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The dynamic behavior of spiral-shaped excitation patterns with oscillatory dispersion is investigated under
the influence of externally applied direct current or alternating current. For these two types of electric field,
wave-grouping phenomena are generally observed. For the direct current field, the spiral wave drifts approxi-
mately along a straight line and wave groupings appear in certain ranges of spatial polar angles when the
strength of the external field is larger than a threshold. In terms of the Doppler effect induced by the drift of the
spiral tip and the oscillatory dispersion, we propose a theory model to predict the spatial distribution of wave
grouping and the critical strength of the current. In contrast, for the alternating current field, the spiral wave
may stay stationary and wave grouping may appear in the whole space with a different manner. This finding
indicates that movement of the spiral tip is not necessary for the appearance of wave grouping.
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I. INTRODUCTION

Spiral waves are spontaneously formed and play an im-
portant role in two-dimensional excitable or oscillatory sys-
tems, such as the classical Balousov-Zhabotinsky �BZ� reac-
tion �1�, cardiac tissues �2�, Dictyostelium discoideum
amoebae population �3�, and surface chemical reactions
�4,5�. Studies of spiral waves have continuously attracted the
interest of researchers for several decades due to the signifi-
cance of both theoretic development and potential applica-
tions in pattern formation. The simplest form of a spiral is a
rigidly rotating spiral; namely, the spiral sends out a traveling
wave and its tip moves periodically along a round circle. As
a certain system parameter is varied, this spiral may become
unstable through a Hopf bifurcation and a meandering spiral
appears with the tip trajectory showing cycloid �6–8�. With
the system parameter being changed further, the meandering
spiral may also get unstable and break up and a turbulent
pattern with defects is generally observed.

The spiral wave dynamics is determined by the properties
of the medium such as the dispersion relation of the medium,
which shows the dependence of the speed, V���, of a peri-
odic wave train on the wavelength �. Generally speaking, the
longer the interval between pulses �period or wavelength�,
the more thoroughly the medium has recovered, the lower
the threshold for next excitation, and the greater the speed of
a propagating wave front is. Thus, the velocity of wave
trains, V���, is a monotonically increasing function of �; this
characteristic shows a strict restriction for a stable wave
train. Usually for the normal dispersion relation �9–13�, V���
monotonically increases with � and converges to the velocity
of a solitary pulse for large wavelength, and the wavelength
has a minimum value below which no wave trains exist.
However, researchers have also observed some other types of
dispersion relation deviating from the normal one—for ex-
ample, curves with damped oscillations �oscillatory disper-
sion� �14�, a single overshoot �15�, bistability �16�, and band

gaps �17�. Such anomalous dispersions give rise to some
exotic phenomena that cannot be found in media with normal
dispersion. For instance, wave bunching was observed in a
one-dimensional FitzHugh-Nagumo �FHN� medium �18�. In
a modified BZ reaction using 1,4-cyclohexanedione as the
organic substrate, Manz et al. found bunching, stacking, and
merging of waves �19�. Later on with the same chemical
equipment they observed phenomena of propagation failure,
breathing pulses, and backfiring pulse �15�.

In a recent BZ experiment, a new type of meandering
spiral pattern, a wave-grouped spiral �20�, was observed in
excitable media with oscillatory dispersion, in which the
dense waves form groups while the sparse waves remain
evenly spaced. The underlying mechanism for wave group-
ing has been well addressed, and it is due to the coaction of
the Doppler effect of the meandering spiral and the oscilla-
tory dispersion relation of the system. Very recently, the
same research group considered the effect of a parameter
gradient in a three-dimensional system on wave grouping
�21�. The experimental observation has been well supple-
mented by numerical study. In simulations, the central tip
was artificially dragged to imitate the meandering spiral in
the experimental condition. It seems necessary to do so, as
the Doppler effect induced by the moving of spiral tip is
believed to be one of the key ingredients for wave grouping.
These studies prompt some interesting questions: Can we
find wave grouping in a more natural way? Is the wave
grouping phenomenon generic? And what is the necessary
condition for wave grouping?

