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A simple method, the multiscale minimal Lagrangian map �MMLM� approach, to generate synthetic turbu-
lent vector fields was previously introduced �C. Rosales and C. Meneveau, Phys. Fluids 18, 075104 �2006��.
It was shown that the synthesized fields reproduce many statistical and geometric properties observed in real,
isotropic, turbulence. In this paper we investigate if this procedure, which applies a minimal Lagrangian map
to deform an initial Gaussian field, can produce also anomalous scaling in the inertial range. It is found that the
advection Lagrangian map time scale is crucial in determining anomalous scaling properties. With the sweep-
ing time scale used in the MMLM approach, non-Gaussian statistics and realistic geometric features are
reproduced at each scale, but anomalous exponents are not observed; i.e., we observe nearly 1941 Kolmogorov
scaling. Conversely, if the appropriate Kolmogorov inertial-range turnover time scale is used in a modified
approach �the multiscale turnover Lagrangian map �MTLM� method�, fields with realistic anomalous scaling
exponents are reproduced. Remarkably, the intermittency and multifractal nature of the energy dissipation is
also found to be quite realistic. Finally, the properties of the pressure field derived from the MTLM velocity
field are studied and found to be quite realistic also. The results shed new light on what are minimal dynamical
requirements for the generation of anomalous scaling and intermittency in turbulent flow: at least one turnover
time for small eddies to be sufficiently deformed, as well as the accumulation of spatially correlated deforma-
tions across scales.
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I. INTRODUCTION

By synthetic turbulence one generally means the con-
struction of field variables �such as velocity distributions�
having characteristic features of turbulent fluctuations, but
that can be obtained at a reduced computational cost in com-
parison with a formal numerical solution of the full Navier-
Stokes equations. In this sense, different methods to produce
synthetic turbulence substitute, to greater or lesser extent, the
true turbulence dynamics by simpler processes aimed to re-
produce observable characteristics. Besides its practical ap-
plications in numerical simulation of turbulent flows, such as
for generating initial and inflow boundary conditions, syn-
thetic turbulence is also of interest to further understanding
fundamental properties of turbulent motion. In particular,
finding the most reduced set of processes that still allow the
manifestation of intrinsic properties of turbulence helps in
understanding turbulence physics and its universal aspects.
Prior works on generating synthetic turbulence have empha-
sized different aspects of turbulence, such as fundamental
scaling properties through wavelet-based or multiplicative
approaches �1–5� and synthetic turbulence to evaluate
subgrid-scale stresses or mixing of scalars �6–9�, as well as
kinematic models to study turbulent dispersion �10,11�. A
framework for vector-valued multifractal measures was es-
tablished in Ref. �12�, which has been applied in the con-

struction of vector-valued self-similar random fields �13�.
In Ref. �14� a new procedure to generate three-

dimensional �3D� non-Gaussian synthetic turbulent vector
fields was introduced. The procedure is based on the minimal
Lagrangian map, by which an initial Gaussian field generated
using random-phase Fourier modes is deformed. The defor-
mation takes place by moving fluid particles of a sequence of
low-pass filtered fields at their fixed velocity for some scale-
dependent time interval. At any scale, when noninteracting
fluid parcels are considered, the equation of motion reduces
to the Riemann equation

�tu + �u · ��u = 0, �1�

corresponding to a system of particles each moving with
constant velocity in Lagrangian coordinates. The solution is
u(x��t� , t)=u�x ,0� where x��t� is the Lagrangian position of
the particle ascribed at t=0 to the Eulerian point x—i.e.,

x��t� = x + tu�x,0� . �2�

This map has been called the “naive Lagrangian map” in
Refs. �15,16� and was called the “minimal Lagrangian map”
in Ref. �14�. It is equivalent to the inviscid 3D Burgers equa-
tion until the appearance of the first shock �15–19�. It also
has been used in the study of nonlinear formation of large-
scale structures in cosmology �17,18�. In practice, after dis-
crete particles have been moved at constant velocity for
some time interval to new positions, the procedure �14� then
includes an interpolation step to reexpress the velocities on a
regular grid, and then the divergence-free condition is im-
posed by projection in wave-number space. The mapping is
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applied in a multiscale fashion, with a scale-dependent time
interval, and acting on velocity fields which have been low-
pass-filtered over a sequence of scales. More details about
the construction procedure are given in Sec. II.

It was shown in Ref. �14� that this simple procedure,
called the multiscale minimal Lagrangian map �MMLM� ap-
proach, can reproduce many fundamental trends of turbu-
lence, such as the skewness and flatness of velocity deriva-
tives, the general form of probability density functions �PDF�
for velocity derivatives and velocity increments, the joint
PDF of second and third invariants of the velocity gradient
tensor, the preferential alignment of vorticity with the inter-
mediate eigenvector of the strain-rate tensor, and other sta-
tistical characteristics of enstrophy and strain-rate production
in the strain-dominated regions of the field.

In Ref. �14� it was also observed that the PDFs of result-
ing velocity increments depended on scale, with near Gauss-
ian statistics at large scales and elongated non-Gaussian tails
for small displacements. As a consequence, the fields dis-
played increasing flatness towards small scales, which is an
indication of intermittency. Inertial-range intermittency is an
important topic in the modern theory of turbulence since it
represents a departure from the statistical scale invariance in
that range, which is implicit in the 1941 Kolmogorov theory.
A fundamental result in homogeneous isotropic turbulence is
Kolmogorov’s four-fifths law, for the longitudinal third order
structure function �20�,

���u��r��3� = −
4

5
�r , �3�

where �u��r���u�x+r�−u�x�� ·r /r is the longitudinal veloc-
ity increment over a separation vector r and � is the mean
energy dissipation rate. A dimensional generalization of this
result leads to a scaling for the pth-order longitudinal struc-
ture functions in the form

���u��r��p� � r�p, �4�

with �p= p /3, when the velocity field possess the scale in-
variance of �1941� Kolmogorov theory. Much experimental
and numerical evidence has accumulated that shows that in-
termittency and anomalous scaling in the inertial range oc-
curs in turbulent flows �see, e.g., �21,22� and references
therein�. This is manifested by the deviation of the measured
scaling exponents �p from the p /3 value predicted for the
nonintermittent case and �p becoming a nonlinear function of
the order p. However, the synthetic fields generated and ana-
lyzed in Ref. �14� did not cover an extended inertial range, so
that the observed behavior could not be used to measure �p
or to assess possibly anomalous inertial-range scaling. An
important question that arises then is whether such a simple
procedure can produce also realistic anomalous scaling in the
inertial range. One of the objectives of this paper is to ad-
dress this question.

The systematic change in the statistics of �u��r� in the
inertial range is believed to be associated with the energy
cascade process. The turbulence intensity at large scales var-
ies randomly with position, while the interaction among
them leads to the random formation of smaller scales within

the larger ones. Inside these small scales, yet smaller scales
are produced by similar mechanisms, and so on until reach-
ing the dissipative scales. In this way the spatial distribution
of turbulence intensity at a given scale preconditions that of
smaller scales in the same spatial region. Zones of higher
intensity will tend to have a higher energy flux rate to
smaller scales originating from them, and consequently the
resulting smaller scales at these particular locations will be
more active, preconditioning in turn the next generation of
scales. As a result, the effects of turbulence intensity concen-
tration introduced at each stage of the cascade are super-
posed, leading to a cumulative deformation of the statistical
distribution of �u��r�, so that rare events of atypically strong
fluctuations become more frequent as the scale is reduced.
Although this scenario is based on several phenomenological
statements, it is believed to provide a qualitatively correct
description of the physical process involved. The dissipation
field also is known to be highly intermittent in turbulent
flows �21,23,24�, with anomalous scaling observed as func-
tion of coarse-graining scale. Other important turbulence
variables that are associated with the Lagrangian fluid accel-
erations and are also related to intermittency are pressure
fluctuations, pressure increments, and pressure gradients.

