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By means of LaSalle’s invariance principle, we propose an adaptive controller with the aim of stabilizing an
unstable steady state for a wide class of nonlinear dynamical systems. The control technique does not require
analytical knowledge of the system dynamics and operates without any explicit knowledge of the desired
steady-state position. The control input is achieved using only system states with no computer analysis of the
dynamics. The proposed strategy is tested on Lorentz, van der Pol, and pendulum equations.
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I. INTRODUCTION

Controlling nonlinear dynamical phenomena is one of the
most important parts of modern engineering. Traditionally,
the control strategy has been strongly related to the analytical
model of system dynamics; however, for many natural pro-
cesses a satisfactory analytical model is hard to define. This
is the prototypical case in biology, physiology, and medicine
as well as in natural systems where chaotic response charac-
terizes the experimental data �1�. Motivated by this chal-
lenge, the intention here is to construct a model-independent
controller for both chaotic and nonchaotic dynamical sys-
tems �2,3�.

The idea of controlling chaotic dynamics was presented
by Ott, Grebogy, and York �OGY� �4�. The OGY controller
uses the butterfly effect of chaotic systems to control the
long-time dynamics with carefully chosen small perturba-
tions. This method does not require any a priori analytical
knowledge of the system dynamics, which makes it attractive
for experimental implementation �5,6�.

The failure of the OGY strategy under the impact of non-
linearity has well-documented experimental verification �7�.
The reason for this failure comes from the linearization ar-
gument used in the OGY algorithm, which is not valid in the
neighborhood of a nonhyperbolic desired state �8�. Any lin-
earization can be understood as a source of instability be-
cause it restricts the stable attraction region subjected to the
controlled state. In this sense, to provide practical stability
�stability with a wide enough attraction region�, it is often
necessary to base the control design on strong nonlinear ar-
guments �9�.

Controlling chaotic �and nonchaotic� dynamics has also
been considered by other methods. In this light, a general
adaptive control scheme was introduced by Huberman and
Lumer �10� and further developed by Sinha et al. �11,12�.
Chaos control, by means of variable thresholding, was both
analytically and experimentally explored in �13–17�. The fa-
mous delayed-feedback controller proposed by Pyragas
�18,19� has been shown as particularly well suited to stabi-
lize unstable fixed points and unstable periodic orbits for
large class of dynamical systems.

Traditionally, the goal of chaotic control has been to sta-
bilize unstable periodic orbits embedded in a chaotic attrac-

tor. In this paper, however, it is preferred to stabilize unstable
fixed points. This goal can always be accepted if the periodic
or chaotic behavior means erosion of the system perfor-
mance.

In many real situations, the position of the desired steady
state is not known a priori. In all these cases, the control
strategy has to locate this state adaptively. Such a problem of
adaptive stabilization around the unknown steady state �or
periodic orbit� was recently considered in �20–22�.

The intention herein is to construct a model-independent
controller to stabilize unstable steady states for nonlinear dy-
namical systems. The control algorithm is based on a closed-
loop controller with variable feedback gain which operates
with the help of an adaptive steady-state estimator. The pro-
posed controller does not require any computer analysis of
the system dynamics and works without knowing the system
steady-state position. Using LaSalle’s invariance principle
�23�, the controller is tailored to stabilize unstable fixed
points with minimalistic assumptions on the underlying sys-
tem dynamics.

The idea presented can be seen as an extension of
�24,20–22�; namely, it neither requires knowledge of the
steady-state position nor depends on the control gain selec-
tion.

II. CONTROLLER

Consider the nonlinear dynamical system modeled by

ẋ = f�x� , �1�

where t� �0,�� is an independent variable, x�Rn are phase
coordinates, and ẋ=dx /dt are phase velocities, while f :D
→Rn is a time-invariant vector field defined on D�Rn. As-
sume that the system has at last one fixed point x*�D, while
f is smooth enough �i.e., Lipschitz on D� to guarantee the
existence and uniqueness of the solution x�t� with any initial
condition x0�D.

