the fluxes in time,
and the fluxes are proportional to the local radial gradient of
the profile as the neoclassical theory predicted. This is the
stage that is plotted in Fig. 4�a�.

B. Radial propagation of geodesic-acoustic modes and
relaxation of the neoclassical electric field

The geodesic-acoustic mode �GAM� is a poloidally asym-
metric mode with a coherent and radially localized poloidal
flow oscillation that is dominant in the outer regions of mag-
netically confined toroidal plasmas �22,23�. This mode is
characterized by oscillations of the plasma column in the
vertical direction with a characteristic frequency �GAM
���7 /2�f�q��vTi /R0�, where f�q�=�1+46 /49q2, and R0 is
the major radius of a torus. The GAM is a normal mode in a
homogeneous plasma, involving particle parallel streaming,
cross-field drifts, and acceleration.

In this section, we show the development of a neoclassical
electric field with Lorentz collisions through different phases
and the radial propagation of the GAM at the initial phase in
TEMPEST simulations from radially inhomogeneous plasmas.
During the relaxation of the electric field after the initial
GAM phase and Rosenbluth-Hinton residual zonal flow, the
neoclassical radial electric field from the TEMPEST simula-
tions follows the standard neoclassical expression for parallel
flow in the plateau regime.

1. Simulation setup

The simulations presented here are carried out for a cir-
cular geometry with DIII-D edge parameters: Magnetic field
Bt=1.5T , R0=1.71m , q=4, and �=0.3. The ion guiding-
center density and temperature profiles are initialized
as a hyperbolic tangent �tanh� function of radius centered
around the middle of the simulation domain �N���=n0
+nmtanh���−�m� /�n�, where �m= ��w+�c� /2 and �n
=�n ln�Nc /Nw���w−�c��. �n is a parameter to control the ra-
dial scale length. In this simulation, �n=50.5, and a Lorentz
collision model is used. The boundary ion distribution is a
fixed Maxwellian with Nc=N��c�=1�1019m−3 , Nw
=N��w�=0.9Nc , Tic=Ti��c�=300 eV, and Tiw=Ti��w�
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FIG. 4. �Color online� Radial profile of radial heat flux Qr for
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TEMPEST simulation of neoclassical ion transport with �=0. Here a
Lorentz collision operator is used.
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=0.9Tic during a simulation. The radial boundary condition
for the potential is ����c� /��=����w� /��=0. The electron
model is the fully nonlinear Boltzmann model. The Boltz-
mann model for a closed-flux surface is defined as ne
= �ni�� ,� , t=0��exp�e� /Te� / �exp�e� /Te��, where �¯� repre-
sents the flux surface average. The property of the Boltz-
mann model is �ne�= �ni�� ,� , t=0��, so there is no net radial
electron transport. An initial pulselike perturbation of the ion
density is given with the peak centered around the middle of
the pedestal �ni=�N0��−�m�e−��� − �m� / ��n�2

, where dN0
=0.001 and ��n=0.094��w−�c�.

2. Simulation results

A time history of the potential from TEMPEST shows in
Fig. 6�a� the GAM generated by the initial conditions,
damped by the wave-particle resonances and then relaxed to
a Rosenbluth-Hinton residual zonal flow �24–26�. The TEM-

PEST simulations correctly calculate the GAM frequency
�GAM and the collisionless damping rate �GAM in homoge-
neous plasmas. Extensive studies of wave-particle reso-
nances and benchmarking with theory have been demon-
strated in Ref. �27�. Figure 6�b� shows a contour plot of the
perturbed ion density as a function of a time and radial po-
sition. The linear relationship of ion density contour between
time and radial position �line with arrows� indicates that the
group velocity and phase velocity are the same. For any
given radial location, the GAM oscillates and decays due to
the collisionless and collisional damping, as shown in the
potential time history in Fig. 6�a�.

One of the most striking features is that the density per-
turbation radially propagates outward inside the pedestal
where the temperature is radially inhomogeneous with vp�

sim

�12.05��s /R�vthi for q=4, which is qualitatively consistent
with experimental measurements �28,29�, and also consistent
with a kinetic GAM theory �30,31�. In the theory, the GAM
is generated by turbulent excitation via three-wave resonant
coupling of a kinetic GAM �KGAM�, which is the short
wavelength counterpart of the usual GAM, due to finite ion
Larmor radii and finite magnetic drift orbit widths. The
GAM spectrum in a radially nonuniform toroidal plasma is
continuous due to the dependence of the frequency on the
local temperature Ti��� and/or the safety factor q���
��GAM

2 �����7 /2�f2�q�����Ti��� /MiR0
2��. The local disper-

sion relation turns into a radial wave equation in a radially
nonuniform plasma with k�=−i� /�� when the finite-ion-
Larmor-radius effect is retained ��2=�GAM

2 ���
+C�� ,��k�

2�i
2, where C�� ,�� is a complicated expression

�30–32��. The resultant radial wave equation with outgoing
wave boundary conditions leads to KGAM propagation to-
ward the low-temperature and/or high q domain where �2