Most of the methods that seek to introduce intermittency
in synthetic turbulence are inspired by the ideas of the pre-
vious paragraph and employ some form of scale-by-scale
multiplicative construction to mimic this cascading process
with cumulative distortive action. These multiplicative con-
structions usually proceed by distributing an appropriate
measure contained in a whole one-dimensional interval, over
disjoint subintervals. The ratio of the measure inherited by an
offspring subinterval to the measure contained in the parent
interval is determined by a multiplier which is taken from a
given probability distribution, or is a fixed parameter �Refs.
�1,3,25��. In a model introduced by Juneja et al. �4�, the
synthetic velocity field is a superposition of skewed tent
functions of different scales, locations, and amplitudes. The
scales are chosen randomly from a distribution analogous to
the hierarchy of scales in a cascade process, and the ampli-
tudes are proportional to a measure distributed by a multipli-
cative construction. In order to introduce skewness and other
nonzero odd-order structure functions, the tent functions in-
clude a skew parameter, which is adjusted such that the syn-
thetic turbulence signal is consistent with Kolmogorov’s
four-fifths law. In the MMLM method �14� no attempt is
made to introduce intermittency by an a priori statistical
model and nor are there separate parameters to be tuned to
reproduce some prescribed anomalous scaling exponents.
The spatial concentration of intense turbulent activity stems
essentially from the action of the advective term in the
Navier-Stokes equation �which is represented by the dis-
placement of the fluid particles by their own constant initial
velocity�. The ability of just the advective term to generate
intermittency in the sense of long tails in the PDFs is reason-
ably well understood �26–29�. Nevertheless, the issue of
anomalous scaling is more subtle. Hence, it is of interest to
determine if inertial-range anomalous scaling arises even in
the simple dynamics on which the MMLM approach is
based.

In Sec. II we review the MMLM approach and structure
functions up to 12th order for the synthetic velocity field are
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obtained and analyzed in Sec. III as function of the time
scale used in the advection step at each scale. Based on the
results and observations about the effects of imposed time
scale, a modified procedure is introduced in Sec. IV which is
based on the scale-dependent turnover time. Using such a
more physically relevant time scale is shown to yield syn-
thetic fields that accurately reproduce anomalous scaling ex-
ponents. Some features of the vorticity field are studied in
Sec. V, and Sec. VI presents an analysis of the multifractal
characteristics of the energy dissipation. Finally Sec. VII
documents statistical properties of the pressure field associ-
ated with the synthetic velocity fields generated.

II. BACKGROUND

The MMLM approach begins with a standard Gaussian
divergence-free velocity field constructed by superposing
random-phase Fourier modes and a prescribed energy spec-
trum. At this starting point the method is equivalent to what
is commonly used to initialize simulations of isotropic turbu-
lence in Fourier space �30,31�. The basic idea of the MMLM
approach is based first on a multiscale decomposition at any
arbitrary level n or scale �n=2−nL, n=1, . . . ,M �where L is a
reference large-scale that typically scales with the turbulence
integral scale�:

u = un
� + un

�. �5�

The decomposition used in Ref. �14� is based on sharp filter-
ing in Fourier space at cutoff wave number kc,n=	 /�n. The
filtered field un

� is obtained by low-pass-filtering the velocity
field generated using the MMLM method in the previous
level n−1, except for the first step when n=1, for which the
initial random field is filtered. At each scale, the field is
sampled in physical space on a grid that uses the correspond-
ingly coarse mesh spacing �n. The MMLM method begins at
the largest scale available �lowest n=1�. The MMLM
method is based on distorting the large-scale portion of such
a field by mapping fluid particles from their given positions x
�grid points with mesh spacing �n� to new positions x� de-
termined by their Lagrangian displacements:

x� = x + tnun
��x�, vn

��x�� � un
��x� . �6�

The time interval tn is determined as

tn =
�n

urms,n
� , �7�

where urms,n
� is the root-mean-square �rms� characteristic ve-

locity of the velocity field low-pass filtered at scale �n. Note
that using this sort of Courant-Friedricks-Lewey �CFL� time
scale allows particles to remain within a region whose size is
�in an rms sense� on the order of the mesh size �n. Allowing
much longer times than this was shown in Ref. �14� to lead
to resulting velocity increments with Gaussian statistics, due
to mixing of particles that could originate from parts of the
flow with uncorrelated initial velocities. Conversely, using
much smaller times, the deformation was insufficient and did
not lead to significant non-Gaussianity. New velocities vn

��x�
at the Eulerian positions x are obtained from the deformed

velocity field �residing on the nonuniform, deformed mesh�
by interpolating over the velocities of nearby surrounding
fluid particles that have arrived close to x after being moved
by Eq. �6�. The interpolation used is a simple weighted av-
erage, using the inverse of the distance 	x−x�	 as a weighting
function, over a ball of radius �n around x:

vn
��x� = 


	x−x�	��n

	x − x�	−1vn
��x��� 


	x−x�	��n

	x − x�	−1.

�8�

The new velocity field vn
� is made solenoidal by project-

ing it onto its divergence-free part. This is done in wave-
number space, yielding

ŵn
��k� = P�k� · v̂n

��k� . �9�

Here, P�k� stands for the projection tensor �Pij =�ij

−kikj /k2� and ·̂ denotes Fourier-transformed quantities. This
projection could be regarded as an explicit addition of a pres-
surelike effect that enforces zero divergence, although this is
a purely numerical action, without any dynamical connection
with Eq. �1�.

Also the amplitudes of the Fourier modes ŵn
� are rescaled

in order to match a prescribed energy spectrum E�k� accord-
ing to

ẑn
��k� = ŵn

��k�� E�k�
1

2 

	q	=k

ŵn
��q� · ŵ

n

�*�q�

1/2

. �10�

This divergence-free field at large scales is now combined
with the high-pass-filtered part of the velocity field, un

�,
which has remained unaltered at the current level:

u = zn
� + un

�. �11�

Then the field u is taken as the starting point to advance to
the next level. For this purpose it is filtered again, now at a
higher cutoff wave number for level n+1, and the mapping
given by Eqs. �6� and �7� and the other operations are applied
once more with n←n+1. In this way the distortive action
advances from a scale of the order of the integral scale L
toward progressively smaller scales, until reaching a scale of
the order of Kolmogorov scale 
. At the end of this process,
the effects of the mappings have been superposed and accu-
mulated over a range of spatial scales. More details can be
found in Ref. �14�.

III. STRUCTURE FUNCTIONS FOR THE MMLM FIELD

First, the MMLM approach outlined in the previous sec-
tion was used to generate synthetic velocity fields over a
regular mesh of NM

3 =5123 points in a domain of size �2	�3

with periodic boundaries. The smallest scale considered is
given by the separation �M =2	 /NM between neighboring
points in this mesh, while larger scales are represented by
reduced numbers of points, Nn=NM /2M−n, for each level n
=1, . . . ,M in the sequence. The starting Gaussian velocity
field is generated as Fourier modes with random phases, and
the prescribed energy spectrum is �32�
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E�k� = C�2/3k−5/3 exp�− ����k
�4 + c

4�1/4 − c
�� , �12�

with C=1.5, �=5.2, and c
=0.4. The spectrum �12� does not
include an energy-containing range, so that the extension of
the inertial range is increased for the given grid resolution.
The parameters urms, �, and the viscosity � were specified
such that the Reynolds number �at Taylor scale� is Re


=200 and kmax
=2.1. The MMLM procedure is applied
starting at n=1 with a coarse grid with N1

3=163 modes—i.e.,
in this case L=2	 /8. The sequence is applied recursively for
163�323�643�1283�2563�5123—i.e., M =6. The result-
ing field is analyzed focusing on various statistical com-
monly used to quantify intermittency and local structure in
turbulence. First, all of the observations made in �14� for a
2563 field are reproduced for the present 5123 field, such as
the skewness of longitudinal and flatness of transverse, ve-
locity derivatives, elongated tails in the PDFs for velocity
derivatives and velocity increments, the preferential align-
ment of vorticity with the intermediate eigenvector of the
strain-rate tensor, the prevalence of axisymmetric extension,

and the tear-shaped joint PDFs of second and third invariants
of the velocity gradient tensor.

