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Simulations of liquid nanocylinder breakup with dissipative particle dynamics
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In this work, we use a dissipative-particle-dynamics-based model for two-phase flows to simulate the
breakup of liquid nanocylinders. Rayleigh’s criterion for capillary breakup of inviscid liquid cylinders is shown
to apply for the cases considered, in agreement with prior molecular dynamics (MD) simulations. Also, as
shown previously through MD simulations, satellite drops are not observed, because of the dominant role
played by thermal fluctuations which lead to a symmetric breakup of the neck joining the two main drops. The
parameters varied in this study are the domain size, cylinder radius, thermal length scale, viscosity, and surface
tension. The breakup time does not show the same scaling dependence as in capillary breakup of liquid
cylinders at the macroscale. The time variation of the radius at the point of breakup agrees with prior theoret-
ical predictions from expressions derived with the assumption that thermal fluctuations lead to breakup.
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I. INTRODUCTION

The formation of drops from the breakup of liquid jets at
the nanoscale occurs in several applications, including nano-
scale machining [1], superfine ink-jet printing [2], lipid bi-
layer membranes encountered in the Golgi apparatus [3],
self-organizing supramolecular cylinders [4], and drug or
gene delivery to biological cells [5]. While the formation of
drops from the breakup of liquid films and jets at the mac-
roscale has been extensively studied in the literature [6], that
of drops at the nanoscale has only recently been investigated,
primarily through molecular dynamics (MD) simulations.
The behavior of fluids at the macroscopic level is well char-
acterized by equations for Newtonian and non-Newtonian
flows, but at the nanolevel physical processes like thermal
fluctuations begin to play a significant role in determining
the behavior. The standard formulation of the Navier-Stokes
equations does not have the capability to reproduce these
processes, though progress has been made recently toward
developing new formulations [7,8].

Molecular dynamics [9,10] is an obvious choice as a com-
putational tool for the analysis of nanoscale systems. It has
been employed for studying the behavior of polymer nano-
droplets [11], nanojets [7,12,13], boundary conditions at
solid-liquid [14] and liquid-liquid interfaces [15], and mixing
process at the nanoscale [16]; but MD is computationally
expensive. In fact, the physical size of the systems consid-
ered in these studies is at most 50 nm for the large-scale MD
computations by Kadau er al. [16], using about 100X 10°
particles. Hence, extension of MD to study problems with
multiple scales is challenging, unless it is combined with
other methods in the framework of multiscale models. To
overcome this limitation and at the same time capture essen-
tial physics at the submicrometer scales, one approach is to
carry out coarse graining at the molecular level. Coarse
graining will reduce the hard-core nature of the interaction
potential employed in MD, and can reduce the number of
particles and increase the size of numerical time steps.
Coarse graining, however, is a challenging task because of
the need to recalibrate models for the interaction potential,
introduce additional models to account for lost degrees of
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freedom, and calibrate the constants of these models in a
self-consistent way [17,18]. In this paper, the capability of a
recently developed coarse-grained particle-based method,
dissipative particle dynamics (DPD) [19,20], to capture the
physics of liquid nanocylinder breakup is assessed. It is
worth noting that other methods have been suggested as pos-
sible candidates for simulations at the mesolevel. The lattice-
Boltzmann method (LBM) [21-24] is one such method. In
the case of the LBM, however, the connections to
submicrometer-scale physics are not apparent.

The fundamental idea in DPD is to use particles which are
conceptually clusters of many actual atoms or molecules.
The precise correspondence between the numbers of DPD
and MD particles is not generally known a priori; hence, a
physical length scale is not specified. Alternatively, a physi-
cal length scale can be specified a priori, and the correspon-
dence between one DPD particle and the number of atoms or
molecules employed in MD calculated. It is worth pointing
out that systematic methods for coarse graining, where the
relationship between physical scales is known, have recently
been proposed [17]. Of course, in DPD the molecular details
cannot be captured, but Eggers [25] has shown that informa-
tion at this level is not needed to draw useful conclusions,
because the lubrication equation with a stochastic term
added, i.e., without molecular details, can reproduce physics
that leads to nanocylinder breakup. DPD has been employed
for simulating the flow of complex fluids like colloids and
biological matter [18,26-28]. More recently, DPD models
have also been developed to simulate two-phase flows
[29-32]. The two-phase model employed in this work will be
discussed later.

Breakup simulations of nanocylinders have been per-
formed by several authors in the past using MD. Koplik and
Banavar [33] carried out simulations of the rupture of liquid
nanothreads as part of their study of liquid interfaces. They
found that the rupture time of liquid nanothreads was of the
same order as the analytical time scale for rupture that can be
obtained from Rayleigh’s classical solution for inviscid lig-
uid cylinders [34]. This solution is based on the criterion that
capillary instability causes breakup. It leads to the conclusion
that breakup occurs when a disturbance has a wavelength
greater than the circumference of the cylinder. It can be
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shown that, when this is the case, the surface area of the drop
formed is decreased relative to the area of the corresponding
cylinder. More recently, Min and Wong [35] arrived at the
same conclusion, using their MD simulations of nanothreads.
Kawano [36] also performed MD simulations of liquid nano-
threads and found a good qualitative match of simulated
wavelengths with analytical results from classical linear in-
stability theory. While there are these similarities between
nanoscale breakup characteristics and results from classical
theories developed to explain macroscale breakup, differ-
ences also exist.