��GAM
2 ���. The linear temperature profile Ti���=T0

+T1��0−�� is a simple model for an edge plasma in one
spatial dimension. The radial wave equation admits an ana-
lytical solution for this temperature profile in terms of the
Airy function with outgoing wave boundary conditions �31�.
In TEMPEST simulations, the radial propagation velocity vp�

is found to be weakly dependent on q, and it increases as q
decreases, mostly due to the q dependence of the GAM fre-
quency �GAM for the fixed plasma profiles. In the absence of

a kinetic GAM theory which should yield a self-consistent
radial mode structure and dispersion relation in an inhomo-
geneous plasma with outgoing wave boundary conditions,
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FIG. 6. �Color online� �a� Time evolution of the zonal-GAM
potential ��t� shows GAM oscillation, collisionless damping, and
collisional damping of zonal flow residual for a circular geometry
with q=4 and �=0.3. n�=32, n�=64, nE0=30, n�=60, and KE,max

=20Ti; �b� Contour plot of perturbed ion density �ni /Ni0= �Ni

−Ni0� /Ni0 as a function of a radial position and time for the same
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we estimate the theoretical phase velocity vp�
th =�GAM /k�

based on the characteristic scale length �GAM

��i�LTi /�i�1/3 around the peak gradient position �31�,
which yields �GAM

th 
22.3546�i and vp�
th =�GAM /k�

= ��7 / 2 �f�LTi /�i�1/3��i /R�vTi=15.9471��i /R�vTi. Comparing
with the measured velocity vp�

sim in Fig. 6�b�, the preliminary
estimate of the radial propagation velocity agrees to within
32% accuracy between theory and simulation. The difference
is possible due to the following reasons: �1� The local linear
expansion of ion temperature profile in the theory for sim-
plicity; �2� an accurate analysis of particle orbit has been
ignored which may modify the coefficient C�� ,�� associated
with the finite-ion-Larmor-radius effect. In closing it is wor-
thy to note here that by imposing radial Dirichlet boundary
conditions on potential ���x=−��=0 and ��x=LTi�=0� and
assuming a linear ion temperature profile in a slab geometry,
Ref. �32� shows that the GAM becomes an eigenmode rather
than wavelike radial structure, and the GAM has discrete

eigenfrequency, rather than having a continuous spectrum.
However, the dispersion relation given by Eq. �1� of Ref.
�32� does not reduce to the known solutions in Refs.
�25–27,30�; especially the coefficient of the finite gyoradius
effect C=0 when Te=0 in Ref. �32�, which disagrees with
the results in Refs. �30,31�.

3. Neoclassical polarization

Due to the existence of ion-ion collisions, the Rosenbluth-
Hinton residual is damped with a damping rate ��ii as shown
in Fig. 6�a�, and then the potential approaches the neoclassi-
cal residual. The collisional damping rate as measured is
�c�1.05�ii, which is smaller than local calculations with the
�	1 approximation: �HR=�ii / �0.64����2.852 72�ii �33�
and �XC=�ii / �4�3/2��1.52145�ii �34�. During the develop-
ment of the electric field after the initial GAM phase, the
neoclassical radial electric field from TEMPEST simulations is
shown in Fig. 7�a�, along with the standard neoclassical re-
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lationship between the radial electric field and the parallel
flow �Ui	�= �cTi /ZieBp��k�� ln Ti /�r�− �� ln Pi /�r�
− �Zie /Ti����
� /�r�� with k=−0.5 in the plateau regime �35�.
The radial electric field E�=−��
� /�� is calculated from the
solution of gyrokinetic Poisson equation and the ion tem-
perature Ti, pressure Pi and parallel velocity Ui	 are obtained
from the moments of gyrokinetic distribution function. It is
found that the magnitude of the parallel velocity is much
smaller than the ion thermal velocity and the effective E
�B velocity. The radial electric field is generated from the
neoclassical polarization �24�: The spreading of the charge
cloud for the trapped ions over the thickness of their banana
orbits due to the toroidal magnetic geometry. Figures 7�b�
and 7�c� show the contours of the relative ion density pertur-
bation and the relative charge density from the TEMPEST

simulation. Due to the orbital dynamics inside the magnetic
well as shown in Fig. 1, a particle at the outside midplane
streams up and drifts outward from high density to low den-
sity on the upper half of the plane, then bounces back from
the upper turning point, streams down and drifts inward from
low density to high density in the lower one-half of the
plane, bounces back from a lower turning point, and repeats
the process again and again. The combination of the particle
orbits and the radial profile of the density yields poloidal as
well as radial variation of ion density. Because of the large
ion to electron mass ratio, the resulting difference in orbit
size creates a neoclassical polarization—a poloidal and radial
variation of the charge density spreading over the thickness
of ion banana orbits, as shown in Fig. 7�c� which can be
compared with banana orbits in Fig. 1. However, the poloidal
variation of the potential is nevertheless small in circular
geometry.