Here the interest is in scaling properties of the structure
functions. Figure 1 �solid lines� shows the structure functions
of various orders. The structure functions tend towards an
approximated power-law behavior, but only over a limited
range of lengths r corresponding approximately to an inter-
val of 17�M �r�100�M, which corresponds approximately
to 25
�r�150
 since �M =1.5
.

For the region where the slopes remain approximately
constant, those slopes fall very near the Kolmogorov scaling
�K41 slopes are indicated by the dashed lines�. In order to
check whether this scaling behavior changes as function of
available scale ratio �“Reynolds number”� the procedure is
repeated for a domain using 10243 points, again starting the
sequence with an ensemble of 163 points, but proceeding
until M =7. For this case the parameters were set such that
Re
=476 and kmax
�1. Results are presented in Fig. 2 as
the solid lines. For better visualization, the ranges of scales

FIG. 1. Longitudinal velocity structure functions for a 5123 MMLM field. Separation r is nondimensionalized by the smallest scale �M.
The dashed lines correspond to the slope for Kolmogorov scaling as indicated.
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with log10�r /�M� below 0.5 and above 2.5 have been ex-
cluded, since the former is well into the dissipative range and
the latter contains large-scale inhomogeneities. These plots
show slightly better power-law behavior still with scaling
exponents that do not differ significantly from the values
predicted by �1941� Kolmogorov theory. Recall that these
synthetic fields still exhibit all of the turbulent features men-
tioned before �such as skewness and PDFs for velocity gra-
dients, statistics for enstrophy and strain-rate production,
vorticity alignment, etc.�. However, quite clearly there is no
anomalous scaling behavior.

The large-scale energy-containing portion of the spectrum
is not included in function �12� in order to extend as much as
possible the inertial range. To discard the possibility that the
observed behavior is somehow associated with a lack of re-
alistic turbulent characteristics at the largest scales at which
the procedure starts, we compute another case with a spec-
trum that contains a realistic large-scale portion �32�

E�k� = C�2/3k−5/3� kL

��kL�2 + cL�1/2�5/3+p0

�exp�− ����k
�4 + c

4�1/4 − c
�� , �13�

where p0 is taken to be 4 and cL is determined so that E�k�
integrates to the prescribed total kinetic energy 3 /2urms

2 . This
case has an equivalent Reynolds number of Re
=407 and
kmax
�1, and the sequence starts from an ensemble of 83

points, advancing up to the 10243-point level �i.e., M =8�.
Structure function results for this field are shown by the thick
dashed lines in Fig. 2. As expected, the approximate power-
law scaling range is narrower now, due to the shortened in-
ertial range, but still the scaling exponents are quite close to
K41 behavior and there is no indication of anomalous scal-
ing. Figure 3 shows the modification of the 12th-order struc-
ture function at each step in the MMLM sequence for this
second case. The lower solid line corresponds to the initial
Gaussian field, while the upper solid line is the final result,

FIG. 2. Longitudinal velocity structure functions for 10243 MMLM fields. Separation r is nondimensionalized by the smallest scale �M.
Solid lines: using the spectrum function �12�. Dashed lines: using the spectrum function �13�. The thin short-dashed lines correspond to the
slope for Kolmogorov scaling as indicated.
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after applying the procedure to the last level �n=8� in the
sequence. The range for log10�r /�M��0.9 is not shown in
this plot, as in the previous figure one can see that an ap-
proximate inertial range ends at log10�r /�M��1. The results
at intermediate levels are shown with dashed lines. It can be
seen that as the sequence progresses, a narrow interval is
forming around log10�r /�M��2 in which the slope of the
curve is depressed. However, the total cumulative effect is
weak at smaller scales and the final curve bends down to-
ward a slope not very different of the slope corresponding to
Kolmogorov scaling.

The parameter tn is the most important quantity that de-
termines the extent of the distortion at each scale introduced
by the Lagrangian mapping. As given by Eq. �7�, tn is
equivalent to the average time that it takes for a typical par-
ticle to move between neighboring nodes �sweeping time
scale �33��. As said before, this allows enough distortion to
give rise to non-Gaussian turbulent features, but avoiding a
rerandomization of the field by the combination of uncorre-
lated velocities. This choice of tn, however, depends on an
arbitrary length ��n� not connected with the intrinsic dynam-
ics of the turbulence. A more physically relevant time scale is
the turbulent Lagrangian “eddy turnover” time proper of that
length scale. Therefore, it is possible that the lack of anoma-
lous scaling could be related with the disparity between these
two time scales. Indeed, initial tests where the degree of
distortion was increased by doubling the value of tn at each
level showed a more significative bending to lower slopes in
the log-log curves of the structure functions at large scales,
while the rest of the scaling range remained basically un-
modified. This motivates us to consider a modified procedure
in which the Lagrangian map occurs over a more physically
motivated time scale.

IV. MULTISCALE TURNOVER LAGRANGIAN MAP
PROCEDURE

The characteristic “turnover” time at scale r �or eddy turn-
over time� in a turbulent flow can be estimated as

�r �
r

�ur
, �14�

where �ur is a typical value for the relative velocities asso-
ciated to that scale. It is well known that in the phenomenol-
ogy of turbulence the average energy flux through scale r in
the inertial range is considered constant and equal to the
dissipation rate �, leading to the relation �ur��r��1/3. Taking
as scale r the neighboring points separation �n of the nth
level, we have

�n �
�n

2/3

�1/3 . �15�

On the other hand, since the mapping is done using a low-
pass velocity field, the rms velocity urms,n entering into the
calculation of tn is approximately equal to the rms velocity
urms of the whole turbulent field that we are trying to mimic,
for a typical spectrum where the energy is mostly contained
at large scales. Since urms���L�1/3, the ratio of tn to the
turnover time can be estimated as

tn

�n
� ��n

L
�1/3

. �16�

�n is regarded as representative of the time taken for a struc-
ture of size r to experience a considerable distortion by the
turbulent motions and to pass its energy on to yet smaller
scales via the cascade. Relation �16� shows that tn is progres-
sively smaller in proportion to �n as the procedure advances
from one level to the next one, so that there is an increasing
disparity between tn and the characteristic “turnover” time of
true turbulence for the particular scale at which the mapping
with tn is being applied.

Hence, the mapping procedure will be modified such that
the particles will be advanced for an accumulated equivalent
time �n given by Eq. �15� at each level, instead of tn. It was
established in Ref. �14� that the particle displacements
should not be very different from the original separation �n.
In this way, regions of steep velocity gradients are generated
mostly by converging trajectories of particles whose initial
separation was of the order of �n and, therefore, had corre-
lated velocities �since the field was filtered in order to be
smooth at scale �n�. For larger displacements, the decorrela-
tion among the velocities of arriving particles leads to a re-
randomization of the velocity field, destroying the coherency
introduced by the mapping at the preceding level. Because of
this, the total advancement will be executed in several steps
at each level, so that the rms displacement in one step is still
of the order of �n. More precisely, for each level in the hier-
archy of scales, the sequence of mapping �6�, interpolation
and projection is applied D times, with

D = � urms,n

��n��1/3� �17�

��·� denotes nearest integer�, and each tn to be used in Eq. �6�
is given by the corresponding fraction of �n—namely,

FIG. 3. Twelfth-order longitudinal structure function for the
10243 MMLM field with spectrum �12�, at different stages in the
sequence n=1, . . . ,M. Lower solid line corresponds to the initial
Gaussian field; upper solid line is the final result; results at inter-
mediate levels n are shown with dashed lines.
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tn =
1

D
��n

2

�
�1/3

. �18�

By repeating the procedure D times, a total time �n can be
accumulated through a sequence of D time steps, each of
duration equal to tn. After each of these advancements, the
interpolation to obtain the velocities vn

� at the Eulerian points
xn is applied. These velocities are rescaled directly in physi-
cal space to keep constant the rms velocity of the field, and
the projection onto a divergence-free condition is performed.
For brevity, this modified mapping procedure will be denoted
as the multiscale turnover Lagrangian map �MTLM� in the
following.