Satellite drops are rarely formed at the nanoscale. Ray-
leigh’s inviscid solution does not predict the formation of
these drops; but they are predicted through nonlinear analyti-
cal formulations and numerical simulations, and observed in
experiments [24,37,38]. The satellite drops are formed from
the thin ligaments which connect the larger drops during the
breakup process. As the wavelength of the disturbance de-
creases, the ligament becomes shorter and the satellite drop
size decreases. That breakup of nanothreads generally does
not lead to the formation of satellite drops appears evident in
the results of Koplik and Banavar [33], and has been explic-
itly pointed out by Min and Wong [35]. This conclusion has
also been drawn from investigations of the breakup of nano-
jets, where the breakup occurs through mechanisms similar
to those of nanocylinders. Breakup simulations of nanojets
by Moseler and Landman [7] employing MD and Tiwari and
Abraham [39] employing DPD have also shown the absence
of satellite drops. Eggers [25] arrived at the same conclusion
by solving a stochastic differential equation derived by
Moseler and Landman, in which they added a stochastic term
to the lubrication equation describing the evolution of the jet.
Eggers has suggested that there may be exceptions where
large thermal fluctuations in the symmetric neck may lead to
satellite drops.

The absence of satellite drops is attributed to the mecha-
nism of breakup. At the nanoscale, breakup takes place in a
symmetric fashion with the presence of double-cone struc-
tures that are a signature of the important role played by
thermal fluctuations. In other words, the long thin ligaments
seen at the macroscale are not observed. There is, however,
recent evidence that this is pressure dependent. Kang and
Landman [40] carried out MD simulations to determine the
shapes of the pinch-off region during breakup of nanocylin-
ders. They concluded that the shape had a symmetric double-
cone structure in vacuum, but asymmetric threadlike shapes
developed at higher pressures. Whether these then lead to the
formation of satellite drops would be interesting to explore.
They also found that the solution of the stochastic lubrication
equation captured the crossover between the two modes.

Eggers [25] has also studied the dynamics of breakup in
detail. He has pointed out an important difference in the
evolution of the radius at the breakup location. Macroscopic
theory predicts the following relationship for minimum cyl-
inder radius r;, [41,42]:

rminer(T_t)a (1)

where r( is a constant, T denotes the breakup time, and ¢ the
current time. When thermal fluctuations play a dominant
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role, they tend to accelerate the breakup process. Eggers has
shown that the following relationship then holds for the
minimum radius r,;,:

Fmin = rl(T_ t)0'418, (2)

where r| is a constant and other symbols have the same
meaning as in Eq. (1).

In this work, the ability of a DPD two-phase model for
liquid-vapor systems to simulate the breakup of liquid nano-
cylinders is assessed. Similar to the observations made from
MD simulations reported in the literature, it is shown that
simulated breakup events occur when Rayleigh’s criterion is
met. Prior work on breakup time of nanocylinders has ex-
plored its dependence on the radius of the cylinder and con-
cluded that the scaling relation for breakup time at the mac-
roscale holds at the nanoscale [38]. It will be shown in this
work, however, that the scaling holds only when the varia-
tions in radius are considered; but, when viscosity and sur-
face tension are also varied, there are noticeable differences
and the breakup time does not follow the scaling behavior at
the macroscale. The formation of double-cone structures,
prior to breakup, is observed. It is shown that satellite drops
are not formed. The dynamics near the breakup point follow
the theoretical prediction by Eggers.

This paper is organized as follows. In Sec. II we provide
a brief overview of the DPD-based two-phase model used in
this work. Section III presents the results and discussion of
breakup simulations of liquid nanocylinders. We conclude
the paper with summary and conclusions in Sec. I'V.

