PHYSICAL REVIEW E 78, 016210 (2008)

Dynamics of semiconductor lasers with external multicavities
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Extending a semiconductor laser by means of an external resonator providing a weak optical feedback
causes high-dimensional chaotic fluctuations of the light intensity. Adding a second resonator with different
round-trip time may turn these fluctuations into more ordered oscillations or even lead back to a stable
steady-state operation. The stability range of periodic or continuous wave solutions can be increased by adding
a third resonator to the system. This stabilizing effect of multicavities is shown experimentally and theoreti-
cally using numerical simulations based on an extended Lang-Kobayashi model and corresponding linear

stability analysis of continuous wave solutions.
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I. INTRODUCTION

A semiconductor laser is commonly known as a system
with extremely well-ordered dynamics. This order, however,
can be destroyed by simply pointing the laser at a mirror,
such that a fraction of its own light output is led back into its
internal resonator [1]. The laser will start to fluctuate, and
depending on a number of parameters, several interesting
dynamics can occur, including high-dimensional chaos.

These phenomena, however interesting, have been known
for a long time and are well studied. In 1977, Risch and
Voumand were the first to describe the so-called low-
frequency fluctuations (LFFs) of a semiconductor laser [2].
They occur for very small reflectivities and pump currents
only slightly above the threshold current. The light output is
then characterized by frequent and very sudden power drop-
outs, each followed by a relatively slow recreation of the
light intensity. Modulated onto them is a fast oscillation that
can usually only be seen low pass filtered due to the finite
response time of the photodiode used to capture the intensity
and limited transfer functions of subsequent amplifiers and
oscilloscopes. The frequency of the power dropouts is only
3-30 MHz, which is amazingly slow compared to the fast
oscillations that are in the range of several GHz.

The first model to generally describe the dynamics of
semiconductor lasers with optical feedback was proposed by
Lang and Kobayashi in 1980 [3]. They extended the well-
known semiconductor rate equations by a feedback term,
which leads to a system of equations known as the Lang-
Kobayashi equations (LKEs) [4]:

Ey(1) = %GNn(t)EO(t) + KkE(1— 1)

PACS number(s): 05.45.Gg

split into two one-dimensional real equations, and n(r)
=N(t)—N,,, is the carrier number above the value N, of the
unperturbed, “solitary” semiconductor laser with no optical
feedback. 7 is the light round-trip time in the external reso-
nator. All other parameters are explained in Table 1. Using
these equations, Lang and Kobayashi were able to simulate
the phenomena they discovered for small reflectivities and
laser-mirror distances of 1-2 cm, such as multistability or
hysteresis, similar to a nonlinear Fabry-Perot resonator.

The origin of the LFF dynamics remained unclear for
many years. Fujiwara et al. [6] suggested the LFFs to result
from a decreased relaxation oscillation frequency. Henry and
Kazarinov [7] assumed a stable resonator mode out of which
the laser is randomly kicked by spontanous emission noise,
causing power dropouts, and Hohl et al. [8] showed that the
nature and statistics of the LFFs are indeed influenced by this
noise. Mgrk et al. [9] assumed the laser to become bistable
due to the feedback, such that the spontanous emission noise
would cause a mode hopping between these two states. In
1994, Sano [10] showed that the LFF dynamics could be
simulated by the deterministic LKEs. Those simulations also
revealed the frequency of the fast oscillations mentioned
above. They were eventually visualized experimentally by
Fischer et al. [11]in 1996. In 1998 Ahlers et al. [12] showed
that chaotic LFF dynamics generated by the LKEs may pos-
sess many positive Lyapunov exponents and that this hyper-
chaotic dynamics can be synchronized by unidirectional op-
tical coupling.

LFFs were generally assumed to be a phenomenon of
only low pump currents, until in 1997 when Pan er al. [13]
were the first to show both experimentally and numerically

TABLE 1. Parameters used in the simulations and calculations.

Xcos[wyT+ P(t) — Pp(t— 7)], (1a) All values except w taken from [5].
. 1 Eo(t—17) Gy 2.142x 10 ns™!  Differential optical gain
¢(0) = S aGyn(r) - 50 Linewidth enh f
2 Eo(?) . inewidth enhancement factor
) % 0.909 ns™! Carrier loss rate
X — (-
sinf w7+ (1) = $lr = 7). (1b) r 0.357 ps! Photon loss rate
8 ol :
i(8) = (p = 1), — yn(e) = [T + GNn(t)]E%(t), (1c) Jin 1.552 X 10° ns Threshold current c}ens1ty
p 1.02 Pump current density over J,;,
where « is the Qifferential feedback rate. The equation forthe 50/ 682.7 nm Solitary laser wavelength
complex electric field E(r)=Ey(r)exp{i[ wot+ (1) ]} has been
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FIG. 1. (Color online) Experimental setup.

that in the case of larger feedback rates they occur for cur-
rents well above the laser threshold as well. In this regime,
power dropouts turn into power jump-ups. They appear like
inverted power dropouts, but their modeling is more compli-
cated [14,15].