A new 10243-point synthetic turbulent field was generated
with the MTLM approach. The prescribed energy spectrum
has the form given by Eq. �13�, with the same conditions
than the ones used in the last MMLM case shown �Re


=407 and kmax
�1�. The results for longitudinal velocity
structure functions in this field are presented in Fig. 4. The
two thin dashed lines in each plot show power laws of r

according to Kolmogorov scaling exponents �p= p /3, and the
scalings using the exponents generally reported in turbulent
flows �21,34–37� are also shown �for orders p=2 and p=4
the Kolmogorov values are not shown�. It is possible to see
that the MTLM field presents a much better agreement with
the known intermittent behavior in the inertial range than the
previous cases obtained in Sec. III. There is a clear and sys-
tematic departure from the Kolmogorov scaling, and the
slopes of the structure functions are remarkably close to the
values associated with real turbulence. Specifically, the ref-
erence exponents used as comparison in Fig. 4 are an aver-
age of the experimental measurements of Ref. �34� for Re


=515,536,852. The average of the exponents obtained in
direct numerical simulation �DNS� by Gotoh et al. �37� at
Re
=381,460 differ from the values used in the plots in a
range of 0.4% to 1.7% for p�10 �the exponent for p=12 is
not available in this second reference�. Applying the MTLM
synthesizing method it is possible now to observe also
inertial-range intermittency in a smaller case with 5123

points. Conditions for this case are Re
=253 and kmax
�1,
and the corresponding longitudinal structure functions for it

FIG. 4. Longitudinal velocity structure functions for 10243 �solid lines� and 5123 �dashed lines� MTLM fields. Separation r is nondi-
mensionalized by the smallest scale �M. The thin dashed lines correspond to the power laws as indicated.
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are also plotted in Fig. 4 �thick dashed lines�.
For the functions of order p=8, 10, and 12, the good

agreement covers a decade of scales. At small scales, the
functions depart from the power-law trend at log10�r /�M�
�0.7. This length is associated approximately with a wave
number of k�2	 /r=204 �which corresponds to k
=0.406�,
being consistent with the wave number at which the drop off
of the energy spectrum takes place at the high-wave-number
end of the inertial range. A linear regression fitted �for the
10243 case� to the structure functions in the range 0.7
� log10�r /�M��2 gives for the orders p=8, 10, and 12 the
exponents �8=2.235, �10=2.504, and �12=2.703, respec-
tively.

In order to check for appropriate convergence of statistics,
we compute the PDFs for the longitudinal velocity incre-
ments ��u�r� at different separation scales r for the highest
order analyzed �p=12�. Figure 5 shows the results for
log10�r /�M�=0.9, near the high-wave-number end of the in-
ertial range and for log10�r /�M�=1.6 well into the inertial
range. Results for other r in the range 0.7� log10�r /�M��2
present similar behavior. Here Z is ��u�r� normalized by its
standard deviation �r and the curves show �r

p−1ZpPDF�Z�,

which is equivalent to ���u�pf���u�, where f is the PDF for
��u�r�. These functions, when integrated, will give the
pth-order moments, and we can see that the weighted PDFs
are sufficiently smooth, particularly over the ranges that
dominate the values of the integrals. For the case
log10�r /�M�=0.9, at the left end it can be seen that the
weighted PDF is not entirely closed and thus the moment
may be overestimated by a few percent. But the effect of this
on the power-law behavior is negligible. Thus, we consider
the statistics reasonably well converged for the orders of the
structure functions obtained.

Figures 6 and 7 depict the skewness S and flatness F of
the ��u�� functions at different separations for both fields.
The general qualitative trend agrees well with the real turbu-
lence behavior. The flatness and �negative� skewness grow
slowly in the inertial range, and on approaching the dissipa-
tive range they undergo a very fast increment �38,39�. For
log�r /�M�=0 the value of �u� can be regarded as propor-
tional to the derivative �u� /�x� ��=1,2 ,3; no summation�.
For both cases, the values of the flatness at that smallest
numerically possible separation match correctly the experi-
mental values in turbulent flows collected from various
sources by �22�: F�8–9 at Re
�400 and F�7–8 at Re


�250.
In Fig. 8 we show the third-order structure function for

the 10243 case. One can see that the MTLM field displays
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FIG. 5. Premultiplied PDFs �with p=12� for longitudinal veloc-
ity increments normalized by their standard deviations, Z
=��u�r� /�r, obtained with the 10243 MTLM field. � symbols and
left vertical axis: log10�r /�M�=0.9. � symbols and right vertical
axis: log10�r /�M�=1.6

FIG. 6. Skewness of longitudinal structure functions as function
of separation r between points. Solid line: 10243 field. Dashed line:
5123 field.

FIG. 7. Flatness of longitudinal structure functions as function
of separation r between points. Solid line: 10243 field. Dashed line:
5123 field.

FIG. 8. Third-order longitudinal velocity structure functions for
the 10243 MTLM field. For the dashed line � is the prescribed
dissipation in the energy spectrum.
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the correct trend of ���u��r��3��r in the inertial range, which
holds true even for an intermittent field. The straight line in
the plot corresponds to the right-hand side term in Eq. �3�,
where � is the constant value of dissipation that enters into
the prescribed energy spectrum. The only difference between
the synthetic and a true turbulent field is an undershoot in the
proportionality constant; i.e., for the synthetic field, we ob-
tain ���u��r��3��−0.55�r. It is useful to note that the physi-
cally realistic coefficient −4 /5 arises from integration of the
Kármán-Howarth equation, which itself comes from the dy-
namical Navier-Stokes equations. Since the MTLM proce-
dure does not correspond to true Navier-Stokes dynamics,
such quantitative differences are perhaps not surprising.

V. VORTICITY AND STRAIN-RATE FIELDS

Having established that the multiscale Lagrangian map
with a turnover time scale is able to generate non-Gaussian
velocity fields endowed additionally with realistic inertial-
range anomalous scaling, it is of interest to study again some
aspects of the geometrical structure of the velocity field, such
as the spatial organization of the vorticity and strain rate.
Figure 9�a� shows contours of vorticity magnitude � in a
slice of the 10243 MTLM field. The central 1282 subregion
of this slice is shown magnified in the Fig. 9�b� view. The
values of � have been normalized by the maximum vorticity
in the complete field. For scale reference, lengths corre-
sponding to L and to 50
 are indicated in the plots. Note that
the formats of these figures resemble somewhat those used in
Ref. �40� for DNS results, but show bidimensional cuts in-
stead of three-dimensional isosurfaces. Figures 9�c� and 9�d�
present the vorticity magnitude at the same positions for the
initial Gaussian field.

The general structure of the spatial distribution of vortic-
ity is similar to the one observed in �14� for a smaller field
generated with the synthesizing procedure of Sec. III, which
does not produce inertial-range anomalous scaling. The
strong vorticity appears concentrated in thin elongated re-
gions embedded in a background of weak vorticity which
occupies most of the volume. By contrast, the initial vorticity
had a structureless fine-grained pattern uniformly distributed.
For the MTLM case, some of the region of concentrated
vorticity have lengths of more than 300
, while their thick-
ness is comparable to the smallest resolved scale �M ��3
�.
Although at first sight the set of thin objects in these bidi-
mensional views could resemble the tangle of vortex fila-
ments characteristic of turbulent fields, they are instead cuts
through more or less 2D surfaces of isovorticity, as detailed
scanning of the whole field and three-dimensional plots of
isovorticity have revealed. Like in the results obtained with
the unmodified MMLM method, the concentration of vortic-
ity takes place in the form of vortex sheets and no clear
evidence of vortex tubes or vortex filaments are seen. The
strain rate �not shown� is highly correlated with the vorticity,
and therefore cuts through the local energy dissipation field
are qualitatively very similar in appearance to Fig. 9.

Figure 10 shows conditional averages of enstrophy pro-
duction,

� � �i� jSij �19�

�where Sij =
1
2 ��iuj +� jui� is the strain-rate tensor�, while Fig.