II. THE DPD TWO-PHASE MODEL

In this section, for completeness, a brief overview of the
DPD-based two-phase model will be provided. A detailed
description of the model can be found in Ref. [32]. The po-
sition and velocity of a DPD particle i of unit mass are com-
puted from Newton’s laws of motion given by

dr; dv;

v, ==,

9 3
dt dr ' 3)

where r;, v;, and f; denote the position, velocity, and force
vectors, respectively. The force on a particle arises from in-
terparticle interactions. This force has three components. The
dissipative force component Ff])» is responsible for the viscous
effects in the DPD system; it acts to reduce the relative ve-
locity between any two particles in an interacting pair. As a
result the system temperature will be reduced. The random
force Ffj- is included to account for the lost degrees of free-
dom incurred because of the coarse-graining process. At the
molecular level there are many collisions that take place be-
tween the actual atoms or molecules. But, when a group of
atoms or molecules is represented by a DPD particle, there is
a reduction in the number of collisions. The random force
tends to “heat” the DPD system as it supplies energy to the
interacting particles. If the two forces are balanced, an iso-
thermal system will result. Espanol and Warren [20], by ap-
plying the fluctuation-dissipation theorem, have derived the
relations that result in this balance. They showed that the
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Gibbs equilibrium distribution function is recovered by the
model. The dissipative and random forces are responsible for
the hydrodynamic behavior of the DPD system. The third
component of the interparticle force of interaction is the con-
servative force F,-Ci, which accounts for the configurational
energy of the DPD system. It is responsible for the thermo-
dynamic behavior of the DPD system.

The functional forms of the interparticle forces between
particles i and j are given by

D
Fi == yo®(r)(e;- v;)e;.

R R
Fij =0ow (rij)gijeij»

IP(r;;)
Fg:— #elj. (4)

ij

Here, e;; is a unit vector given by e,-j:r,-j/|r,~j, where r;;=r;
—r;, V;;=V;—V,, 7y is the amplitude of the dissipative force, o
is the amplitude of the random force, P and of are the
weight functions for the dissipative and random forces, re-
spectively, and ¢ is the free energy per particle. Since DPD
is a short-range model, the weight functions are chosen such
that their values go to zero beyond the cutoff distance, i.e.,
each particle interacts only with particles that are within the
cutoff distance. The term §; in Eq. (4) is a random variable
which has zero mean and unit variance, and is uncorrelated
in time. It follows Gaussian statistics and has the following
properties:

(&) =0,
(& &(")) = (88 +

The application of the fluctuation-dissipation theorem to
the DPD system gives the following relationship between the
amplitudes and the weight functions of the dissipative and
random forces [20]:

o?(r) = [o*(n],

In this work, the following functional form for the weight
functions in the expressions for the dissipative and random
forces have been chosen:

Gubj) ot —1"). (5)

o° = 2vykgT. (6)

(r<re),

-]
() =[P P={\" )
0 (r=r.).

These weight functions depend on the interparticle separa-
tion r and the cutoff radius r.. Additional details about the
force components and the choice of parameters employed in
this work can be found in the article by Groot and Warren
[43].

The implementation of the interfacial forces will now be
described briefly. These forces are molecular in origin, in
that the intermolecular forces between liquid-liquid mol-
ecules, gas-gas molecules and liquid-gas molecules are dif-
ferent. The differences give rise to phase segregation and the
macroscopic property of surface tension. In this work, the
mean-field-theory-based model of Tiwari and Abraham [32]
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is used. The essential idea is to model the force component
which influences the interparticle force [44,45]. This ap-
proach has been employed successfully in other mesoscopic
approaches [23,24,46]. The conservative force FC is ex-
pressed as

FC == Vlzbnonideal +kV Vzp’ (8)

where ¢,onigear denotes the nonideal part of the free energy, p
is the density, and « is a model parameter that controls the
strength of surface tension; it is related to the second mo-
ment of the attractive part of the interaction potential be-
tween atoms or molecules. In Eq. (8) the first term is respon-
sible for phase segregation and the second for surface
tension. The expression for the free energy, required in Eq.
(8), is derived from an equation of state with a van der Waals
loop. In this work, the following van der Waals equation of
state is used:

pkBT 2
= —ap?, 9
P= by AP )

where p denotes the pressure, p the density, k; the Boltz-
mann constant, and 7 the temperature, and a and b are pa-
rameters of the equation of state which are related to the
zeroth moment of the attractive part of the interaction poten-
tial and the exclusion volume effects, respectively. It can be
seen from Eq. (8) that the surface tension term depends on
the gradients of density. The density p in the vicinity of
particle 7 is calculated using the following expression:
N

PFE W(rij)’ (10)

j=1

where w, j, r, and N represent the normalized weight func-
tion, a particle tag, the separation distance, and the total
number of particles, respectively. Note that the form of
weight function used for the dissipative and random forces in
Eq. (7) would not suffice for Eq. (10) as the third derivative
of density has to be calculated in Eq. (8). Hence, the Lucy
weight function is used [47]. It has been employed exten-
sively in other particle-based methods [48,49], and is given
by

3r r\3 .
cfl+—N\1-—| if r<r,
W(}",}"C)Z re re (11)

0 if r>r,

where r denotes the interparticle separation, r. the cutoff
radius, and ¢ the normalization constant, which has a value
5/ar? for two dimensions and 105/16mr? for three dimen-
sions. Using the definition of density in Eq. (10) and substi-
tuting the free energy obtained from Eq. (9) into Eq. (8), the
final form of the interparticle conservative force is obtained
as

F|= —{(M—a)+< bhsT —a)}w§1)+wa-3) €
/ l—bpi l—bp] J J

(12)

where wf-;) and wl(-;) represent the first and third derivatives of

the weight function in Eq. (11) with respect to the interpar-
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ticle separation, respectively. The parameters that are re-
quired for specifying the interparticle conservative force are
a, b, k, r., and kgT.

