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In this paper, numerical simulation of calcium waves in a network of cells coupled together by a paracrine
signaling is investigated. The model takes into account the long-range interaction between cells due to the
action of extracellular messengers, which provide links between first-neighbor cells, but also on cells located
far away from the excited cell. When considering bidirectional coupling, the long-range interaction influences
neither the frequency nor the amplitude of oscillations, contrary to one-directional coupling. The long-range
interaction influences the speed of propagation of Ca2+ waves in the network and induces enlargement of the
transition zone before the steady regime of propagation is attained. We also investigate the long-range effects
on the colonization of a given niche by a pathogenic microorganism signal on calcium wave propagation in the
network.
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I. INTRODUCTION

Calcium oscillations have been found in many animals
�1,2� as well as in plant �3� cells, with many of these cells not
having an obvious oscillatory biological function. The tem-
poral behavior of cytoplasmic free calcium has attracted
much attention, especially after it was shown that calcium
concentrations display oscillatory behavior in response to
agonist stimulation in a variety of cells �4,5�. Recently, it was
observed in various systems that calcium signals can also
mediate intercellular communication by eliciting or coordi-
nating calcium signals in surrounding cells �6–10�.

Physiological responses generated within a cell can
propagate to neighboring cells through intercellular commu-
nication involving the passage of a molecular signal to a
bordering cell through a gap junction �7–14�, through extra-
cellular communication, involving the secretion of molecular
signals �14–18,20,21� �hormones, neurotransmitters, etc.�,
and more recently through extracellular calcium signaling
�22–24�. However, the difference between these mechanisms
is small as they all rely on the IP3R �inositol-1,4,5-
triphosphate receptors�. The particular mechanism utilized
depends primarily on the manner of stimulation and the ex-
tent of gap junction coupling �i.e., the cell types�.

Evidence of the participation of an extracellular messen-
ger as the source of Ca2+ intercellular wave propagation was
demonstrated for the first time by Osipchuk and Cahalan �14�
on gap junction intercellular deficient rat basophilic leukemia
cells, with complete inhibition of the intercellular Ca2+

waves by suramin, a P2-purinergic receptor inhibitor. They
showed that cell stimulation induces the release of ATP �ad-
enosine 5�-triphosphate�, a Ca2+ agonist, from secretory
granules, resulting in sufficiently large local increases in ATP
concentration to trigger secondary calcium transients in
neighboring contacting as well as noncontacting cells. Many
other works have been done supporting the hypothesis that

coordinated Ca2+ waves may occur through the activation of
receptors by an extracellular messenger and that not all can-
didate messengers released by a cell can effectively commu-
nicate calcium signals �15,16,20�, the exact type of messen-
ger depending on the cell type. Most of these works focus on
the action of extracellular messengers not only on neighbor-
ing cells directly in contact, but also on non contacting cells
�14–16,19,20�, indicating the long-range interaction in the
network.

In recent years, experimental studies on Ca2+ waves have
been carried out on different cells types, such as tracheal
epithelial cells �25� and endothelial cells. Sneyd et al.
�26,27� proposed a model for these intercellular waves,
which assumes gap junction diffusion of inositol-1,4,5-
triphosphate �IP3� between adjacent cells. Mechanical stimu-
lation of a single cell produces IP3 within the cell, which in
turn causes the release of Ca2+ from internal stores in the
form of an intracellular Ca2+ wave. Diffusion of IP3 between
cells then initiates calcium waves in adjacent cells. This pro-
cess continues as long as the amount of IP3 entering a given
cell is sufficient to induce a Ca2+ wave. Some recent papers
following Sneyd et al. �26,27� have also studied the mecha-
nisms that control the coordination and the intercellular
propagation of calcium waves induced in other cell types,
investigating the propagation of such intercellular Ca2+

waves in doublet and triplet cells �7,9,10,13,28,29�. They
show that the gap junction coupling consists of a mechanism
used by cells to coordinate and synchronize their informa-
tion.