11 shows conditional averages for the generation of strain by
self-amplification,

� � − 2SijSikSkj , �20�

and for the combined term,

� � − 2SijSikSkj −
1

2
�i� jSij , �21�

acting as the inviscid and pressureless part of the rate of
generation of strain in the governing equation for 	S	
�SijSij �41�. The quantities are conditioned on regions of
different intensities of strain and vorticity with respect to the
mean field values.

These statistics are presented in the same form as it is
done in Ref. �14� for MMLM synthetic turbulence and in
Ref. �41� for real turbulence. The results are essentially the
same as those obtained for the MMLM field without anoma-
lous scaling: the behavior is quite consistent with the one
observed in real turbulence �41� for the strain-dominated re-
gions, but the same quantities conditioned on vorticity-
dominated regions tend to follow the trends of the strain-
dominated region, in a damped way, instead of showing a
very weak dependence on vorticity intensity as occurs for the
real turbulent flow. In real turbulence the statistics condi-
tioned over regions with the strongest vorticity are domi-
nated by vortex tubes or filaments, which are relatively pas-
sive in comparison with the regions of strongest strain, being
mostly distorted by the part of the strain upon which they do
not react, and not by self-amplification. As a consequence,
these regions do not present a particularly high local enstro-
phy generation �see �42,43��.

The PDFs of vorticity and strain-rate magnitudes for the
10243 MTLM field are shown in Figs. 12 and 13. The same
figures also show the corresponding PDFs for MMLM and
Gaussian fields of the same size. The MTLM vorticity pre-
sents the same behavior as observed in turbulence DNS �e.g.,
compare with Fig. 15 of Cao et al. �44��. The PDFs reflect
the high intermittency of the vorticity and dissipation in the
MTLM field. For the MMLM case, on the other hand, the
intermittency of these small-scale properties, although still
higher than Gaussian levels, are considerably lower. The ac-
cumulation of enough distortion at the end of the sequence of
scales is thus crucial in determining proper levels of inter-
mittency in the synthetic fields. Interestingly, the crossing of
the synthetic fields PDFs over the Gaussian ones occurs
around � /�rms=1.8 and 	S	 / 	S	rms=1.8, which are the same
values found in DNS in Ref. �44�. From these PDFs we can
see also that the distribution of vorticity and strain �and thus
dissipation� are approximately the same in the synthetic field.
This is consistent with the observation that the zones of high
vorticity in these fields tend to coincide with the zones of
intense strain-rate.

These observations support the previous statement about
the absence of vortex-tube structures in the synthetic field.
Notwithstanding the enhanced distortion introduced at each
scale level in the MTLM case compared with the simpler
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MMLM case, spatial formations akin to vortex-tube are not
produced by the Lagrangian mapping. Since several studies
�e.g., �45,46�� have concluded that such structures are formed
by instabilities of existing vortex sheets �at least in homoge-
neous turbulence�, the vorticity distribution produced by the
map resembles an early stage of their development. It seems
that the mechanism involved in their final formation is too

complex to be captured, even in a rudimentary way, by the
very simple kinematics and minimal dynamics encompassed
by the mapping and projection process. On the other hand,
the production of vortex sheets appears as natural, given the
tendency of the mapping to generate converging streams,
which can be related with two extensional and one contrac-
tive principal strain. Recall that in the advancement from one

FIG. 9. Contours of isovorticity. �a� 10242 slice in the MTLM field. �b� Zoom-in view for the 1282 central subregion in �a�. �c� 10242 slice
in the initial Gaussian field. �d� Zoom-in view for the 1282 central subregion in �c�.
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level to the next one in the sequence of scales, a new band of
higher wave numbers �associated with still Gaussian modes�
is added to the range of wave numbers over which the map-
ping has already acted. Thus, at a given level, the low-pass-
filtered velocity field generated in the previous level can be
regarded as a large-scale distortion with respect to the vor-
ticity field of the new additional band. The prevalence in the
larger-scale field of the strain state mentioned above will
flatten the additional incoherent vorticity into more localized
sheets. As discussed in �47�, the direct production of a vortex
tube by such kind of strain in a multiscale vortical flow re-
quires very special conditions �related generally with the
small-scale vorticity located symmetrically with respect to
the large-scale strain�, which are unlikely to occur in a ran-
dom field.

VI. MULTIFRACTAL ANALYSIS OF THE DISSIPATION

The concentrated spatial distribution of vorticity modulus
as seen in Fig. 9 is an indication also of strong nonuniformity

of the energy dissipation �the local dissipation at a given
position being equal to ���i�i+2� jui�iuj��. To avoid confu-
sion with the mean energy dissipation � over the whole field,
the local dissipation field at position x will be denoted as �̃
and is determined by the strain-rate tensor as

�̃�x� = 2�S�x�:S�x� . �22�

In this section �̃ will be referred to simply as the dissipation.
The conventional thinking of the turbulent energy transfer
among scales as a cascade process from larger to smaller
eddies until reaching dissipative scales has led to the idea
that the characteristics of this process can be manifested in
the final product at the end of the cascade—namely, the en-
ergy dissipation �48�. A cascade �or a multiplicative process�
can usually be described using the multifractal formalism,
which is especially well suited for the description of strongly
intermittent measures �21,49,50�. The specific measure den-
sity considered in turbulence is �̃�x�. The cumulative dissi-
pation Er in a region � of size r centered at x is

Er�x� = �
x����x;r�

�̃�x��d3x�, �23�

and the total dissipation in the whole domain of size H will
be denoted as Et. For definiteness, the regions � will be

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
|S|/〈|S|〉 , ω /〈ω 〉

0

10

20

30

40

50

60

70

80

90

100

110
〈σ

〉| c
/〈

σ〉

FIG. 10. 10243 MTLM field: conditional averages of enstrophy
generation �. Solid line: conditioned on 	S	 / �	S	�. Dot-dashed line:
conditioned on � / ���.
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FIG. 12. PDF for vorticity magnitude � for 10243 fields. Solid
line: MTLM field. Dashed line: MMLM field. Dot-dashed line:
Gaussian field.
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taken as boxes of side length r centered at the position x.
The characterization of a multifractal can be given in

terms of Renyi dimensions Dq or by the singularity spectrum
�24�. After covering the volume with equal boxes of size r, a
local scaling relation is written as Er /Et��r /H�� and the
Hölder exponent � quantifies the strength of the singularity
at x as r→0. For a multifractal, Er scales with many differ-
ent exponents � on corresponding different sets of fractal
dimension f���. The function f��� is the singularity spec-
trum. Note that the scaling relation for Er /Et implies that the
dissipation averaged over the boxes of size r scales as �r /�
��r /H��−3, and thus singular behavior as r→0 occurs for
��3.

A scaling relation can be written also for the sum of Er
q

over all disjoint � boxes of size r,



�

�Er

Et
�q

� � r

H
���q�

, �24�

and the singularity spectrum is given as a Legendre trans-
form of the moment exponents ��q�,

f���q�� = q��q� − ��q� , �25a�

��q� =
d�

dq
. �25b�

Computation of the sums 
��Er /Et�q are carried out for
43 values of q in the interval q� �−2,3.25�, over all possible
disjoint boxes of size 9.3�r /
�238 in the 10243 field. This
interval of scales allows to encompass a substantial part of
the dissipative and inertial ranges. At larger r the number of
boxes becomes too small for statistical sampling. Results of

��Er /Et�q for representative values of q are shown in Fig.
14. A power-law behavior consistent with Eq. �24� is well
satisfied in general terms for all the q values considered,

becoming a little more ambiguous, but still reasonable, for
the higher exponents. Least-squares regression was used to
obtain the moment exponents ��q� from the data. For this
purpose the fittings should be restricted to a range of r values
where the viscous damping introduced by the imposed spec-
trum is not expected to affect the results. This lower limit is
known to be around r /
�20 in real turbulence. On the other
hand, to remove effects from the large-scale range, scales
corresponding to r�0.2L �where L is the integral length
scale� are also excluded. This determines a range of 0.81
� log10�r /�M��1.81, which is referred to as “range A” in the
following �since �M =3.09
, the range corresponds to 20
�r /
�200�.