The DPD equations of motion are integrated using the
following modified Verlet scheme by Groot and Warren [43]:

r(t+ 8t)=r,(t) + v, (1) + é(&t)zfi(t),

Vit + o) = v;(t) + Norfi (1),

f.(r+ o) =£,(x(t + o1),¥(r + o)),

vi(t+ 8t =v(t) + %&[fi(t) + £t + or)], (13)

where r, v, and f denote the position, velocity, and force
vectors, respectively, ¢ denotes the time, i is a particle tag,
and \ is an empirical parameter. The quantity V is a guessed
value of the velocity. This guess is necessary because the
force depends on velocity as seen from the third equation in
(13).

III. RESULTS AND DISCUSSION

Some physical parameters useful in characterizing nano-
cylinder behavior will now be defined. Recall that, when the
size of fluidic systems lies at the nanolevel, thermal fluctua-
tions play an important role in determining the system be-
havior. These fluctuations arise because of the thermal en-
ergy possessed by atoms or molecules. Thermal fluctuations
are manifested in the form of thermal capillary waves that
are always present in the interfacial region. When the system
size is large, the fluctuations do not influence the system
behavior, but for small-sized systems they can play a domi-
nant role. They can collectively lead to the generation of
momentum imbalances which lead to capillary-induced
breakup. That thermal fluctuations are captured by DPD has
been shown in the literature [19,43], but its ability to predict
nanocylinder breakup has not been assessed. To characterize
the relative importance of thermally induced forces com-
pared to capillary forces, a thermal length scale I; can be
defined as

kgT
lT: L, (14)

O
where kp denotes the Boltzmann constant, 7" the temperature,
and o the surface tension. The surface tension is determined
by carrying out simulations of a liquid drop and deriving the
surface tension from an application of Laplace law. This is
initially derived for a reference temperature kz7=0.016. The
set of parameters for this simulation is kept the same as in
nanocylinder breakup simulation. The following relation [44]
based on mean-field theory is then used to calculate the sur-
face tension at other temperatures:
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FIG. 1. Computational setup.

T\15
0'S=(rw<l—;> . (15)

c

The value of surface tension oy at kz7T=0.016 is determined
to be 0.22 from the Laplace law. The mean-field critical tem-
perature T, for the simulated liquid is 0.0357 and oy, is
found to be 0.5366 from Eq. (15). The thermal length scale
does not give much insight in absolute terms, but its impor-
tance can be assessed by examining a nondimensional length
[* defined as

==, (16)

where L. is a characteristic physical dimension. In this work,
L. is taken to be the radius of the cylinder. The value of /; for
typical liquids under standard conditions is of the order of a
few nanometers. This implies that [* ~O(1) for nanofluidic
systems and, hence, shows the importance of thermal fluc-
tuations for these systems.

The computational domain for the simulations is shown in
Fig. 1. We apply periodic boundary conditions along the x, y,
and z directions. The simulation parameters are given in
Table I. The state point corresponding to these parameters
gives a liquid-to-vapor density ratio of about 100. The initial
configuration for all the simulations in this study is a uniform
cubic arrangement of particles. The particles fill the compu-
tational domain to attain a liquid-vapor distribution corre-
sponding to the simulated state point.

In the analysis and discussion, we will consider a nondi-
mensional wave number given by

27r
k=——", 17
N (17)

where \ is the wavelength of the disturbance. In our simula-
tions the origin of the disturbance is thermal fluctuations.
The maximum possible wavelength of this disturbance is
equal to the axial length of the computational domain, i.e., in
Eq. (17), \ is taken to be the length of the computational
domain. When the length is much larger than the circumfer-
ence of the cylinder, it is observed that multiple drops form,
i.e., the length is sufficient to capture multiple modes of dis-
turbance. If this happens, the wavelength of disturbance is
taken as the length of the domain divided by the number of
drops formed.
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TABLE 1. Simulation parameters.

Parameter Equation in which the parameter appears Value in DPD units
kgT (6), (12), (14) 1.6X1072
Mean-field critical temperature (15) 3.57X 1072

a (van der Waals parameter) 9), (12) 3.012x 1073

b (van der Waals parameter) 9), (12) 2.5% 1072

o 4), (6) 1.3%x 107!

K 8), (12) 1.0x 1073
Time step &t (13) 1.0x 1072

re (7), (11) 1.05

Figure 2 presents results, at different DPD times, from a
simulation with the parameters in Table 1. The number of
DPD particles employed is 2880. The DPD time is computed
as the DPD time step &t [see Eq. (13)] multiplied by the
number of computational cycles completed. The simulations
are performed with the value of k=0.22 based on the domain
length, but the effective N\ in Eq. (17) could be shorter. In
fact, since two drops form in this case, k is effectively 0.44.
The value of [* in Eq. (16) is 3.52.