A fascinating aspect of bacterial models is the integration
of bacterial-induced Ca2+ response in the strategy of diver-
sion of host cell responses that is required for the establish-
ment of the infectious disease. Pathways utilized by bacterial
pathogens implicate timely and spatially controlled Ca2+ sig-
naling within host cells. Bacterial pathogens can induce the
cell release of ATP, which may expand bacterial cell signal-
ing by a paracrine or autocrine route, leading to enhanced
colonization or enhanced host cell responses to the invading
microorganism �30,31�. Ca2+ responses induced by bacteria
and bacterial products have been studied using in vitro cul-
tured epithelial or phagocytic cells to get mechanistical in-

*Author to whom all correspondence should be addressed:
pwoafo1@yahoo.fr

PHYSICAL REVIEW E 78, 011922 �2008�

1539-3755/2008/78�1�/011922�7� ©2008 The American Physical Society011922-1

http://dx.doi.org/10.1103/PhysRevE.78.011922


sights into the mounting of the responses, as well as to es-
tablish links between Ca2+ signaling and bacterial induction
of cellular processes relevant for the infectious pathology
�32–34�.

Following Ref. �35�, in which the propagation of calcium
waves in a network of cells coupled by paracrine signal has
been elaborated on, thus putting into evidence the presence
of two important zones of propagation in the network, it
would be interesting now to see what are the effects that the
long-range coupling has on the wave propagation, and also
to know how in the virulence state of bacteria, long-range
interaction influences the infection process. This constitutes
the aim of this work. In Sec. II, we introduce the long-range
interaction in a mathematical model and investigate by a
numerical simulation its effects on Ca2+ oscillations and Ca2+

wave propagation. In Sec. III, we add infected cells in the
network and investigate the effects of the long-range interac-
tion on the colonization of a given niche by the infection. We
also investigate how a calcium signal propagates when con-
sidering a one-direction flow of an extracellular messenger.

II. EFFECTS OF LONG-RANGE COUPLING ON Ca2+

PROPAGATION

To describe intercellular calcium oscillations in a network
of cells, two aspects must be considered, namely the intrac-
ellular dynamics of calcium and the coupling between cells.
Many models have been developed to explain Ca2+ oscilla-
tions in a cell �7,9–12,36,37�. Here, we choose the minimal
model developed by Goldbetter et al. �36�, for which we
consider first that calcium extruded in one cell can stimulate
its neighbors, and secondly, following Gracheva and Gunton
�24�, that cells are coupled together by assuming that the
stimulus of the target cell is proportional to the cytosolic
calcium content of its neighboring cells. The model de-
scribed here is shown in Fig. 1. This one-dimensional chain
up can be observed in protozoa that can live in an isolated
state, but can also agglomerate if necessary. For example, the
acrasial amoeba can form a multicellular structure when life
conditions become unfavorable. This multicellular structure
organizes itself on a longer rod on which spherical cells are
fixed. The aggregation process is due to a substance that has
been recognized as acrasine or AMPc. In certain approxima-
tions, our model could also explain how calcium propagates
in multicellular structure such as epithelial cells, hepatocyte

cells, liver cells, astrocytes, and others. Due to the fact that
the extracellular messenger can be propagated via extracel-
lular fluid to neighboring contacting cells as well as neigh-
boring noncontacting cells �19,20�, to model the long-range
coupling between cells as shown in Fig. 1, we consider that
the interaction coupling between cells i and j is

kij = k0
1 − r

r
r�i−j�, �1�

where k0 is the coupling coefficient between the first-
neighbor cells and r� �0;1� is a parameter measuring the
range of interaction. This type of interaction is well known in
the context of condensed-matter physics �38�. The long-
range interaction represents the influence of all cells at the
neighborhood of a cell on its cytosolic Ca2+ oscillations. It
can be seen as shown in Fig. 2�a� that the long-range cou-
pling between cells increases when r increases. The variation
of r can be related to that of the temperature or of the fluidity
of the milieu. So, the number of cells interacting with a given
cell depends on the fluidity and the temperature of the mi-
lieu. The absolute value �i− j� represents the measure of the
distance between cells of sites i and j. Figure 2�b� shows that
the coupling between cells decreases gradually as the dis-
tance �i− j� increases, this characterizing the fact that as the
agonists propagate in the milieu, the number of receptors in
the affected cells decreases.