C. Steady-state neoclassical electric field and ambipolarity of
neoclassical transport

The simulations presented here are carried out with the
same model and parameters as in Sec. IV B, except in this
section q=2, ��i=2.1, and the ion temperature profile is flat.
Figure 8�a� shows the time evolution of the electric potential
at �=0.25L� , �=0.5L�, and �=0.75L�. The time unit cor-
responds to one GAM time �vTi /R0�. The electrostatic poten-
tial relaxes to a steady state, with the GAM in the initial
phase damped by Landau resonance and ion-ion collisions.
Figure 8�b� shows the steady-state radial profiles of potential
���� �red curve with diamond� and density −ln�Ni��� /Ni��
=0.5L��� �black� from TEMPEST simulations. Here L� is the
radial box size. A Boltzmann relation is reached for the
steady-state potential, �Zie /Ti��� /��+� ln Pi /��=0, as ex-
pected from the theory for the case of zero temperature gra-
dient �36�. The potential is a superposition of a linear func-
tion in the radial variable due to the gyro-Poisson operator
�the classical ion polarization� and a periodic function due to
the neoclassical polarization, as discussed in the last para-
graph of Sec. III. The small differences between the red with
diamond and black curves in Fig. 8�b� are about 5.8% at �
=30.4 and 7.4% at �=70.9, and are possibly due to the con-
tribution from the classical ion polarization. The steady-state
parallel velocity is very small due to the specified Maxwell-

ian radial boundary condition with zero flow velocity. The
ambipolarity of neoclassical transport with a self-consistent
electric field is numerically demonstrated in Fig. 9�a� and
compared to the case without E� in Fig. 3�a�. With no elec-
tric field, a considerable self-collision driven ion flux is
found and violates ambipolarity �6�. By choosing the Boltz-
mann electron model, the radial neoclassical electron flux is
zero; the quasineutrality constraint forces the net flux-
surface-averaged radial ion flux to be zero through the self-
consistent radial electric field and its gradient producing or-
bit squeezing and expansion due to finite-orbit-width effect,
which is consistent with the PIC �f simulations �6�. The tiny
residual flux in Fig. 9�a� is possibly due to the nonconserving
Lorentz collision model used and/or the small poloidal vary-
ing potential �8,37�. Since there is no temperature gradient,
the initial GAM exists in the form of a radial eigenmode as a
stationary wave without radial propagation as shown in Fig.
9�b� and compared to the case with a temperature gradient in
Fig. 6�b�. This confirms that the ion temperature inhomoge-
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temperature profile: �a� Time evolution of electrostatic potential
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neity is a key factor for GAM radial propagation.

V. DISCUSSIONS AND SUMMARIES

We present gyrokinetic neoclassical simulations of toka-
mak plasmas with a self-consistent electric field for the first
time using a full-f continuum code TEMPEST in a circular
geometry. We verified the numerical simulation results with a

standard neoclassical theory, using the 4D version of the
TEMPEST code with Lorentz collisions. In a very-low colli-
sionality regime, an oscillatory flux in time has been demon-
strated, as one might expect, because the particles almost
stay on closed orbits.

A numerical technique is presented to efficiently solve the
gyrokinetic Poisson equation with double Neumann radial
boundary conditions for neoclassical simulations. The simu-
lation results are found to agree very well with the classical
theory for the development of a neoclassical electric field
with Lorentz collisions in the plateau regime. In the initial
phase of the development of the neoclassical electric field,
we found that ion temperature inhomogeneity is a key factor
for GAM radial propagation. The density and radial electric
field perturbation radially propagates outward only inside the
pedestal where the temperature is inhomogeneous. Otherwise
the GAM exists in the form of a radial eigenmode as a sta-
tionary wave without radial propagation. During the devel-
opment of the electric field after the initial GAM phase, the
neoclassical radial electric field from TEMPEST simulations
follows the standard neoclassical relationship between the
radial electric field and the parallel flow in the plateau re-
gime. In steady state, the Boltzmann relation is reached be-
tween the electrostatic potential and the ion density for the
case of zero temperature gradient, and the quasineutrality
constraint forcing the net radial ion flux to be zero is numeri-
cally demonstrated.
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APPENDIX: RADIAL AMPÉRE-MAXWELL LAW

The Ampére-Maxwell law can be written in differential
form

4�J +
�E

�t
= c � � B . �A1�

The radial component of Ampére-Maxwell law can then be
written in the form

4��J · ��� +
��E · ���

�t
= c � � B · �� = c � · �B � ��� .

�A2�
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FIG. 9. �Color online� In circular geometry with DIII-D param-
eters as in Fig. 7 in the plateau regime, except q=2 and flat ion
temperature profile: �a� Time evolution of a radial ion particle flux
���t� from TEMPEST simulations at �=0.25L�, �=0.5L�,
and �=0.75L�. The local ion flux evolves to a zero steady-state
value when the self-consistent electric field is generated. �b� Con-
tour plot of perturbed ion density �ni /Ni0= �Ni−Ni0� /Ni0 as function
of radial position and time for the same parameters.

X. Q. XU PHYSICAL REVIEW E 78, 016406 �2008�

016406-10



where the mathematic property ����=0 is used. There-
fore, the radial component of Ampére-Maxwell law averaged
over a closed-flux surface becomes

4��J · ��� +
��E · ���

�t
= c�� · �B � ���� = 0. �A3�
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