In order to get a sense of variability of the results because
of the uncertainty in the proper scaling range, we take also
two additional ranges that modify by a factor of 2 the lower
or upper bound of r /
 in range A: range B for 0.81
� log10�r /�M��1.51 and range C for 1.11� log10�r /�M�
�1.81. The cases shown in Fig. 14 display the fittings over
these three ranges of scales.

Figure 15 presents the exponents ��q� obtained using
range A for the fitting �using��. Note that for a nonintermit-
tent space-filling dissipation, as would be implied by the K41
theory, the dimensions Dq would be equal to 3 for all q and
therefore ��q� would be given by the linear function ��q�
=3�q−1� �shown as the dotted line�. For comparison, the
figure also shows the exponents obtained from a field syn-
thesized with the MMLM procedure of Sec. III �open circles�
for the same conditions. Interestingly, and consistent with the
results of structure function scaling, the MMLM method pro-
duces essentially a K41 scaling.

The singularity spectrum f��� is obtained from the expo-
nents ��q� applying Eqs. �25�, and it is shown in Fig. 16 for
the three scaling ranges aforementioned, along with data
taken from Ref. �24�, coming from experimental observa-
tions in laboratory and atmospheric flows. The spectrum for

FIG. 14. Moments of the normalized cumulative dissipation for the indicated order q, as function of the size r of the � box. �: results
for a 10243 MTLM field. �: results for a 10243 MMLM field. Dotted lines: K41 scaling. Solid lines: fitting over range A=0.81
� log10�r /�M��1.81 �20�r /
�200�. Dashed lines: fitting over range B=0.81� log10�r /�M��1.51 �20�r /
�100�. Dot dashed line:
fitting over range C=1.11� log10�r /�M��1.81 �40�r /
�200�.
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the synthetic field resembles reasonably well the observed
behavior in real turbulence, and there is good quantitative
agreement in the core region 2.5���3.5. For the right tail
of the spectrum, the synthetic f��� does not decay as fast as
in the experimental data, while the agreement is better on the
left tail. Recall that the higher � exponents correspond to the
moments of higher negative orders q, while the lower � val-
ues are associated with the higher positive q’s. Thus, besides
the obvious fact that the extremes of the spectrum are likely
to be more affected by the uncertainty in the proper scaling
range, we have to consider also that the negative order mo-
ments emphasize the smallest �near zero� values of the dis-
sipation in the field. These zones of low dissipation arise
mainly in the regions where the Lagrangian mapping pro-
duces a relative depletion of fluid particles, so that the inter-
polation gives a reduced local velocity gradient �as comple-
mentary to the regions where convergence of fluid particles
takes place originating high velocity gradients and dissipa-
tion�. Because of the characteristics of the construction of the

velocity field, the structure of those regions of smoothed ve-
locity distributions and depressed turbulence intensity are set
mostly during the first stages of the synthesizing procedure
�i.e., by the deformations introduced at the larger scales in
the sequence�, while the zones of high dissipation, empha-
sized by q�0, are the result of the accumulation of distor-
tion over distortion of the local velocity field. In this sense
the procedure acts more effectively in the build up of the
most singular regions than in the development of the most
regular ones. This can explain why the agreement on the left
side of the singularity spectrum is better than on its right
side.

The good agreement in the core of the spectrum suggests
that some important characteristic features of the multifractal
nature of the turbulent dissipation are reproduced well by the
MTLM approach. For the discussion below we take range A
as the base line for comparison, and the results for ranges B
and C are indicated in parentheses in that order. The value of
f���max occurs for q=3.18 �3.21, 3.16� in the synthesized
case, which falls close to the value q�3.13 found in the
turbulent spectrum. f���max is equal to D0=3, the dimension
of the embedding space. More important is the dimension D1
�the information dimension� which is the dimension of the
set that contains asymptotically most of the dissipation. D1 is
equal to ��q=1�, and this is also the � value that satisfies
f���=� �since ��q=1�=0 from relation �24��. The value of
D1 derived in this way from the spectrum of the synthetic
field is D1=2.89 �2.85,2.93�, which agrees well with the
value D1�2.87 found in real turbulence �24�. It is also pos-
sible to compute the intermittency exponent � �defined tra-
ditionally such that ��r

2� /�2��L /r��, for 
�r�L�. For low
moment orders the lognormal approximation is valid, which
is equivalent to a quadratic shape for ��q�, and one can find
that �24�

� = � −
d2��q�

dq2 �
q=0

. �26�

The result obtained from the curves in Fig. 15 �numerically
obtained with tenth-order interpolation� is �=0.33 �0.41,
0.25�. This is somewhat larger but still within the range of
often cited experimental estimates for �, which are in a
range �=0.25�0.05 �Ref. �51�� in real turbulence. Thus we
find that MTLM synthetic fields display multifractality in the
implied dissipation field, with intermittency levels that are
slightly stronger, but still comparable to those of real turbu-
lence. Conversely, with a non-Kolmogorovian �CFL� time
scale applied to the distortions at each scale, the dissipation
field remains essentially K41 like, without intermittent scal-
ing. Hence, it appears that in order for intermittency to build
up, it is imperative that the small scales be allowed to evolve
at least during a time equal to their “turnover” time scale.

VII. INDUCED PRESSURE FIELD

In this section we analyze briefly the pressure field in-
duced by the mapping procedure. Although no pressure
forces act during the inertial movement of the particles to
their new positions, the projection operation applied in Fou-
rier space to restore the divergence-free condition has an
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FIG. 15. Moment exponents as function of q obtained from the
scaling relation �24�. �: for a 10243 MTLM field �, for a 10243

MMLM field; dashed line, K41 scaling.
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effect similar to the pressure in a real incompressible flow,
which constrains the velocity field to be solenoidal. Once the
synthesizing procedure has finished, one is left with a sole-
noidal velocity field. If we regard this field as it were the
velocity of an incompressible fluid flow, then it is possible to
obtain an inherent pressure distribution by solving the Pois-
son equation

�2p = − � jui�iuj =
1

2
� · � − S:S , �27�

where p is the pressure divided by the density �since the
density is constant and its value is immaterial here, we will
call p the pressure�. We stress that Eq. �27� is not derived
from any dynamical relation in the synthesizing procedure,
but we are using the Poisson equation to assess the statistical
features of an equivalent pressure implicit in the synthetic
velocity field.

Since the pressure is the solution of a Poisson equation, a
negative skewness for the pressure fluctuation will arise if
the right-hand side �RHS� of the equation is positively
skewed. Negative fluctuations can be expected then predomi-
nantly in regions where the RHS is positive and, in view of
Eq. �27�, this means that negative pressure fluctuations are
associated mainly with regions where enstrophy is dominant
over the strain rate, which in turbulent flows are identified
chiefly as vortex tubes and filament structures. Indeed, the
numerical results in �44� showed that in very-low-pressure
regions, the pressure structure was mostly composed of fila-
ments or tubelike structures. This link between low-pressure
and vortex filaments has been observed also experimentally
�52�.

The pressure is calculated for the 10243 MTLM field ob-
tained in Sec. IV solving for p̂ in Fourier space. Figure 17
shows the PDF for the pressure fluctuations p�= p− �p� nor-
malized by its standard deviation. The figure also shows the
corresponding distributions for pressure fluctuations obtained
from the 10243 MMLM field and from a 10243 Gaussian
field. The distribution for the MTLM field is negatively

skewed and displays a prominent tail at the negative fluctua-
tions side, while at the positive side it is closer to a Gaussian
profile. This form for the PDF is in agreement with observa-
tions for Navier-Stokes turbulence in several DNS studies
�44,53–58�, and it has also been obtained in experiments
�59�. In addition, for the synthetic MTLM pressure field
shown here we obtain a ratio prms� /urms

2 =0.73, not inconsis-
tent with prior DNS results. The skewness coefficient of
pressure, Sp, is considered next. Reported values in �56� at
different Reynolds numbers �up to Re
=235� show that it
remained roughly constant in a range of −1.07�Sp�−0.88.
Similar behavior and values were found also in �44,55�. For
the MTLM synthetic field, the value obtained here is Sp
=−0.96, in good agreement with observed values.