As noted here before, to model intercellular calcium
waves, two aspects must be considered: intracellular dynam-
ics of calcium and coupling between cells. Two types of
theoretical models have been developed so far: the spa-
tiotemporal models and the temporal models. The spatiotem-
poral models take into account the fact that intracellular cal-
cium waves are spatially distributed in cells. However, in
some cell types with small diameter, such as hepatocytes
�10–20 �m� �39,40� and pancreatic acinar cells
�10–20 �m� �41�, in which the intracellular propagation
speed is of the order of 10 �m s−1 while intercellular propa-
gation speed is around 120 �m s−1 �41�, the spatial intracel-
lular aspect can be neglected. Thus, the dynamics of the cells
can be approximated by a set of ordinary differential equa-
tions. An interesting study by Tsaneva-Atanasova et al. �41�
investigated in pancreatic acinar cells the temporal and the
spatiotemporal models. Although the point-oscillator model
�described by ordinary differential equations� cannot explain

FIG. 1. Linear array of cells. Solid arrows depict reactions or transport steps. �1� Agonist link to the extracellular side of a receptor bound
to a membrane, �2� second messenger �IP3� bound to specific receptors in the membrane of an internal store of Ca2+ �endoplasmic reticulum�,
�3� large flux of calcium ions from the internal store into the cytosol, �4� long-range coupling.
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all the phenomena exhibited in the cell networks such as
synchrony, it has been found in Ref. �41� that it gives a
reasonably accurate general picture. That is why we use the
temporal model in this paper.

For the mathematical modeling, let us consider xi as the
calcium concentration in the cytosol of the ith cell and yi its
internal store calcium concentration. Therefore, the calcium
dynamics of the ith cell is described by the following set of
equations:

dxi

dt
= ai + k0

�1 − r�
r

�
j�i

m

r�i−j��xj − xi� − V2,i + V3,i + kfyi − kxi,

�2�

dyi

dt
= V2,i − V3,i − kfyi, �3�

where k0=�V1, � represents the coupling parameter, i=0 to
N, and j= i−m to i+m, N being the total number of cells of
the chain and m the order at which kij is negligible. Equa-
tions �2� and �3� were developed for the first time by Gold-
better et al. �36� to explain calcium oscillations in a cell and
recently used to analyze intercellular calcium waves in a
chain of diffusively coupled cells �35�. For this study, we

have introduced the long-range interaction �see Eq. �1��. In
these equations,

ai = �V0 + bV1 if i = 1

V0 if i � 1
� �4�

represents the term characterizing the excitation state of a
cell. V0 represents the influx of Ca2+ from the extracellular
media and bV1 represents a constant hormonal stimulus,
which is localized on the first cell of the array �the one where
the wave is initiated by the hormonal stimulus�.

V2,i =
Vm2xi

2

k2
2 + xi

2

represents the rate of Ca2+ pump from the cytosol to the
internal store.

V3,i =
Vm3xi

4yi
2

�ka
4 + xi

4��kr
2 + yi

2�

represents the rate of Ca2+ liberation from the internal stores
to the cytosol. The activation of this process is provoked by
the Ca2+ itself, characterizing the calcium-induced calcium
release �CICR� process. The Ca2+ extrusion from the cytosol
to the extracellular media is taken into account by the term

TABLE I. Typical simulation constants for the minimal
model.

Parameter Value

k 2 s−1

kf 1.0 s−1

k2 1.0 �M

ka 0.9 �M

kr 2.0 �M

V0 1.3 �M s−1

V1 7.3 �M s−1

Vm1 65.0 �M s−1

Vm2 500.0 �M s−1
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FIG. 2. �Color online� Coupling parameter behavior with k0

=0.5. �a� Under variation of the long-range parameter, �i− j�=2. �b�
Under variation of the distance between the ith and the jth cells.
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FIG. 3. �Color online� Variation of the minimal external hor-
monal stimulus required for calcium oscillations to occur and
propagate in the chain when the range of interaction increases.
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kxi. The Ca2+ can also pass from the internal stores to the
cytosol via the passive flux given by the expression kfyi.

For the numerical simulation, we have considered an in-
finite chain of cells. This implies that a signal can be repro-
duced after N cells and thus the boundary conditions are
taken to be cyclic and defined as

xi+N = xi,

yi+N = yi. �5�

We integrate the set of equations �2� and �3� with relations
�4� and �5� using the fourth-order Runge-Kutta algorithm
�42�, with a chain of N=1000 cells. The biological param-
eters of the equations are given in Table I. At rest, the con-
centrations of Ca2+ in the cytosol and in the internal store of
each cell of the chain are taken to be xi�0�=0.2275 �M and
yi�0�=2.121 96 �M. It is found that the minimal agonist
value required for the calcium wave to propagate decreases
with the increase of the number of interacting cells as shown
in Fig. 3. Therefore, for a given value of the long-range
parameter r, one can determine the number of cells sensitive
to extracellular messenger. Experimentally, the long-range
length scale is not known; therefore, this work is a prediction
for experimentalists to look for. Figure 3 also shows how the
minimal agonist strength for calcium wave decreases with r.