Suppose that the physical system considered is compli-
cated, possibly chaotic, and we are not able to reconstruct a
reasonable analytical model �1� to describe its behavior.
Moreover, let us assume that although an equilibrium state x*

exists, its position is not known for the control design. Under
these circumstances, our goal is to stabilize a dynamical evo-
lution of �1� around x*.*david.braun@vanderbilt.edu
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Adding control perturbations u to the right-hand side of
�1�, the controlled system reads

ẋi = f i�x� + ui, i � �1,2, . . . ,n� . �2�

The simplest way to obtain the adaptive control u is to make
it proportional to the distance between the unstable fixed
point and the system’s present state u��x−x*�. Unfortu-
nately, implementation of this perturbation cannot be realized
without explicit knowledge of the steady-state position x*.
To overcome this limitation, instead of x*, its estimated value
should be used to build an alternative control law. The esti-
mated position of the fixed point can be obtained from the
first-order estimator

ẏi = �i�xi − yi� , �3�

where y�Rn and ��R+
n.

Let us assume that x* is an asymptotically stable equilib-
rium state of the controlled system �2�, which means that any
solution x�t� of �1� starting close enough to x* remains near
x* and moreover x→x*, in long-time evolution. This prop-
erty guarantees that for any �i�0 the solution of �3� is
bounded and moreover y→x* �25�. We would like to point
out that in context of this paper, Eq. �3� should be understood
as a steady-state estimator �22�, rather than a state estimator
usually used in control theory. In this light, it is not a primary
requirement from y to track x as good as possible, but rather
to approach x* in long-time evolution. By means of the be-
ginning assumption of this paragraph, in order to use y in-
stead of x*, it is necessary to show that x* is an asymptoti-
cally stable equilibrium of the controlled system �2�. In the
following, the control strategy will be tailored with the aim
to achieve the mentioned stability requirement for x*.

There are a large number of control algorithms used in
nonlinear dynamics. The proportional feedback, derivative
control, and time delay feedback �18� are all well-studied
methods with their own advantages and limitations �26�.
Here, motivated by �24�, the following closed-loop controller
with variable feedback gain ki=ki�t� is proposed:

ui = − ki�xi − yi�, ki = �i�xi − yi�2, �4�

where �i�R+. With zero initial gain k�0�=0, each compo-
nent in k�t��R+

n is a nondecreasing positive function which
tends monotonically to its maximum value when the desired
state is reached, x→x*⇒k→k*= �k1 max,k2 max, . . . ,kn max�.
On the other hand, because u��x−y�, the controller does not
change the position of the original fixed point, which means
that it operates without a steady-state error.

Consider now the controlled dynamics with the aim of
showing that x→x* as t→�. Let V be a real-valued func-
tion:

V =
1

2�
i=1

n

�xi − yi�2 +
1

2�
i=1

n
1

�i
�L − ki�2, �5�

where L is a positive constant parameter. The time derivative
of V along the controlled trajectory �2�–�4� reads

V̇ = �
i=1

n

�xi − yi�f i�x� − �L + �i��xi − yi�2. �6�

Since f�x� is locally Lipschitz, it is bounded on its domain D,
which implies ∃l�� such that ∀i , 	f i�x�	� l	xi−yi	 for ∀x
�D if xi�yi. Now, for all states for which ∃i ,xi�yi, we can
choose L� l in �6� to obtain the inequality

V̇ � W = − �L − l��
i=1

n

�xi − yi�2 � 0. �7�

Notice that �7� is valid, not just for xi�yi, but rather for

∀x�D; namely, if ∀i ,xi=yi, then V̇=0, which simply fol-
lows from �6�.

By means of LaSalle’s invariance principle, �7� secures
that for t→�, any bounded solution of �1� tends to the larg-
est invariant set of �2�–�4� contained in the set E

= ��x ,y ,k� :x=y� for which V̇�0. However, the largest in-
variant set M = ��x ,y ,k� :x=y=x* ,k=k*� of �2�–�4� only con-
tains the equilibrium state x* of the original equation �1�, and
therefore, the �unstable� fixed point of the plant becomes
asymptotically stable under the control influence.