The disturbances present on the surface of the cylinder, as
clearly evident in Fig. 2(c), grow with time and eventually
lead to breakup as seen in Fig. 2(d). In this specific case, we
see the formation of two drops which have different sizes.
The drops have diameters larger than the cylinder diameter,
as expected for capillary breakup. The quantitative ratio of
the drop diameter to the cylinder diameter has not been es-
timated in this work because of the uncertainty in defining
the surface of the sphere. Recall that this ratio is 1.89 for
Rayleigh breakup [50]. The drop diameters visually appear
greater than the diameter of the cylinder, but it is interesting

undulations
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FIG. 2. (Color online) Snapshots of a liquid nanocylinder along
the z-y plane at DPD times of (a) 50, (b) 100, (c) 150, (d) 200, (e)
250, () 300, (g) 350, (h) 400, and (i) 450; k=0.22 in Eq. (17).

to observe that the drops in the simulations are not of iden-
tical size. Nevertheless, there is no clear indication of satel-
lite drops. After the breakup, the two drops attain velocities
in opposite directions to conserve linear momentum; see
Figs. 2(f) and 2(g). This leads to a merger of the drops as
seen in Fig. 2(i). Note, however, that the simulations are
stochastic; hence, the details of the process will not be re-
peated when a different random number seed is used.
Figure 3 shows results from a simulation at identical
times as those in Fig. 2, but for a different seed. Notice that
in this case also two drops are formed. The breaking occurs
at approximately the same time as in Fig. 2. But one differ-
ence is that the drops do not merge. The details of the pro-
cess are also somewhat dependent on the size of the domain.
Figure 4 shows a set of results at identical times in a domain
which has three times the size in the x and y directions, i.e.,
the length of the domain in the z direction is the same as in
Fig. 2, but the width and depth are three times greater. The

@ () ®

FIG. 3. (Color online) Snapshots of a liquid nanocylinder along
the z-y plane at DPD times of (a) 50, (b) 100, (c) 150, (d) 200, (e)
250, (f) 300, (g) 350, (h) 400, and (i) 450; effect of random number
seed.

016305-5



TIWARI et al.

FIG. 4. (Color online) Snapshots of a liquid nanocylinder along
the z-y plane at DPD times of (a) 50, (b) 100, (c) 150, (d) 200, (e)
250, (f) 300, (g) 350, (h) 400, and (i) 450; effect of domain size.

random seed was the same. The cylinder diameter is un-
changed. The breakup occurs at about the same time as in the
previous two cases, but only one drop is observed. Based on
our earlier reasoning, in this case k=0.22 and not 0.44. A
possible factor influencing the process is that, during the
course of the simulations, the volume that lies outside the
cylinder fills up with DPD particles as a result of vaporiza-
tion. Hence, the density ratio is time dependent, and different
for the two cases. This may have some influence, but the
effects have not been quantified. In the case of capillary
breakup of liquid cylinders at the macroscale, it is known
that the breakup time will increase as k increases [51]; the
relevant equations will be given later.

Next, simulations are carried out in a domain whose
length (z direction) is increased by four times, but the radius
of the cylinder is unchanged. The width and depth are the
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FIG. 5. (Color online) Snapshots of breakup of a liquid nano-
cylinder along the z-y plane at DPD times of (a) 1, (b) 30, (c) 60,
(d) 90, (e) 120, (f) 150, (g) 180, (h) 210, (i) 240, and (j) 270;
simulation with the cylinder length four times larger than in simu-
lation in Fig. 2.

same as in Fig. 2. Hence, k in Eq. (17) decreases. It is ex-
pected that, since the results presented in Fig. 2 showed two
drops, eight drops may form in this case. The results are
presented in Fig. 5 at different times. Figures 5(e) and 5(f)
are shown magnified to illustrate the details of the breakup
process. The long thread breaks up into multiple drops as
shown in Figs. 5(g)-5(j). This shows that the length of the
computational domain is sufficient to capture multiple wave-
lengths. Seven drops are clearly observed, though it is pos-
sible that two of the drops may have combined [see Figs.
5(h) and 5(i)]. The breakup characteristics observed here are
similar to those when the smaller domain was employed.
Hence, the conclusions drawn there apply. At the point of
breakup, long necks do not form; instead, double-cone struc-
tures are observed. This structure has been observed in the
molecular dynamics simulations of nanojets performed by
Moseler and Landman [7]. The liquid in the region joining
the two cones gets drained and this, combined with the pres-
ence of thermal fluctuations, leads to the breakup that fol-
lows. In particular, notice that the drops are of approximately
the same diameter, and somewhat larger than the cylinder
diameter, as pointed out earlier.