In this paper, we attempt to answer these questions by
studying the dynamical behaviors of spirals with oscillatory
dispersion in the presence of an external field �direct or al-
ternating electric field�. Electric fields are well known to play
important roles in the behaviors of spiral waves. For ex-
ample, the drift of spiral waves was observed in the presence
of a constant direct current �22–25� and a resonance drift of
spiral waves subject to electric pulses of alternating polarity
�a square-wave-form alternating current� was observed �26�.
A recent work showed that an alternating electric field can
even be used to eliminate spiral breakup �27�. Most of pre-
vious studies focused only on the dynamics or control*Corresponding author. zhanmeng@wipm.ac.cn
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method for generating a drift by imposing an external field
on the spiral with normal dispersion, and much less was
known for that with anomalous dispersion �28�. An intuitive
idea is that the external field can naturally produce a drift of
the spiral, which gives rise to a Doppler effect in the domain,
and thus make wave grouping observable. In this work, for
the direct current, a wave grouping similar to the
meandering-spiral-induced wave grouping in �20� is ob-
served. A model is developed to explain these phenomena.
Under the condition of an alternating current field, surpris-
ingly we find that the spiral tip may not drift and the spirals
may form a group in a novel manner. In this case, it is a pure
effect of oscillatory dispersion and obviously the Doppler
effect is not involved.

This paper is organized in the following order. In Sec. II,
we present our observations of wave grouping with a direct
current field and give a model to explain these observations.
In Sec. III, we study the corresponding dynamics with an
alternating sinusoidal current field. Section IV is devoted to a
brief summary.

II. WAVE GROUPING OF SPIRAL WAVES IN A DIRECT
CURRENT ELECTRICAL FIELD

We consider the FHN model

�A

�t
=

1

�
�A − A3/3 − B� + D�2A ,

�B

�t
= ��A + � − �B� , �1�

where A�x ,y , t� and B�x ,y , t� are the fast and slow variables,
respectively, and x, y, and t denote the spatial coordinates
and time. D is the diffusion coefficient of the fast variable.
For the local dynamics, whenever 0���1, ��2�1, ���
=�H= �1−��2�1/2��2�+�2�2� /3−1�, where �H denotes a
Hopf bifurcation parameter. For �����H, the FHN system
exhibits oscillations; otherwise, for �����H, it is excitable.
In this paper, the parameters are chosen to be the same as
those in the literature to generate damped oscillations in the
dispersion curve �7,12�, as illustrated in Fig. 1. The param-
eters �=0.3, �=0.5, �=0.7, and D=1.0 are unchanged
throughout the paper. Under such parameters �=0.3 and �
=0.5, �H=0.644. Here �=0.7��H, as to obtain an oscilla-
tory dispersion relation, the parameter set has to be chosen to
be very close to Hopf bifurcation and within the excitable
regime �7�. In this situation, the free stable spiral wave is a
rigid rotation one with the period T0�11.22 and the wave-
length �0�22.0, as shown by the arrow and the first open
circle in Fig. 1. The wave velocity V0=�0 /T0�1.96. The
maximum V��� is located at �c�25.75, the end point of the
first ascending branch. Below we will see that �c plays a
significant role in the establishment of wave grouping.

When applying an advective electric field parallel to the y
axis, we have

�A

�t
=

1

�
�A − A3/3 − B� + D�2A + E

�A

�y
,

�B

�t
= ��A + � − �B� + 	E

�B

�y
. �2�

Here E describes the strength of the electric field and 	
� �0,1� is the ratio of the effects of the electric field on the
two variables. No-flux boundary conditions are considered.
We numerically solved this model with the simple explicit
Euler scheme: We used a time step 
t=0.01 and a space step
h=0.5, as well as a square spatial grid of size 1280�1280
nodes.

In the following, we pay attention to the responses of
spirals to such an external field and focus on wave-grouping
structure. Usually E� �0,1.0� is tuned with a fixed 	 �	
=0.3�. In our simulations, very rich spiral structures with
variance of E are observed: When E is lower than 0.24, the
spiral is stable with a small drifting speed. However, if E is
increased beyond 0.24, wave-grouped structures begin to ap-
pear with several wave fronts grouped together in a certain
spatial polar angle, while the wave fronts in the other spatial
domain are still evenly spaced, and the drift velocity be-
comes larger. Roughly, the range of wave grouping expands
with the increase of E. For 0.24�E�0.5, we observe two-
wave grouping, 3-wave grouping, and combinative 2- and
3-wave grouping. These wave-grouped structures are inde-
pendent of initial conditions and remain stable for a fairly
long time. As an example, see Fig. 2�a� for E=0.4. Some
more complicated 4-, 5-, and even 7-wave groupings can be
found in transient processing. For 0.5�E�0.8, only 2-wave
grouping is observed, but the pattern is divided into four
districts with two uniform waves and two 2-wave groupings
�Fig. 2�b��. For 0.8�E�0.95, as shown in Fig. 2�c�, the
wavelengths of the sparse waves become so large that it is
difficult to decide whether the waves in some parts of do-
main are uniform or not. Finally, at E=0.95, excitation
waves of dense waves become too thinner to be sustained