Finally, the nonlinear controlled process reads

ẋi = f i�x� − ki�xi − yi� ,

ẏi = �i�xi − yi� ,

k̇i = �i�xi − yi�2. �8�

In order to secure asymptotic behavior of the controlled so-
lution toward x*, the uncontrolled solution of �1� needs to be
bounded. Practically, if there exists a bounded closed set �
such that x*�� and every solution of �1� starting from x0
�� remains for all future time in this set, then the controlled
equilibrium point x* becomes asymptotically stable, while �
is the region of its asymptotic stability. One of the easiest
consequences of this property is that every stable system �1�
becomes asymptotically stable under the presented controller
�2�–�4�. On the other hand, if the uncontrolled system has a
globally stable periodic orbit or a global chaotic attractor,
then �all solutions of �1� are bounded and� the originally
unstable equilibrium point x* becomes globally asymptoti-
cally stable under �8�.

By nature of the estimator dynamics, �3� always chooses a
fixed point of an original system for the reference target.
Generally if �1� in addition to a fixed point has another in-
variant set �for example, a periodic orbit or chaotic attractor�
the algorithm eliminates it from consideration, and hence
that set is noninvariant for the controlled system �2�–�4�. On
the other hand, if �1� has two or more fixed points M
= �x

I
* ,x

II
* , . . . �, then �8� elects one to stabilize it. In this sense,

the control strategy is persistent under the presence of mul-
tiequilibrium, although we may not know which particular
state will be stabilized.

According to the global construction, �8� provides stabili-
zation for any � ,��0. However, these parameters have a
strong influence on the stabilization time and transient be-
havior. Particularly, if ��1, the estimator output behaves as
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y
x, producing slow control adaptation, and similar, slow
control dynamics is expected for �	1. On the other hand,
for �	1, the estimator spends a long time locating the fixed
point, due to its slow dynamics, while for ��1 the fast
dynamics of the control gain might not be realizable with the
limitations of real actuators. All these effects produce time-
consuming stabilization, which should be overcome in prac-
tical implementations.

The nonlinear argument, used in the presented controller
design, makes it possible to obtain stabilization even for
near-nonhyperbolic steady states �8�. However, nonhyperbo-
licity often produces different time scales in the underlying
dynamics, dividing the state coordinates into fast and slow
ones. Let xs be one observed slow variable, and using �8� let

us construct a one-dimensional controller: k̇s=−��xs−ys�2

with ẏs=−��ys−xs�. Naturally, this slow variable, ẋs
0,
mimics a quasi-steady-state producing long-time transients
due to the slow control and estimator adaptation, ẏs
0,

k̇s
0. In this light, the control strategy based on the slow-
state coordinates produces an unpractical response which is
the reason why this type of system variable should be elimi-
nated to obtain good performance for the practical control
scheme.

When state coordinate measurement is provided, elec-
tronic implementation of the controller dynamics in �8�
would require a simple RC circuit by means of a low-pass
filter for the steady-state estimation y and an integrator to
obtain k. The squared error function �xi−yi�2, which is nec-
essary to obtain the control gain, can be implemented using
an integrated-circuit multiplier. The multiplier, which does
not add a particular cost to the implementation, is not re-
quired for a constant-gain adaptive scheme �22� and was also
not needed for threshold-based chaos control �16�.

Finally, let us discuss the optimality of the algorithm pre-
sented. Generally, the methods to construct an optimal con-
troller �27,28� depend on analytical knowledge of the system
dynamics f�x�. In practice, however, optimality always
erodes due to the neglected imperfections in analytical mod-
eling. This is because the optimality is a system-dependent
concept and the mathematically optimal strategy is subopti-
mal in the best practical cases. Without any knowledge about
the model dynamics, the controller presented could be opti-
mized through its tunable parameters � and �. On the other
hand, inspired by the OGY method, the ergodic behavior of
the chaotic systems can be used as an energy-saving mecha-
nism. With ergodic behavior, the system trajectory, at a cer-
tain time, becomes near to the desired state without any con-
trol input. When it happens, the controller starts to operate,
keeping the trajectory in the desired state with only small
perturbations. In this sense, the chaotic response provides an
opportunity for energy-saving control �29�.

III. APPLICATION TO PHYSICAL SYSTEMS

In this section the controller presented is tested on physi-
cal problems. In this light, steady-state control for Lorentz
and van der Pol equations is presented. In addition, applica-
tion to the periodically excited, pendulum equation shows
that the controller can be used for some nonautonomous dy-

namical systems. In all examples presented, the dimension of
the proposed controller is reduced.