If Rayleigh’s criterion holds, then breakup should not oc-
cur for values of k greater than 1. Consider Fig. 6, which
presents snapshots of a liquid cylinder at different times
when k=1.26. Three views of the computational domain
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FIG. 6. (Color online) Snapshots of a nanocylinder with k
=1.26 at DPD times of (a) 1, (b) 250, (c) 500, (d) 750, and (e) 1000.

along the x-y, z-y, and z-x directions are shown at DPD times
of 1, 250, 500, 750, and 1000. As in the previous two cases,
[*=3.52. It is seen that the cylinder tends to remain stable
with time and does not break up into drops though surface
perturbations may be observed as a result of thermal fluctua-
tions. A simulation performed at a higher value of k=1.55,
i.e., by considering an even shorter domain, did not lead to
breakup, adding credence to the applicability of the Rayleigh
criterion. Of course, computations have to be carried out for

FIG. 7. (Color online) Snapshots of a liquid nanocylinder in
periodic domain at DPD times of (a) 600, (b) 700, (c) 800, (d) 830
(e) 840, and (f) 850; kzgT=0.01.
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FIG. 8. (Color online) Snapshots of a liquid nanocylinder in
periodic domain at DPD times of (a) 400, (b) 450, (c) 500, (d) 520,
(e) 530, and (f) 540; kzT=0.013.

a broad range of values of k to confirm if the transition point
is indeed 1, but the general behavior is consistent.

It is interesting to observe the influence of changing the
thermal length scale on the breakup process. This may be
done by changing the temperature. Recall the definition of
thermal length scale in Eq. (14). Figures 7-10 show the re-
sults for kzT values of 0.01, 0.013, 0.016, and 0.019, respec-
tively. The value of k in Eq. (17) is 0.47 in all cases. The
values of /; for the four cases are 0.175, 0.219, 0.270, and
0.333, respectively, and those of [* are 8.016, 6.405, 5.191,
and 4.209, respectively. Notice that the plots are shown at the
point of breakup. When the thermal fluctuations are ampli-
fied by increasing the temperature, i.e., [* decreases, we find
that the breakup process is accelerated. The breakup times
for the four cases are 840, 530, 460, and 290, respectively. In
Fig. 8, the characteristic double-cone structure formed prior
to breakup is highlighted. Several additional computations
were carried out at different temperatures, and the breakup
time as a function of kgT is shown in Fig. 11. In general,
there is a decrease in the breakup time with increasing tem-
perature. Some of the variability in the figure may be attrib-
uted to the stochastic nature of the calculations. Another way
to change the relative importance of the thermal length scales
is to change the cylinder radius, i.e., L. and hence [* in Eq.
(16) will change. Figure 12 shows the breakup time as a
function of cylinder radius. It can be seen that as the radius
increases, i.e., [ increases, the time for breakup increases.

FIG. 9. (Color online) Snapshots of a liquid nanocylinder in
periodic domain at DPD times of (a) 200, (b) 300, (c) 400, (d) 450,
(e) 460, and (f) 470; kzT=0.016.
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FIG. 10. (Color online) Snapshots of a liquid nanocylinder in
periodic domain at DPD times of (a) 150, (b) 200, (c) 250, (d) 280,
(e) 290, and (f) 300; kzgT=0.019.

Of course, it is possible that this is a reflection of increasing
value of k which, as will be discussed later, will show in-
creasing breakup time irrespective of the source of the dis-
turbance.

In the case of breakup of macroscopic liquid cylinders,
the formation of elongated threadlike structures has been re-
ported for viscous liquids [6,52]. A characteristic length scale
that gives the relative importance of viscous forces relative
to the surface tension forces is the viscous length scale [,
given by

l,=—, (18)

where u is the dynamic viscosity, p is the density, and oy is
the surface tension. It has been shown [6,52] that fluids with
low viscosities have a cap-cone structure before breakup as
compared to the long thin thread structures for fluids with
high viscosities. To investigate the influence of increased vis-
cosity on breakup behavior, a simulation was carried out in
which the value of /,, appearing in Eq. (18) is increased from
1.32 to 33.6. The results for the two compared cases are

900
800 -
700 -
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500 . *
400 - & .
300 - .
200
100 -
0 . ; . . . .
0.007 0.009 0011 0013 0015 0017 0019 0.021

ksT

Breakup time

FIG. 11. (Color online) Variation of breakup time with system
temperature kgT.
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FIG. 12. (Color online) Variation of breakup time with cylinder
radius.

presented in Figs. 5 (/,=1.32) and 13 (/,=33.6), respec-
tively. The corresponding Ohnesorge number Oh, which is a
measure of the relative importance of the viscous and surface
tension forces, for the two cases is 0.836 and 4.216, respec-
tively. Oh is defined as

LI -1\,;‘: ~;;_.‘A-.‘

PR Mg T Tad 0 P8 T)
bl e
Y A PRV

@

FIG. 13. (Color online) Snapshots of breakup of liquid nanocyl-
inder along the z-x plane at DPD times of (a) 50, (b) 100, (c) 200,
(d) 230, (e) 300, (f) 400, (g) 500, (h) 600, (i) 700, and (j) 800.
Viscous length scale is about 25 times the value for simulation in
Fig. 5.
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TABLE II. Cases simulated for breakup of liquid nanocylinders.