In 1994 Fischer et al. [16] extended a laser diode by a
T-shaped external cavity with two mirrors and a beam split-
ter. Focusing on the special case of equal feedback rates for
both mirrors and one cavity being twice as long as the other,
they found periodic and chaotic solutions and studied the
system’s routes to chaos. Furthermore, they were able to re-
produce the experimental behavior via numerical simula-
tions. Three years later, Liu and Ohtsubo [17] investigated
the same system with arbitrary cavity lengths and feedback
rates. They found that there exist wide parameter ranges with
stable light outputs (i.e., steady states or limit cycles) and
proposed this as a method to suppress feedback-induced in-
tensity noise. A deeper theoretical investigation was per-
formed by Rogister et al. and Erneux et al. in 1999 [18].
They found that for a sufficient feedback rate LFF suppres-
sion takes place, however the second cavity length is chosen.
In 2000, Rogister et al. presented an experimental confirma-
tion of these results [19]. Detailed theoretical investigations
of the possible dynamics of a system with two distant reflec-
tors were given in 2000 by Erneux ef al. [20], in 2002 by
Sukow et al. [21], and in 2006 by Ruiz-Oliveras and
Pisarchik [22].

II. EXTERNAL MULTICAVITIES

In the following we present the results of our observations
on a laser diode with two or three distant reflectors at small
pump currents. The experimental setup is shown in Fig. 1.
We assume the reflectivity of each mirror to be small enough
to neglect multiple reflections within or between the external
cavities. In this case, the extension of the LKE for a set of M
mirrors is given by

M
i 1
Eot) = G0 Eo(t) + 2w, Eolt = 7,)
m=1
><COS[O‘)OTm + ¢(t) - ¢(t_ Tm)]v (23)
. 1 z EO(t - Tm)
(1) = EaGNn(t) - E me
XSin[onm + ¢(t) - ¢(t - Tm):]’ (Zb)

(1) = (p = Dy — yn(e) = [T + Gyn(D]EY(D),  (2¢)

where the rates «,, of each feedback term take into account
all losses due to transmissions and reflections. Both for the
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FIG. 2. (Color online) (a) LFFs in a simulation of the classical
single feedback LKE with 7=4 ns and k=50 ns~'. (b) Stable cw
solutions appear after a second feedback term has been added. 7
and «; remain unchanged, 7,=3.96 ns and x,=30 ns™.

two- and three-mirror systems we found a number of differ-
ent dynamical regimes depending on parameter choice.
Those include chaotic LFF dynamics, quasiperiodic solu-
tions, limit cycles, and continuous wave (cw) solutions (Fig.
2), the latter being of special interest with regard to the use
of external resonators to suppress feedback-induced instabili-
ties. To find out about the effect of additional resonators on
their stability, we have performed a linear stability analysis
on the extended LKE.

On a cw solution, the field amplitude and carrier number
will turn into constants and lose their time-delayed character:

Eo(1) = Eo(t — 7,,) = const =: E,, (3a)

n(t) =n(t - 7,,) = const =: 1. (3b)

The phase shift ¢(r) does not become constant, but linear in
time:

d(1) = &t + ¢y, 4)

which corresponds to a constant light frequency wg+®. Sub-
stituting these conditions into the extended LKE (2a)—(2c),
we obtain a system of equations for the cw solutions:

2 m
n=- _2 K, COS((,U()Tm + (’;)Tm)’ (Sa)
GNi=l
~ -DJ, -y
A i)Vl (5b)
r +'(;Aﬂ1
S DA ~
= ECVGN” - E Ky SIN(@) T, + &T,,). (5¢)

i=1

Now that observables on a cw solution are known to us, we
shall find out about their stability. Let d(¢)=(JEy, 5¢p, 5n) be
the phase-space deviation from a cw solution. Linearizing
the extended LKE (2) at the cw solution (5) and using the
ansatz d(f)=eMd,, where \ is complex, leads to a system of
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equations for d(z) (for details see the Appendix):
: M
NGSE (1) = EGNEO(?n(t) = > Kl Eg sin(w,) (1 — e™) 8¢(1)

m=1

+cos(wr,)(1 — e™Nm)SEq(1)], (6a)
| M

NSP(1) = EaGNﬁn(t) + ) Kl Ey' sin(wr,)(1 — e ™Nm) SE (1)
m=1

—cos(w,)(1 —e™™m)5p(1)], (6b)