The distribution for the Gaussian field is already nega-
tively skewed �Sp=−0.38�. This is a well-known fact
�44,55,57,60� that has been associated with the specific form
of the Poisson equation solution and the nonlinear combina-
tion of the Gaussian gradients on its source term. On the
other hand, the negative skewness for the MMLM case is
weaker �Sp=−0.16�. We do not have a clear explanation for
this sub-Gaussian behavior of the pressure field of the
MMLM case, but point out that it is reminiscent of the re-
sults obtained in low-Reynolds-number DNS �57�. They ob-
served that at low Reynolds numbers, the pressure field also
had a negative tail that fell under that of the pressure arising
from a Gaussian field. Perhaps the lower intermittency levels
of MMLM correspond to what occurs in real turbulence at
low Reynolds numbers.

The key distinction between the MTLM and MMLM
cases is the increased intermittency for the MTLM case at
the smallest scales �as seen in the PDFs of Figs. 12 and 13�.
Hence, even though for the MTLM fields the intense enstro-
phy and the intense strain still tend to coincide, the high
intermittency levels produce an increment in the magnitude
of local enstrophy and strain differences and the frequency of
large excursions, so that the pressure source term becomes
more effective. The main difference with respect to real tur-
bulence is that these regions of dominant enstrophy and low
pressure occur on sheetlike structures instead of filaments. It
is reasonable to assume that these sheets are precursors from
which the filaments will finally evolve and differentiate upon
the action of the true dynamics. This premise is consistent
with the observation of �58� in DNS of decaying isotropic
turbulence, where the low-pressure regions were found to be
sheetlike at early evolution times and organized as slender
filaments later on for fully developed turbulence.

Another important characterization of the pressure field is
the �three-dimensional� spectrum of pressure fluctuations,
Ep�k�, defined such that

��p − �p��2� = �
0

�

Ep�k�dk . �28�

If the Kolmogorov hypotheses are applied to the local statis-
tics of the pressure, the form

Ep�k� = B�4/3k−7/3 �29�

is found in the inertial range �20�, where B is a constant
coefficient. The experimental measurements of �59� support
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FIG. 17. PDF of normalized pressure fluctuations, obtained
from �solid line� 10243 synthetic MTLM field, �dot-dashed line�
10243 synthetic MMLM field, and �dashed line� 10243 Gaussian
field. The dotted line is a normalized Gaussian distribution.
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the −7 /3 scaling of the pressure spectrum for Re
�600, and
similarly DNS studies with 20483 resolution �40,61� have
given results that approach a −7 /3 power-law.

The pressure spectrum obtained for the synthetic MTLM
field is shown in Fig. 18. It displays indeed a trend that
departs from a −5 /3 scaling and converges to a −7 /3 law in
the inertial range. An average −5 /3 scaling could only be
fitted over a small range of low wave numbers corresponding
approximately to the ten lowest wave-number shells, but for
higher wave numbers the slope clearly tends to −7 /3. The
interval over which the −7 /3 law approximately holds is,
however, narrow in comparison with the range of �imposed�
−5 /3 scaling for the kinetic energy spectrum, also shown in
the graph. All of these characteristics resemble the behavior
observed in DNS of turbulence. For simulations with Rey-
nolds numbers lower than the imposed Re
=407 of the syn-
thesized case, a very narrow range with Ep�k��k−7/3 has
been observed in DNS, along with a wider interval where
Ep�k��k−5/3 �e.g., in �56��, suggesting two scaling ranges.
The computation of �61� at Re
=732 has clarified that Ep�k�
tends to behave as Ep�k��k−7/3 in DNS. But even at that
high resolution, the approach is slow and over a rather lim-
ited interval, similar to what is seen in Fig. 18, but for a
wider range of wave numbers. In the experiments of �59� the
range of −7 /3 scaling for the pressure spectrum is also al-
most one decade shorter �at the low-wave-number side� than
the range of −5 /3 scaling for the energy spectrum, at Re


=1170. Hence, the characteristics of the spectrum of syn-
thetic pressure fluctuations, including the difficulty to clearly
resolve the −7 /3 scaling range at the given Reynolds num-
ber, are not different of what is seen in real turbulent flows.

The spectra for a Gaussian field and for a MMLM field
are also shown in Fig. 18. As expected, for the Gaussian case
the −7 /3 scaling is achieved more easily and over an ex-
tended range. The pressure spectrum for the MMLM case
follows a similar trend than the MTLM one, but its drop-off
at the high-wave-number end of the velocity inertial range
occurs around the same wave number than does the energy
spectrum, as in the Gaussian case. In contrast, the drop-off
for the MTLM spectrum takes place at a significantly smaller
wave number, presenting a more early departure from the

−7 /3 scaling in spite that the kinetic energy is enforced to
follow a −5 /3 law. This shows again the breakdown of Kol-
mogorov scaling in the MTLM field as intermittency
emerges.

Figure 19 presents the PDF of pressure increments
�p�r�= p�x+r�− p�x�. By contrast to the typical PDFs of ve-
locity increments, where the strong deviation from a Gauss-
ian distribution decreases progressively as the separation r
grows, the PDFs for pressure increments display conspicu-
ously stretched-exponential behavior for almost the entire
range of �p�r�. As r continues to grow in the inertial range,
the distributions for the larger separations start accumulating
and the statistics remain markedly non-Gaussian, as the
zoom-in view in the plot shows. The entire behavior is simi-
lar to the observations in DNS of real turbulence �44,56�
where the persistence of non-Gaussianity at large separations
is explained by the long-range action of the pressure. In the
current synthetic case this nonlocal effect comes evidently
from the projection in wavenumber space, which can change
the velocities in the whole domain.

The second-order pressure structure function will scale as
���p�r��2��r4/3 when the pressure spectrum is given by Eq.
�29�. More generally, the Kolmogorov-type dimensional ar-
gument applied to the mth-order pressure structure function
gives

��p�x + r� − p�x��m� � �2m/3r2m/3, �30�

for r in the inertial range. This relation will be affected also
by intermittency. Some authors �see, e.g., Ref. �62�� have
conjectured that if the hypothesis, on dimensional grounds,
of similar scaling for pressure and velocity square is ex-
tended to increments of pressure and velocity, one could ex-
pect that the intermittency exponents of the velocity field can
be applied also to the pressure scaling, so that Eq. �30� could
be corrected as

��p�x + r� − p�x��m� � r�2m, �31�

where �2m is the exponent for the 2mth-order velocity struc-
ture function. This is a controversial point, and at present no
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FIG. 18. Pressure spectrum Ep�k�. Solid line: for the 10243

MTLM synthetic field. Dashed line: for the 10243 MMLM synthetic
field. Dot-dashed line: for a 10243 Gaussian field. The thick dashed
line is the imposed energy spectrum E�k�.
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FIG. 19. PDF of pressure increments for separations r /�M

=1,2 ,4 ,8 ,16,32,48,64,92,128 in the direction of the arrow.
Dashed line is a normalized Gaussian distribution.
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clear verification, numerical or experimental, of Eq. �31� is
available. The argument of pressure scaling in the same way
as the local kinetic energy was questioned by Nelkin �63�.
Hill and Wilczak �64� derived an exact relation for ���p�r��2�
in terms of linear integrals of fourth-order velocity structure
functions, which gives support to Eq. �31� for n=2. How-
ever, it has been shown �65,66� that there is a strong cancel-
lation among the contributions to ���p�r��2� from the veloc-
ity structure functions in the Hill-Wilczak relation, so that a
considerably higher Reynolds number is required for inertial
range scaling of the pressure than for inertial range scaling of
the velocity. DNS has not produced a clear inertial range for
pressure structure functions from which scaling information
can be extracted �in addition, Ref. �65� shows that pressure
scaling properties are highly sensitive to small differences
between the scaling of longitudinal and transversal velocity
structure functions�.