Case no. r k T, kgT N C C,
1 0.875 0.2215 175 0.016 2880 2.66 13.51
2 1.050 0.266 191 0.016 3920 2.62 12.01
3 1.225 0.31 270 0.016 5120 3.37 14.16
4 1.400 0.354 475 0.016 6480 5.44 21.08
5 1.575 0.399 485 0.016 8000 5.13 18.34
6 1.750 0.443 682 0.016 9680 6.67 22.25
7 1.925 0.487 701 0.016 11520 6.35 19.73
8 2.100 0.531 970 0.016 13520 8.13 23.56
9 2.275 0.575 1000 0.016 15680 7.76 20.90
10 2.450 0.619 1200 0.016 18000 8.58 21.47
11 2.625 0.663 1310 0.016 20480 8.59 19.88
12 1.400 0.354 840 0.010 6480 11.74 55.57
13 1.400 0.354 480 0.011 6480 6.51 29.91
14 1.400 0.354 500 0.012 6480 6.58 29.28
15 1.400 0.354 530 0.013 6480 6.75 29.10
16 1.400 0.354 390 0.014 6480 4.80 20.01
17 1.400 0.354 380 0.015 6480 451 18.17
18 1.400 0.354 410 0.017 6480 451 16.83
19 1.400 0.354 370 0.018 6480 391 13.99
20 1.400 0.354 290 0.019 6480 293 10.04
21 1.400 0.354 240 0.020 6480 2.32 7.57

il rpg 1
Oh_(w’%’)’ (19) Tb—C2< o (l—kz))’ (21)

where u; is the liquid dynamic viscosity, p; is the liquid
density, o, is the surface tension, and r is the radius of the
nanocylinder. The viscosity is changed by changing the value
of the amplitude y appearing in the expression for the dissi-
pative force [see Eq. (4)]. The simulation temperature is
kgT=0.016. Surface undulations are evident; but, unlike in
macroscale cylinders, the formation of elongated threadlike
structures is not seen, even at this higher viscosity. The
breakup is seen to take place in Fig. 13(d). The DPD time at
which the breakup occurs is about 230 in Fig. 13 compared
to about 120 in Fig. 5. Hence, increasing the viscosity in-
creases breakup time. A simulation was also carried out with
a viscosity that was an order of magnitude greater than the
higher value above, and no breakup was then observed. It is
worth pointing out that according to Weber [53] the optimum
wavelength for breakup will increase with viscosity. As the
wavelength increases, the drop size will increase. The results
presented are consistent with this theory. Notice that only
two drops are observed in Fig. 13 whereas seven were ob-
served in Fig. 5. Since the volumes of the initial cylinders
were identical, this implies that drops are larger. This can be
observed visually.

From scaling arguments, it is possible to derive the fol-
lowing relationships for the breakup time 7, of a cylinder
due to capillary instabilities [51]:

Pplyk) 1
o, I(k) k(1 -k?)’

Tb = Cl (20)

where u; is the dynamic viscosity, p; is the density, o, is the
surface tension, r is the radius of the cylinder, k is the non-
dimensional wave number, and I, and /; are modified Bessel
functions. Equation (20) is applicable when viscosity is ne-
glected, and Eq. (21) when viscosity is included, for capil-
lary breakup of liquid cylinders at the macroscale. A series of
simulations where p;, oy, and u; were varied were carried
out. If, for the range of computations, it can be shown that
constant values of C; or C, can be obtained, then the impli-
cation is that either Eq. (20) or Eq. (21) is applicable for
nanocylinders.

Table II shows the results for several cases. The values of
C, and C, derived for each case are also shown. Notice that
constant values of C; and C, are not obtained. The average
value of C; is 5.71+243, whereas that of C, is
20.83+9.97. Notice from Table II that if only the first 11
cases, i.e., when kzT is a constant and only r varies, are
considered then the values of C, show less variation. In fact,
in this case the average values of C; and C, are 5.94+2.29
and 18.81*3.86. So the greater variability arises when kzT
changes for cases 12-21. A change in kT results in a change
in w; and oy, and in the thermal length scale /. Recall that
the thermal length scale is a measure of thermally induced
fluctuations at the liquid surface. It is possible that the
change in /; may lead to different relations at the nanolevel
than the ones given by Egs. (20) and (21). Consider the
following relation from linear instability theory [36,51]:
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n=ge, (22)

where 7 is the displacement of the interface, ¢ is the ampli-
tude of the disturbance, £ is the growth rate, and ¢ is the time.
For thermally induced breakup, € is a function of the tem-
perature of the system and, say, is proportional to the thermal
length scale /7. Note that this is an assumption. While it can
be stated with some confidence that the origin of the distur-
bance at the nanolevel is the thermal fluctuation, it is not
clear that the amplitude of the disturbance is proportional to
I7. For example, it has been suggested that the fluctuations
which lead to breakup at the nanolevel do not directly result
from thermal fluctuations, but indirectly from momentum
imbalance induced by thermal fluctuations. Nevertheless, if
this line of reasoning is pursued,