FIG. 1. An oscillatory dispersion curve of the FHN model
shown as the wave speed V vs the wavelength �. �=0.3, �=0.5,
�=0.7, and D=1.0. At �c=25.75, V is largest. The first open circle
pointed out by the vertical arrow at �0=22.0 denotes the location of
the free spiral, while the second open circle at �=31.5 denotes the
location of the newly formed stable spiral under the alternating
current field �1.05�E�1.19�.
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and are split �Fig. 2�d��; this finding is similar to the
crescent-shaped waves found in Ref. �22�.

In addition to these phenomenal observations, we numeri-
cally calculated the speed and direction for the spiral drift.
The results are shown in Figs. 3�a� and 3�b�. Roughly the tip
drifts to the lower right region and the direction only slightly
changes with E. The speed increases with E with a linear part
discernible for small E. These findings are consistent with
previous observations for spiral drift under direct current
field with a normal dispersion relation �11�.

As now the wave grouping is limited in a certain spatial
range, it should be valuable to analyze its structure and un-
derstand its mechanism. The Doppler effect shows that when
a wave source moves, the effective wavelengths will be
shortened �compressed waves� in front of it and become
longer �dilated waves� in the opposite direction, and the pe-
riod �or frequency� varies accordingly,

T� = �1 �
Vs

V
�T , �3�

with the wave velocity unchanged, where V and Vs denote
the speed of the wave and the wave source �equivalently, the
drifting speed of the spiral tip in the present situation�, re-
spectively, and T and T� indicate the wave period and the
local period after the wave drifts. “�” describes compressed
waves in front of the wave drift, and “
” is for dilated waves
behind the wave drift.

For our specific problem, we have to extend the above
equation �for the directions of wave and wave source being
the same or opposite in one line� to the analysis of whole
space. We give a schematic of our analysis in Fig. 4, where
Vt and �t denote the velocity and polar angle of the tip drift,
and need to obtain the information of local period �or fre-
quency� and wavelength at any arbitrarily chosen spatial
point A���. In Eqs. �2�, the external field on the fast variable
can be divided into two parts 	E and �1−	�E. The 	E part on
the fast variable and that on the slow variable simply result
in a pure drift of the whole pattern �not the tip drift� with the
speed 	E antiparallel to the direction of electric field �i.e., −y
direction in our study�, as we can easily eliminate these two
advective 	E terms in Eqs. �2� by changing the system to a
comoving frame y1=y+	Et. In this way, we have to elimi-
nate this common part in the wave velocity V0. Note that V0
is the velocity of spiral wave fronts without tip drifting �E
=0�. After considering this point and the projection of vec-
tors on the polar angle � and assuming the direction of V0
being at � �actually V0 is perpendicular to the wave front of
spiral�, we have V=V0−	E sin � and Vs=Vt cos��t−��. Thus,
we obtain

T���� = �1 −
Vt cos��t − ��
V0 − 	E sin �

�T0�. �4�

Similarly, we get the formula for the local wavelength �����,

����� = T��V0 − 	E sin ��

= �V0 − 	E sin � − Vt cos��t − ���T0�. �5�

The wave period T0� is constant and is a function of E.
T0��E=0�=T0. Generally, we cannot get T0��E� by analysis,
but numerically it is easy. Usually we make the pattern
evolve a short period, get a time series of one reference point
far from the core and within the non-wave-grouping regime
�for example, the white dot in Fig. 5�a� and its corresponding

FIG. 2. Snapshots of spiral patterns in direct current electric
field of different strengths: �a� E=0.4. Two heavy lines give the
range of wave grouping: 1.91���4.23. �b� E=0.7. Four heavy
lines give the ranges of two 2-wave groupings: 1.45���3.47 and
4.30���5.89. �c� E=0.8. �d� E=1.0. In �a�–�c�, the tip trajectories
are indicated by dashed lines; all spirals drift from center to bound-
ary. 	=0.3.

FIG. 3. �a�, �b�, and �c� Plots of Vt, �t, and T0� versus E, respec-
tively. 	=0.3.