Only in order to document the trend for the synthetic
MTLM field in this respect, we show in Fig. 20 results for
���p�r��m�, with m=1,2 , . . . ,6. Slopes corresponding to the
exponents �2m for turbulence �same values as those used in
Sec. IV� are indicated for reference, although no clear
inertial-range scaling can be discerned. For r approaching
zero the functions tend to the expected behavior as rm. From
Fig. 18 one can estimate k
�10−1 as the high-wave-number
end of the inertial range for pressure scaling, which is
equivalent to log10�r /�M��1.4. For the higher computed or-
ders 4, 5, and 6 the slope of the functions seems to stay close
to the �2m values for a narrow range when log10�r /h��1.4,
while for the lowest orders the slope is somewhat smaller. In
all the cases the slope for inertial range separations is clearly
depressed with respect to the value 2m /3 of the nonintermit-
tent dimensional argument.

VIII. CONCLUSIONS

In this paper we have extended our study about the capa-
bilities of the minimal multiscale Lagrangian map to repro-
duce statistical and geometrical features of hydrodynamic
turbulence. In this approach, the multiplicity of characteristic
spatial scales of turbulence is introduced by a hierarchy of
velocity fields defined on sets of points distributed at differ-
ent separations and the non-Gaussianity stems from the dis-
tortion of these fields by the action of a Lagrangian mapping.
This mapping represents the simplest motion that fluid par-
ticles would follow if all interacting forces were momen-
tarily suppressed. Nonlocal effects are reintroduced by the
projection of the whole velocity field onto its divergence-free
part. For this system, the characteristic spatial scales are
naturally the separation between points at each set in the
hierarchy. On the other hand, the degree of distortion intro-
duced at each scale depends on the timelike parameter of the
mapping. The buildup of non-Gaussian statistical moments
for velocity gradients and increments originates in the emer-
gence of zones where particle trajectories converge in a
somewhat organized way, coming from points whose veloci-
ties were correlated at the beginning of the motion. Since the
velocity fields on each set of points are initially smooth at
that particular scale �after all wave numbers higher than the
cutoff defined by that scale have been filtered out�, velocities
of neighboring points are correlated, and thus the appropriate
displacements should be comparable to the separation be-
tween points. This CFL-like mapping time given by Eq. �7�,
which restricts the magnitude of particle displacements to be
of the order of the separation between points, was used in the
previous work �14�. That synthesizing procedure was shown
to reproduce many important turbulent characteristic associ-
ated with statistical moments of orders 3 and 4, including
key nonlinear energy transfer mechanisms related to velocity
gradients, as well as geometric alignment trends.

In the present paper we have focused mainly on the inter-
mittency and scaling properties of the synthetic velocity field
in the inertial range, and we find that with a mapping param-
eter according to Eq. �7� no significant anomalous scaling of
the velocity structure functions appears in the inertial range.
Although that parameter is sufficient to generate the low-
order moments, the deformation of the velocity field induced
by the mapping becomes progressively weaker as the length
scale is reduced. With the form given by Eq. �7� the time
parameter is not related to the intrinsic dynamics of the tur-
bulent cascade, but only to the “sweeping time scale.” A
modified procedure has been explored for which the map-
ping parameter is calculated in a way such that the accumu-
lated distortion generated takes place, on average, during the
“Lagrangian local eddy turnover time” particular for each
scale. Results obtained with this second form are found to
reproduce adequately the anomalous scaling phenomenon. In
addition, the behavior of the velocity gradients skewness and
flatness shows an improvement, compared with the results of
the original MMLM approach, in the dissipative range. Fur-
ther analysis of the vorticity and strain-rate fields confirms
the previous observations �14� about the organization of the
vorticity in vortex-sheet-like structures and the absence of
vortex filaments. In regard to the spatial structure of energy

FIG. 20. Pressure structure functions of order m for the syn-
thetic field. For clarity, in the lower graph the curves have been
shifted vertically by c=3.3 for m=4 and by c=1.7 for m=5 �c=0
for m=6�.
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dissipation in the synthesized field, this is examined by
means of the multifractal analysis for measures and its sin-
gularity spectrum is determined. The results are in reason-
ably good agreement with the known multifractal character-
istics of dissipation in real turbulence. Consistent with the
analysis of structure functions, the dissipation field generated
using the MMLM approach yielded no multifractal scaling.

To further characterize the MTLM synthetic fields, some
basic statistics have been analyzed for the pressure field im-
plied by the velocity distribution. Comparison with turbulent
data from different sources shows that fundamental proper-
ties such as probability distributions of pressure fluctuations,
the spectrum of these fluctuations, and distributions of pres-
sure increments behave in a similar way to their counterparts
in real turbulent flows.

Two of the key components of turbulence are the self-
distortion of the velocity field and the multiscale structure of
the field. The first of these components is provided in our
synthetic case by the Lagrangian map, while the second is
explicitly introduced by the hierarchy of scales used. The
construction of the velocity field is essentially kinematical,
without any continuous dynamical effect to produce smaller
scales from the larger ones, but in place of that the smaller
scales �with Gaussian statistics� are directly introduced at
each level in the sequence. Then they are allowed to be de-
formed by themselves and by the action of the larger scales
that preceded them. The smaller scales are not directly an
“offspring” of the larger ones, but instead they �with their
initial Gaussian statistics� are added “by hand” onto the
larger-scale velocity field. What stems directly from the
large-scale field is the spatial distribution of locations where
these additional fluctuations are more strongly distorted. The
sequential cumulative deformation of these velocity fields in
the synthesizing procedure plays the connective role between
scales. In the synthetic case no dynamical energy transfer
�energy cascade� takes place since the proper amount of en-
ergy at each scale is imposed by construction during the
rescaling, via the energy spectrum. We have instead a kind of
“cascade of spatial structure” by which spatial intermittency
builds up from spatial inhomogeneities of the deformation
that occurred at the large-scale velocity fields. To explore
this point, additional tests were made where this “accumula-
tion” of spatial intermittency was suppressed artificially. This
was done by letting the velocity field at each scale be de-
formed as before and using the same mapping parameter as
before, but using for each scale the initial Gaussian larger-
scale velocities. In this way the effects of the distortion at the
different scales are not passed down cumulatively, and they
are combined only at the final step. In this case, the final
velocity field remained basically Gaussian and no anomalous
scaling was observed.

The results for the velocity structure functions and the
dissipation indicate that in addition to the self-distortion of
the velocity and the sequential deformation of a multiplicity
of scales, the proper amount of distortion at each scale is
crucial for the appearance of anomalous scaling and the
manifestation of the actual intermittency of the dissipative
scales. The first two elements are sufficient to produce con-
centrated velocity gradients, essentially correct cubic statis-
tical moments dependent on velocity gradients and the inter-
relation between vorticity and strain rate, but the anomalous
scaling and intermittency only arise when the proper physi-
cal information about the extent of the distortion at each
scale is introduced. This information, in the form of the par-
ticular �K41� eddy turnover time for each scale, becomes the
only input of real turbulence dynamics �in addition to the
energy spectrum� that is provided. Note that the prescribed
time scale follows standard K41 scaling and does not include
a priori prescribed intermittency corrections—the intermit-
tency corrections to scaling of structure functions and dissi-
pation arise from the procedure itself.

It is remarkable that with a relatively simple process as
the one shown in this paper, many nontrivial features of tur-
bulence can still be reproduced. Per step, the computational
cost of the procedure essentially is similar to the cost of
DNS, but it has to be performed for only a few such steps.
The cost is dominated by the cost of the time stepping at the
smallest scale, and so the cost is essentially similar to per-
forming DNS with a number of time steps equal to the ratio
D as given in Eq. �17�. This ratio scales as the one-third
power of the scale ratio between largest and smallest length
scales. Hence, when this ratio is of order 103, the cost is of
order O�10� time steps. This is far less expensive than ini-
tializations of DNS that typically require hundreds or thou-
sands of time steps �see Ref. �14� for such a comparison�.

It is also worthwhile mentioning that if the time steps are
reduced, representations of the viscous effects are included,
and the procedure is repeated indefinitely, the method is ex-
pected to approach, in some manner, actual DNS. How this
approach takes place and how the synthetic fields begin to
tend to DNS solutions is left for future inquiries. Also, future
work on this topic will include the study of passive scalar
fields and passive vectors generated by this approach.
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