VEI (23)
or
n=Cslre®, (24)
i.e.,
ln<ciz) - &, (25)
3T

where Cj is a constant. For a fixed temperature, the thermal
length scale /7 is a constant. Then at the breakup point

m

ln< C3ZT> =¢&T, =X, (26)
where 7, is the displacement of the interface at the time of
breakup. The variable y is a function of temperature and, as
the temperature increases, /; will increase. This implies that
x will decrease with increasing temperature. In deriving Eqs.
(20) and (21), it is assumed that y is a constant. Unfortu-
nately, further analysis that has been carried out to see if the
data of Table II are consistent with Eq. (26) is inconclusive
(and, hence not presented), but the discussion above points to
the possibility that Egs. (20) and (21) derived for macroscale
considerations may not be applicable at the nanoscale. It is
interesting to recall that results were presented earlier (com-
pare Figs. 5 and 13) where the viscosity was increased by
changing the value of 7y in Eq. (4), and not by changing
temperature. A factor-of-5 increase in viscosity changed the
breakup time from 120 to 230 in that case. Again, the results
do not scale with Eq. (21), since according to this equation
the breakup should have increased by 4.31 times, taking into
account the change in viscosity and k. This suggests that the
lack of conformity with Eq. (21) is not just related to
changes in temperature. DPD has not been employed for
simulation of liquid nanocylinders in the past, and it is pos-
sible that the difference in behavior highlighted above arises
from a shortcoming of the method itself. Computations with
MD can clarify this.

The transient behavior of the minimum radius r,,;, where
breakup occurs will now be examined. Macroscopic theory
predicts the relationship for r;, given in Eq. (1). As shown
by Eggers [27], there is an acceleration of the reduction of
the radius at the nanolevel. The corresponding relation is

PHYSICAL REVIEW E 78, 016305 (2008)
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FIG. 14. (Color online) Minimum cylinder radius r;, as a func-
tion of time (T),—t). Note that T}, is the breakup time.

given by Eq. (2). In the simulations performed in this study
the characteristic length [*~O(1-10). It has also been
shown that symmetric double-cone structures form prior to
the breakup. So it is expected that the form of r;, given by
Eq. (2) will be recovered from the simulations. Figure 14
presents the results for r;, as a function of (7;,—¢) for one of
the simulations. The parameter r; in Eq. (2) is determined by
a least-squares fit to the DPD data. It can be seen that the
variation in rp;, from DPD simulations follows the trend
from Eq. (2).

IV. SUMMARY AND CONCLUSIONS

In this work, a DPD-based model for two-phase flows is
employed to simulate the breakup of liquid nanocylinders. It
is shown that the model is able to capture the thermally
induced breakup of the cylinders. The results are in agree-
ment with prior theoretical and molecular dynamics simula-
tion results. These results will now be summarized. It is
shown that Rayleigh’s stability criterion, which states that
liquid cylinders are unstable to disturbances with wave-
lengths greater than their circumference, applies for the
simulations carried out in this study. This is in agreement
with prior MD simulations. Also in agreement with prior MD
simulations, the formation of satellite drops is not observed.
This has been attributed to the dominant role of thermal fluc-
tuations at the nanolevel. These fluctuations cause a symmet-
ric breakup of the liquid neck with a double-cone structure
that precludes the formation of satellite drops as pointed out
in prior work. This has important implications from a prac-
tical point of view as the satellite drops, owing to their
smaller size, behave differently and require special attention
in applications like ink-jet printing. Their nonoccurrence at
the nanolevel leads to uniform distribution of drop sizes. It is
also shown that thermal fluctuations accelerate the breakup

016305-10



SIMULATIONS OF LIQUID NANOCYLINDER BREAKUP...

dynamics near the breakup point, the results of which are in
agreement with theoretical predictions by Eggers [25]. In
agreement with prior MD studies, it is shown that, as the
radius of the cylinder increases, the change in breakup time
is consistent with macroscale relationships. However, in ad-
ditional simulations, it is shown that the breakup time does
not scale with the macroscale relationships when liquid vis-

PHYSICAL REVIEW E 78, 016305 (2008)

cosity and surface tension are varied. As indicated in the text,
it is possible that this may result from limitations of the DPD
model. Nevertheless, the fact that DPD results are in agree-
ment with prior MD simulations and theoretical predictions,
when such results and predictions are available, suggests that
the conclusions about breakup time may be correct. Compu-
tations with MD can confirm this.
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