Non(r) = = 2(T + Gy EgOE(t) — (GyES + ) 6n(1),
(6¢)

where w=wy+ ®. The stability of a given cw solution is now
defined by \. If the real part of \ is negative, d(¢) will con-
verge to zero, which means stability. With A(\) being the
matrix describing the above system of equations (6a)—(6¢), it
is Ad(r)=A(N\)d(r). Thus \ is given by the eigenvalues of
A(N) or, equivalently, by the roots of the characteristic equa-
tion

0=detA\I-A(\)]
=N+ N[2¢ + GyEj + 7]
+M[? + 52+ 2¢(GyES + ) + GyEST + Gyid)]
+ (T + Gy ELGy(c — sa) + (s> + ) (GyEa + ), (7)

where I is the unit matrix and

M
C()\) = E K COS(me)(l - e_)‘Tm)’
m=1

M
s\ = > K,, sin(w,,)(1 — e™\m).
m=1

The cw solution’s stability depends on the root of Eq. (7)
with the largest real value, which from now on will be called
the dominant root, or Ny, shortly. The real part of Ay, can
be seen as a quantitative measure of the system’s stability.
The detection of Ay, is not easy because Eq. (7) has an
infinite number of roots. Our method was to put a sufficiently
large and fine grid onto the complex plane, calculate Eq. (7)
for each grid point, and start a numerical root finder at the
minima.

The characteristic equation (7) has a parameter-
independent root at =0, because ¢(0)=s(0)=0. This neutral
eigenvalue originates from the linear phase dynamics in Eq.
(4) and results in a time-independent phase shift. Since the
light intensity is not affected by this phase dynamics, this
vanishing eigenvalue will be ignored in the following stabil-
ity analysis.

Figure 3(a) shows a stability analysis of a single feedback
laser (M=1) for a number of feedback rates. As expected,
the stable, solitary laser (x;=0) is more and more destabi-
lized the stronger the optical feedback becomes. According
to our numerical simulations the cw operation stops at
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FIG. 3. (Color online) In these diagrams, each dot represents a
cw solution as determined by Egs. (5), and its vertical position
gives the real part of A y,,,. Dots below the zero line represent stable
stationary solutions. (a) Destabilization of the laser by means of a
single optical feedback with ;=4 ns and (b) x;=30 ns~!. Adding a
second feedback with 7,=2.75 ns with a properly chosen feedback
rate k, leads to a restabilization of the single feedback case
(k3=0). (c) k,=30 ns!, a third feedback term with 73=1.27 ns has
been added. In a small regime around x;=30 ns~! the steady-state
stability increases compared to the double-feedback case.

x;=0.18 ns™!, and after a series of Hopf bifurcations chaos
sets in at k;=0.55 ns~'. Even though cw solutions exist even
well above that value, they are only weakly stable and their
basins are too small to actually capture the phase-space tra-
jectory. In Fig. 3(b), x, is fixed to 30 ns™' and a second
feedback is added, which for certain values of the feedback
rate k, has a stabilizing effect.

We also investigated whether it is possible to improve
stability by adding a third resonator. A systematic series of
stability analyses for several combinations of round-trip
times and feedback rates indicated that this is indeed the
case. Like the second resonator added to the single-feedback
system, a third resontator may have a stabilizing or a desta-
bilizing effect on the double-feedback system, depending on
parameter choice [Fig. 3(c)]. For properly chosen values of
73 and k3 a significant increase in stability can be achieved,
even though the stability remains weak compared to the un-
perturbed laser. The most stable stationary solution we
found for a triple-feedback system had a stability of
Re(Ngom)=—0.06, where for the unperturbed laser we found
Re(Agom) ==0.55.

III. EXPERIMENTAL RESULTS

In our experiment, installation of one or more additional
resonators led to stabilization, too, as can be seen in Fig. 4.
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FIG. 4. (Color online) Experimental time series of the ac-
coupled intensity P0=E(2)—(E(2)> where (E(Z)) denotes the mean value.
(a) LFF dynamics of a semiconductor laser with one external reso-
nator with round-trip time 7,=10.6 ns. (b) Adding a second resona-
tor with 7,=9.8 ns leads to short periods of (noisy) steady-state
operation or low-amplitude oscillation. Note the different time
scales. (c) Stability of the double-feedback system increases signifi-
cantly after the installation of a third resonator with 73=1.47 ns.
The laser now remains stable for up to several minutes.