This behavior is normal since the increase of the long-range
parameter r implies the increase of the fluidity of the milieu.

A previous work studying the intercellular propagation of
Ca2+ waves when considering only first-neighbor coupling
showed that two zones of propagation are present �35�. In the
first zone, called the transition zone, most of the phenomena
observed in the study of a doublet or a triplet of cells are
obtained. In the model with long-range interactions consid-
ered in this paper, we also find a similar complex dynamics
in the transition zone as in the case of an array with only
first-neighbor interactions between cells. This complex dy-
namics is characterized by Ca2+ oscillations displaying dif-
ferent maxima �main spike closely followed by smaller sec-
ondary ones�, the number of spikes varying with the degree
of excitation. The sequence finally yields oscillations that
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FIG. 4. �Color online� Boundary between the transition zone
and the regular zone as one varies the hormonal stimulus with r
=0.1.
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FIG. 5. �Color online� Speed of Ca2+ wave �number of cell s−1�
signal propagation in the chain when varying the coupling constant
� with m=5.
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FIG. 6. Calcium oscillation of the bidirectional chain of cells at
the neighborhood of the source of infection. �a� Behavior of the sick
cell �i=500�, k=9 s−1. �b� Behavior of the cell i=400, k=6 s−1. �c�
Behavior of the cell i=300, k=6 s−1.
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exhibit not only irregular numbers of simple spikes among
complex double maxima, but also irregular spacing between
the latter. This is the manifestation of chaos �see Ref. �35� for
more details�. The transition zone enlarges when the range of
interaction increases �see Fig. 4�. The second zone, called the
regular or steady zone, is where the Ca2+ signal is identical
from one cell to another �same amplitude and frequency of
oscillations�.

In a general manner, the long-range interaction parameter
influences neither the frequency nor the amplitude of oscil-
lations; it mainly induces the variation of the speed of propa-
gation of the signal in the network. To determine the speed of
a calcium signal propagating in the array, the following
scheme is used. Let us assume that the maximal value of
Ca2+ in the cytosol �generally more than 1 �M in our study�
appears for the first time at a cell at time ti, and that for cell
j, the same maximal value appears also for the first time at tj.
Then the speed of the signal is the quantity j− i divided by
tj − ti. To determine ti, the following procedure is used. For a
cell i far from the excitation site, we note the quantities
Ca2+�t−h�, Ca2+�t�, and Ca2+�t+h�, h being the time step for
the numerical simulation. The time t corresponds to ti if
Ca2+�t−h��Ca2+�t� and Ca2+�t��Ca2+�t+h�. Figure 5
shows that the speed of Ca2+ oscillations in a network in-
creases with the long-range parameter r and the coupling
constant �. This is understandable, since it is known that
Ca2+ oscillation birth in a cell depends on the number of
calcium sensing receptors �CaRs� activated, and this birth
extends further as the range of the interaction increases. In-
deed, when the coupling parameter and the range of interac-
tion increase, the number of CaRs affected in the adjacent
cells increases.

III. EFFECT OF LONG-RANGE COUPLING ON
LOCALIZED DISEASE

Ca2+ signals are implicated in various steps of bacterial
infection. At the step of virulence, many enterotoxins have
been found to induce an increase in the intracellular levels of
Ca2+ in host cells �43–45�. By diffusing in the extracellular
media, these toxins can act at a distance from the site of
infection and have a global effect on the integrity of the
epithelium by promoting the expression of proinflammatory

cytokines leading to bacterial invasion and dissemination.
Some bacterial toxins are cytotoxic because they induce the
formation of large pores into host cell membranes. This tran-
sient pore-forming activity allows Ca2+ influx that leads to a
long-lasting Ca2+ oscillating response. This Ca2+ influx ap-
pears independent of endogenous Ca2+ channels �46,47�.

To characterize the Ca2+ influx in our study, we have con-
sidered as in Ref. �35� the term kxi in the model, which
represents the influx of Ca2+ from the cytosol to the extra-
cellular space. We consider that when transient pores are
formed in a cell, a large quantity of Ca2+ is extruded from the
cytosol to the extracellular space independently of the cal-
cium channels. Therefore, the coefficient k increases, charac-
terizing the large spreading of bacteria toxins in the given
niche.