FIG. 4. Schematic show for the analysis of wave grouping in-
duced by tip drift under the direct current electric field.
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time series in Fig. 5�b��, determine its local period T�, and
obtain T0� further from Eq. �4�. The dependence of T0� on E is
shown in Fig. 3�c�.

Below we can easily predict the spatial distribution of
wave grouping. Usually, for the wave fronts staying at the
first ascending branch of the oscillatory curve, they are stable
and wave grouping is impossible. However, if some wave
fronts cross �c and move into the descending branch, they
become unstable and wave grouping occurs. Take the pattern
in Fig. 5�a�, for example. Here E=0.3 and 	=0.3, and Vt
=0.236, �t=5.703, and T0��12.15, whose value is obtained
from the analysis of one single point. From Eqs. �4� and �5�,
we get T���� and ����� and plot them as a function of � in
Figs. 5�c� and 5�d�, respectively. These theoretic predictions
are indicated by solid curves and the value of local period
from measurement is plotted with a dashed curve in Fig. 5�c�
for comparison. A distortion is clear within 2.32���3.59,
and at the same region, ����c=25.75, as shown in Fig.
5�d�. As a result, the wave-grouping region in Fig. 5�a� can
be predicted by the two heavy radial lines, and this predic-
tion is in good agreement with the real pattern. For the other
two cases in Figs. 2�a� and 2�b�, the predictions are also
good.

With the same theory, we can even predict the critical
strength of the external field for wave grouping. The two
snapshots of spiral pattern without and with wave grouping
are presented in Figs. 6�a� and 6�c� for E=0.23 and 0.25,
respectively. Figures 6�b� and 6�d� plot their corresponding
�� distribution. For E=0.23, all �����’s are smaller than �c
=25.75, which implies that all wave fronts stay in the first

ascending branch of the dispersion curve and are stable. For
E=0.25, oppositely, there is a small region for ����c, which
indicates the spatial position for wave grouping. Again it fits
well �Fig. 6�c��. Based on these comparisons, the threshold
for the appearance of wave grouping �E=0.24� is obtained.

III. WAVE GROUPING OF SPIRAL WAVES IN
AN ALTERNATING CURRENT ELECTRIC FIELD

So far, we have investigated wave grouping in a direct
current electric field. Below we will study the dynamics in an
alternating current electric field. The reaction-diffusion equa-
tion becomes

�A

�t
=

1

�
�A − A3/3 − B� + D�2A + E cos�2�t

T
� �A

�y
,

�B

�t
= ��A + � − �B� , �6�

where E and T are the strength and period of the external
field, respectively.

Without losing generality, E is again slowly tuned with a
fixed T �T=T0 /2=5.61�. Figures 7�a�–7�f� show the snap-
shots of spiral-shaped patterns for E=0.1, 0.3, 0.5, 0.7, 1.1,
and 1.25, respectively. For 0�E�0.22, the spiral is stable
and � is unchanged with E. Here �=�0=22.0, as shown by
the first open circle in the dispersion curve in Fig. 1. For

FIG. 5. Analysis of the spatial range of wave grouping. �a� Two
heavy radial lines from the analysis of �c� and �d� give the range of
wave grouping: 2.30���3.59. �b� Time series of one reference
point �the white circle chosen from �a�� with a local period T���
=0�=10.93. Thus, we obtain T0�=12.15. �c� and �d� T� and �� as a
function of �, respectively. In �c�, the solid line comes from our
prediction, whereas the dotted line is from measurement. Obviously
we can find the region of wave grouping from the deviation part in
�c� and ����c=25.75 part in �d�. E=0.3 and 	=0.3.