In contrast to the numerical solutions, however, the signal
corresponding to the stabilized state still possesses a finite
amplitude due to measurement and/or dynamical noise (the
same noise amplitude was experimentally observed for a cw
semiconductor laser without any external resonators). Fur-
thermore, in the experiment we observed frequent breakouts
(see Fig. 4 [23]), which cannot be simulated by means of the
extended deterministic LKE (2). The period of time between
two breakouts can add up to several minutes, so they are
probably not of deterministic origin. We found two different
ways to reproduce them in simulations. The first one is based
on the assumption that the system is in fact stable, but not
stable enough to durably withstand internal and external per-
turbations (like spontaneous emissions and mechanical vi-
brations). Figure 5 shows the same simulation as seen in Fig.
2(b), but now with dynamical noise generated by Gaussian
random numbers superimposed on each system variable dur-
ing integration. The result is a time series very similar to
what we see in Figs. 4(b) and 4(c). In view of the results of
the stability analysis this is not very surprising, because the
cw solution’s stability always remained very fragile com-
pared to the solitary laser, no matter how the parameters

800

GOOI

IH SN D )

100
tlme [us]

FIG. 5. (Color online) Simulation from Fig. 2(b) corrupted by
dynamical noise.
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FIG. 6. (Color online) Change of stationary solutions stability
with external round trip time where 7;=4 ns, 7,=2.150045 ns, and
K1 23=30 ns~!. The interval over which 75 is varied corresponds to
a shift in the external optical path length of little more than half a
wavelength.

were chosen. In the simulation the time intervals between
two outbreaks are smaller that than those in the experimental
time series by many orders of magnitude, because a rather
strong noise signal has been used to speed up calculations (it
would be too time consuming to simulate several seconds of
laser dynamics). The cw operation intervals in the simula-
tion, however, can be stretched arbitrarily by decreasing the
noise amplitude.

When observing the experimental system for a long time
one can observe changes in the mean frequency of breakouts
and stable operation [see, for example, Fig. 4(b), where dur-
ing the first 5 min more stable time intervals occur than in
the following 20 min]. The system seems to be nonstationary
on a slow time scale (minutes). There is strong evidence that
this nonstationarity is caused by small fluctuations of the
external resonator lengths due to thermal effects or mechani-
cal perturbations. In certain regions of parameter space there
is a very sensitive dependence of dynamics and stability with
respect to the delay times 7, as can be seen in Fig. 6. Cavity
length shifts of less than a wavelength may push the system
from a stable into an unstable regime or vice versa. Accord-
ing to our analytical investigations by means of steady-state
analysis, we found that the density of stable steady-state so-
lutions increases for small values of 7, and 73. Accordingly,
best stabilizing effects in the experiment were achieved for
small lengths of the additional cavities.

We have run a simulation with two feedback terms and a
sinosoidal fluctuation of 7, (Fig. 7). Again, the result is very
similar to what we see in our experimental time series. De-
pending on the current value of the second round-trip time,
the system changes between two different attractors. The os-
cillation amplitude of 7, is 3 X 107 ns, which corresponds to
an optical path length shift of 0.09 mm. Note that no noise
has been added to this time series. The dynamics between the
outbreaks does not represent a noise-corrupted steady-state
solution, as is the case in Fig. 5, but a real low-amplitude
solution of the extended LKE. Experimentally these two
cases are difficult to distinguish. However, in the case of
steady-state operation the amplitude between the outbreaks
should be equal to the (noisy) amplitude measured for the
solitary laser without external feedback. This has been the
case for some of our measured time series, which indicates
that actually steady-state operation has been realized in our
experiments.
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FIG. 7. (Color online) (a) Simulation of the extended LKE with

double feedback where 7, is time dependent, =4 ns,
k1=30 ns~!, and k,=36.5 ns”!. (b) Current value of 7.