A. Lorentz chaos

Consider the famous Lorentz equations �30�

ẋ1 = 
�x2 − x1� ,

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = x1x2 − bx3, �9�

where 
, b, and r are positive parameters related to turbulent
convection for which �9� was originally derived. For r�1,
this system has three equilibrium points: the trivial saddle
point x

0
*= �0,0 ,0� and two additional symmetric equilibria,

x
�
* = (��b�r−1� , ��b�r−1� ,r−1). For r�
�
+�+3� / �


−�−1�, all equilibrium points become unstable while the
system exhibits chaotic behavior. To stabilize these unstable
points, instead of full state control, only one input u2
=−k�x2−y� is added to the second equation in �9�, where the
feedback gain and the estimated position of the equilibrium
point y are obtained from �8�.

The complete set of equations for the controlled Lorentz
system reads

ẋ1 = 
�x2 − x1� ,

ẋ2 = rx1 − x2 − x1x3 − k�x2 − y� ,

ẋ3 = x1x2 − bx3,

k̇ = ��x2 − y�2,

ẏ = ��x2 − y� . �10�

Setting, 
=10, b=8 /3, r=28, �=0.2, �=0.2, and
�x1 ,x2 ,x3 ,k ,y�t=0= �1,1 ,2 ,0 ,0� and turning the controller on
at t=50, Eqs. �10� are stabilized at x

−
*= �−6�2,−6�2,27�,

Fig. 1.
If instead of t=50 the controller is turned on at t=52, the

solutions starting from the same initial position tend to the
another equilibrium state x

+
*= �6�2,6�2,27�. Along this

property, the proposed strategy possesses some flexibility to
change the operational point by simply turning the controller
on and off. Generally, the only thing one needs to do is to
wait until the uncontrolled state x becomes close to the ex-
pected equilibrium x* and then turn the controller on. In
most cases this simple strategy secures stabilization around
x*.

Our numerical experiments showed that, if one particular
input shows a dominant effect under the rest input sate, then
the controller dimension may significantly be reduced. More
explicitly, the stabilization algorithm can in some cases be
based only on one �dominant� control input reducing the di-
mension of the original scheme from �x ,y ,k��R3n to
�x ,y ,k��Rn+2. This dimensional reduction may have a high
practical importance, providing simpler controller construc-
tion.

ADAPTIVE STEADY-STATE STABILIZATION FOR … PHYSICAL REVIEW E 78, 016213 �2008�

016213-3



Unlike x
�
* , which are unstable focuses, we were not able

to stabilize the trivial saddle point x
0
* with stable steady-state

estimator ��0. However, as was recognized by Pyragas
�20�, saddle points could be stabilized with an unstable esti-
mator, ��0. Motivated by this idea, we have applied an
unstable steady-state estimator, �=−0.2 in �10�. Figure 2
shows the saddle point stabilization.

Note that ��0 introduced an unbounded degree of free-
dom in �8� which is not supported by the stability proof
presented. In this light, saddle stabilization, although pos-
sible with ��0, is not proved as generally valid in the
present context. In electronic implementations, the unstable
estimator would require an RC circuit with negative resis-
tance �20�.

B. van der Pol oscillator

The intention herein is to inspect the behavior of the pre-
sented control algorithm in vicinity of a stable periodic at-
tractor. In this light, consider now the van der Pol nonlinear
oscillator

ẍ − 
�1 − x2�ẋ + x = 0. �11�

This equation has one unstable trivial state �x1 ,x2�= �0,0�
and one globally asymptotically stable limit cycle which at-
tract all trajectories from the phase space. In order to stabi-
lize �11� around the equilibrium position, the following con-
trol scheme is proposed:

ẋ1 = x2,

ẋ2 = − x1 + 
�1 − x1
2�x2 − k�x2 − y� ,

ẏ = ��x2 − y� ,

k̇ = ��x2 − y�2. �12�

Setting �x1 ,x2 ,k ,y�t=0= �2,−3,0 ,0�, 
=1, and �=0.5, �
=0.1, the stabilization is clearly shown in Fig. 3.