We have considered for numerical investigations a chain
of N=1000 cells in which we add ten infected cells at the
center of the chain �i=490–500�. Cells are considered
healthy when k=6 s−1, i.e., the extruded Ca2+ depends only

FIG. 7. Time at which cells in the network begin to exhibit
illness behavior.
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FIG. 8. Calcium oscillation of the one-directional chain of cells
at the neighborhood of the source of infection. �a� Behavior of the
sick cell �i=500�. �b� Behavior of the cell �i=400�. �c� Behavior of
the cell �i=300�.
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on calcium channels opening. For the sick cells, we take
k=9 s−1. We can notice that, at the neighborhood of the
source of infection, as the time increases, the chain exhibits
oscillations similar to sick cells; this means that the neigh-
boring cells perceive the effect of the liberated toxin �Fig. 6�.
Figure 7 shows the time at which cells of the network begin
to exhibit illness behavior. One can see time intervals during
which the abnormal behavior due to the disease remains lo-
calized in nearly one cell. Then the abnormal behavior
propagates in the following cells progressively and quickly
before another momentary stop in one cell. This quick propa-
gation indicates that a set of cells exhibit illness behavior
nearly at the same time. The number of cells in each set
depends on the number m of interacting cells. In Fig. 7,
where m=12, the set is made up of almost 24 cells because
of the bidirectional coupling. The process of propagation of
the illness continues as described above so that finally all the
cells of the network exhibit the abnormal oscillations. We
have found that the spreading speed increases with the long-
range interaction parameter, meaning a rapid colonization of
the network of cells by a pathogenic micro-organism as the
range of interaction increases, e.g., by the increase of tem-
perature and fluidity of the biological milieu. One can also
note that the speed of propagation of the signal between the
infected cells is greater than the speed of propagation of the
signal between healthy cells.

Considering the fact that extracellular messengers can be
transported by the fluid flow, it is reasonable to assume that
only the cells that are in the flow direction will be affected.
The one-directional propagation can be mathematically taken
into consideration by setting i=0 to N and j= i to i+m in
Eqs. �2� and �3�. Considering the same condition as in Sec.
III, one sees that the bacteria signals also colonize the array.
However, the spread of calcium takes place in a manner not
determined by the bacteria with not only a variation in fre-
quencies, but also in amplitudes. As shown in Fig. 8, this
amplitude variation is more pronounced at the neighborhood
of infection source and becomes more regular as one moves
away from the infection source. From the results of the nu-
merical simulation, we have found that this irregularity of
the amplitude variation does not disappear as the long-range
interaction changes. This particular behavior of the calcium
oscillations found here in a one-directional coupling model,

around the colonization site, had been reported experimen-
tally �43�. Finally, when we take into account the bidirec-
tional coupling, we also find results indicating the increase of
the speed of colonization of the cells in the network as the
range of interaction increases.

IV. CONCLUSION

Here, we find out how the long-range interaction can af-
fect the calcium wave propagation in a one-dimensional net-
work of cells. The long-range interaction parameter can be
related to the temperature or the fluidity of the biological
milieu. It has been shown in this paper that the long-range
interaction increases the speed of propagation of calcium
waves and increases the length of the transition zone made
up of cells exhibiting complex behaviors around the site of
excitation. When some cells of the array are infected by a
pathogenic micro-organism, e.g., a bacteria, the long-range
interaction favors the propagation of the bacteria toxins or
bacteria effects and thus induces a rapid colonization of the
niche. The results also show that for the colonization of an
array, the spread of calcium takes place with a variation of
oscillation frequencies and irregularity in the amplitude
variation.

For further studies, it will be interesting to include in our
model the membrane plasma receptor dynamics similar to
Riccobene et al. �48�, and oscillations in IP3 �49,50� as well
as the spatiotemporal dynamics of each cells, thus having a
network of coupled partial differential equations instead of a
network of ordinary differential equations. It would also be
interesting to investigate other models such as those based on
a stochastic generalization of the fire-diffusive-fire Ca2+ re-
lease �51� and on a stochastic reaction diffusion array �52� in
order to see whether the stochasticity can induce other com-
plex phenomena. Moreover, a two-dimensional analysis of
the model is of interest �53,54�.
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