IV. CONCLUSIONS

We have shown that stabilization of chaotic semiconduc-
tor laser with an external resonator by means of a second
external resonator can be enhanced by adding a third resona-
tor to the system. However, the resulting cw solutions are
only weakly stable, and in addition an extremely sensitive
dependence of system dynamics from the external optical
path length exists in certain regions of parameter space.
Therefore it is difficult to achieve durable stationary laser
operation experimentally. A linear stability analysis of cw
solutions of an extended Lang-Kobayashi equation confirms
this phenomenon, including the amount of (weak) stability
achieved, its sensitive dependence on the lengths of the reso-
nator(s) and the accumulation of stable steady state solutions
in the regime of small round trip times. Experiment and
simulation are in good accordance when dynamical noise
and/or time-dependent cavity lenghts are included. We con-
jecture that the observed stabilizing effect of multiple de-
layed feedback is a general feature of dynamical systems or
networks [24-26].

APPENDIX: STABILITY OF STEADY-STATE SOLUTIONS

The extended Lang-Kobayashi equations (2) can be writ-
ten as follows:

M
(1) = g[x(0]+ 2 w,hlx(0).x(t = 7,)],

(A1)
m=1
where
%GNn(t)E()(t)
glx(0]= e
(p = Dy = () = [T + Gyn(1) JES(1)
(A2)
and
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h[x(t),x(t - Tm)]
EO(t - Tm)COS[onm + d)(t) - d)(t_ Tm)]
- %}l‘)ﬂﬂ) Sil’l[u)on + d)(t) - ¢(t - Tm)]
0
0

(A3)

The phase-space deviation from a given trajectory y(r) is
d(t)=x(r)—y(¢) and is described by the following differential
equations:

M

d(r) = x(t) = y(0) = g[x(0] - gly()] + 2 K, {hlx(0),x(1 = 7,,)]

m=1

= hly(®).y(t=7,)]}. (A4)

After linearization we obtain

d(t) = Dg[x(1)]d(1)

M
+ 20 1 DRLx(0),x(t = 7,)1(d(1).d(t - 7,,)). (A5)
m=1

where Dg and Dh are Jacobians and the vectors d(z) and
(d(1),d(t-T,,)) are defined by

OE(1)
d(t)=| 6¢(1) (A6)
on(t)
and
OE(1)
Sp(t)
(d(®),d(t-7,) = on(1) (A7)
5E0(t - Tm)
Sp(t—1,).

Using the abbreviation ®(¢)=w,7,+ ¢(1) — P(t—7,,), Jacobi-
ans are as follows:

1 1
EGNn(t) 0 EGNE()(I)
Dglia(n)] = . ol
2 ¥ON
—2[T +Gyn()]E(1) 0 —GyEy(1)* -y

(A8)
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0 —Ey(t—7,)sin[®(r)] O cos[®(1)] Ey(t = 7,,)sin[D(1)]
_ EO(t - Tm) . _ EO(t - Tm) _ . E()(t_ Tm)
Dh[x(t),x(t - 7,,)] = —Eo(t)2 sin[D(7)] —Eo(t) cos[P(r)] O o) sin[D(7)] —Eo(t) cos[D(7)]
0 0 0 0 0
(A9)
Using Egs. (3) and (4) leads to a system of equations
M
5E0(t) = %GNﬁﬁEO(l) + %GNEOC(;H(I) - 2 {KmE() Sin(me)[6¢(t) - 5¢(I - Tm)] — Kn COS(me) 5E0(t_ Tm)}v (Aloa)
m=1
. M
S5o(t) = EaGNﬁn(t) + (% sin(w,,)[ SEy(f) — SEy(t — 7,,) ] — K, cos(w,,)[ (1) — S(t — Tm)]> , (A10Db)
m=1 EO
0i(1) = = 2(T + Gy EoSE (1) — (GNEL + y) dn(t), (A10c)
where w=wy+ ®. Substituting the relation (5a) into (A10a) turns it to
M
SEo(1) = %GNEO(SH(I) = 2 {K,Eq sin(w7,,)[8¢(1) - 5¢(t — 7,,)]+ K, cos(w,) [ SE(t) = SEq(t - 7,,) ]} (A11)
m=1
Using the ansatz
d(t)=eNd,, \eC, (A12)
the system takes the following form:
M
NSEy(1) = %GNEO(Sn(t) - D {k,Ey sin(wT,)(1 — e ) 8(1) + K, cos(wT,)(1 — e ™) SEy(1)}, (A13a)
m=1
| M
NSp(t) = EaGNén(t) + > (% sin(wr,,)(1 — e™™m) SE(1) — k,, cos(wT,,)(1 — ™) 5¢(t)), (A13b)
m=1 EO
Non(r) = — 2(T + Gyi) EgSEy(t) — (GyEa + ) 6n(1). (A13c)
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