FIG. 6. Snapshots of spiral pattern in the direct current electric
field in the absence of wave grouping �E=0.23 �a�� and in the
presence of wave grouping �E=0.25 �c��, and their corresponding
�� distributions in �b� and �d�, respectively. The two vertical dashed
lines in �d� for ����c=25.75 determine the range of wave group-
ing �2.49���3.20 in �c��. The wave grouping happens once the
����� curve touches the threshold �c=25.75, which signals that the
critical value for the appearance of wave grouping is E=0.24.
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0.22�E�1.04, very rich wave grouping phenomena can be
found. Now waves become irregular, wiggling, and separated
by some empty spaces �unexcited regions�. They form
groups in any position of the space �not specific region�.
Roughly, these empty areas get wider with an increase of E
�comparing Figs. 7�b�–7�d��. In a very long observation time,
the tip seems stationary and no drift is found. However, we
really observed an extremely small modulated motion of the
spiral tip and the change from a rigidly rotating spiral �Fig.
7�a�� to a meandering one �Fig. 7�b��. The tip trajectories are
superimposed in the patterns in Fig. 7 and the very small
modulated motions of tips restricted in a small region in
Figs. 7�b�–7�d� is nearly unrecognizable. We also observed
extremely slow movement and rearrangement of these wig-
gling spirals with time �for example, see Fig. 8 for the pat-
tern evolution, E=0.7�. All these observations well demon-
strate that this is a new type of wave grouping, which is
obviously different from wave grouping in direct current
field or the wave grouping induced by meandering spiral in
the experiment. A key distinguishing feature of this novel
pattern is that the tip is nearly fixed. Therefore, the Doppler
effect, which is necessary for the usual wave grouping, is not
required now. For 1.04�E�1.2, a rigidly rotating spiral oc-
curs again, as shown in Fig. 7�e�. Now � becomes larger
���3�0 /2=31.5�, which is shown in Fig. 1 with the second
open circle. Clearly, the spiral has jumped from the first as-
cending branch to the second one in the dispersion curve. For
E increasing further �E�1.2�, the breakup of this regular
spiral is observed, as shown in Fig. 7�f� for E=1.25.

Some other values of T were also studied and some quali-
tatively similar observations for non-tip-drift wave grouping
were found. It is easy to understand that as the electric pulses

of alternating polarity and intensity are periodically changed
in such an advective field, the overall effect is a stationary
�or approximately stationary� spiral. However, we really ob-
served resonance drifts of spiral for some specifically chosen
T’s similar to the usual observations for normal dispersion
�26�. Both sinusoidal and square-wave-form alternating cur-
rent fields were studied. If the resonance drift of spirals hap-
pens, the usual tip-drift-induced wave grouping with the pat-
tern similar to that under the direct current field condition
can be found again.

IV. SUMMARY

In summary, we have studied the dynamical behaviors of
spiral waves in excitable media with oscillatory dispersion
for the direct current field and alternating current field and
we have found two different types of wave grouping for
these two fields. First, both wave grouping phenomena are
determined by the main characteristic of the medium: the
oscillatory dispersion relation. In the direct current field, the
spiral drifts and wave grouping appear in a certain spatial
region, as the wave fronts within such a region are unstable
due to the Doppler effect, which is produced by the spiral
drift, and they have to rearrange with a new wave form
�wave grouping�. In the alternating current field, the spiral
may not drift and waves may form groups randomly in the
whole domain. Here the Doppler effect does not exist, but
the wave fronts become unstable due to the input of the
external field and have to rearrange their wavelengths in a
more uniform way. For sufficiently large driving intensity, an
evenly spaced spiral with a larger wavelength located at the
second ascending branch of the oscillatory dispersion curve
can be observed. However, the underlying mechanisms for
the stable-unstable transition of waves due to the effect of the
oscillatory dispersion relation are the same. In these two
cases, for the appearance of wave grouping, a sufficiently
large strength of the external field is needed. Second, com-
pared with the spirals with normal dispersion in the presence
of external electric fields, some features are the same in the

FIG. 7. �Color online� �a�–�f� Snapshots of spiral pattern in al-
ternating current electric field for different intensities: E=0.1, 0.3,
0.5, 0.7, 1.1, and 1.25, respectively. T=T0 /2=5.61. The tip trajec-
tories are superimposed.

FIG. 8. �a�–�d� Evolution of wave-grouped spirals in alternating
current electric field at t=Ts, 2Ts, 10Ts, and 100Ts, respectively. Ts

�Ts=12.0� is the rotation period of the spiral tip. A long transient
has been discarded. E=0.7 and T=T0 /2=5.61.
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present study with anomalous dispersion, such as the drift in
the direct current field and the resonance drifts for certain
driving frequencies in the alternating current field. The
chirality effect with oscillatory dispersion in the direct cur-
rent field was also investigated and a phenomenon similar to
the experimental observation with normal dispersion
�namely, the component of the drift velocity perpendicular to
the field changes its sign with the chirality of spiral� was
found �11�. Nevertheless, the wave grouping is definitely
unique for anomalous dispersion only. Third, from our ob-
servations, we know that the Doppler effect �or the spiral
drift� actually is unnecessary in some circumstance. This

finding is clearly distinct from what was expected previously
�20,21,28�. Finally, we expect that our numerical observa-
tions and theoretic results in the paper can be justified in
experiments.
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