C. Controlling pendulum

Although the proposed controller is built for autonomous
systems ẋ= f�x�, it can be used for some time-varying cases
ẋ= f�t ,x�. The theoretical background of this nonautonomous
extension lies in the fact that LaSalle’s invariance principle is
applicable not just for autonomous, but for all nonaoutono-
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FIG. 1. Stabilization of the unstable focus x
−
* for the Lorentz

system. Uncontrolled chaotic evolution t� �0,50�, controlled dy-
namics t� �50,100�.
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FIG. 2. Stabilization of the unstable saddle point x
0
* for the

Lorentz system. Uncontrolled chaotic evolution t� �0,50�, con-
trolled dynamics t� �50,100�, �=0.2, and �=−0.2.
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FIG. 3. Steady-state stabilization of the van der Pol oscillator;
uncontrolled evolution on the limit cycle t� �0,50�, controlled dy-
namics t� �50,100�.
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mous systems with time-invariant positive limit set �periodic,
almost periodic, asymptotically autonomous, etc., systems�
�31�. The implementation is shown in the following example.

Consider the dimensionless equation of the mathematical
pendulum,

ẍ + �ẋ + �1 + p cos �t�sin x = 0, �13�

where x�t� is the angular displacement measuring from the
vertical axis and � characterize viscous dissipation, while the
pendulum pivot is subject to the vertically periodic forcing
p cos �t. Depending on the excitational parameters �p ,��,
this nonlinear oscillator can undergo various types of intrigu-
ing behavior. Setting �=0.1, �=2, and p=2, the solution of
�13� becomes locally unstable, but globally bounded, charac-
terizing the chaotic regime. Under these circumstances, we
are going to stabilize the vertical position of �13� defined by
the multiple equilibrium states x*= �0, �� , �2� , . . . �.

Using �8�, the control scheme becomes

ẋ1 = x2,

ẋ2 = − �x2 − �1 + p cos �t�sin x1 − k�x2 − y� ,

ẏ = ��x2 − y� ,

k̇ = ��x2 − y�2, �14�

where instead of the full state control, only one input is pro-
posed. Choosing �=0.25, �=0.5, and �x1 ,x2 ,y ,k�t=0

= �1,1 ,0 ,0� the pendulum is stabilized around x*= �2� ,0�,
Fig. 4.

Generally, if a multiequilibrium points exist, the position
of the stabilized state is strongly dependent on the system
dynamics, initial conditions, and controller parameters. Al-
though the controller guarantees stabilization for systems
with multiequilibrium, it is not known a priori which par-
ticular equilibrium will be stabilized. This type of a so-
called, multiequilibrium uncertainty can be overcome, set-
ting y�0�=x* and �=0. It is important to mention that if x* is
predefined, then there is no longer a need for the state esti-
mator �3�, while the controller reduces to that presented by
Huang �8�.

In numerical experiments with �14�, the control strategy
kept the privilege to stabilize �0, �2� , . . . �, overcoming the
saddle states ��� , �3� , . . . �. In this case, application of the
idea presented by �22� may be an alternative method to sta-
bilize the saddle equilibrium. In the present context, how-
ever, the analytical form of the system dynamics is assumed

to be unknown, and as such, the feedback gain selection in
�22� would be only possible through a hand-tuning process.

Finally, it is important to mention that the idea presented
is developed under general assumptions and as such is valid
for a wide class of dynamical systems. Further relaxation by
means of a general nonlinear form of the controlled dynam-
ics, ẋ= f�t ,x ,u�, and possible extension to incorporate stabi-
lization of unstable periodic orbits, although nontrivial by
means of the stability proof, may further extend the applica-
bility of the proposed idea.

IV. CONCLUSION

In summary, a control strategy is proposed with the aim of
stabilizing an unstable steady state embedded in a nonlinear
dynamical system. The operation of the adaptive controller
with variable feedback gain �4� is combined with the first-
order steady-state estimator �3�. The resulting stabilization
strategy does not require knowledge about the system’s
steady state, and moreover it works without using any ana-
lytical form of the system dynamics. Compared to traditional
controllers, the idea presented might have advantages as long
as there is no clear understanding of the dynamic system
which is under control.
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