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Errors in estimation of the input signal for integrate-and-fire neuronal models
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Estimation of the input parameters of stochastic (leaky) integrate-and-fire neuronal models is studied. It is
shown that the presence of a firing threshold brings a systematic error to the estimation procedure. Analytical
formulas for the bias are given for two models, the randomized random walk and the perfect integrator. For the
third model considered, the leaky integrate-and-fire model, the study is performed by using Monte Carlo
simulated trajectories. The bias is compared with other errors appearing during the estimation, and it is
documented that the effect of the bias has to be taken into account in experimental studies.
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I. INTRODUCTION

There has been a long-lasting effort dedicated to the math-
ematical description of single-nerve-cell properties and re-
sponses. The models introduced during this process reflect
the electrical features of the cell membrane and describe the
equivalent electrical circuits. Depending on the physiological
details included in the mathematical description, the models
range from phenomenological to detailed biophysical mod-
els. Models with different degrees of accuracy can be equally
important and the choice depends on the task to be under-
taken, as well as on the tractability of the equations and the
level of resemblance to biological reality [1].

Stochastic (leaky) integrate-and-fire neuronal models are
quite simplified representation of physiological properties of
cells but still good descriptors of the spiking activity of neu-
rons [2-5]. In addition, the simplification is compensated by
the good tractability of the corresponding equations. These
models are based on the assumption that the membrane po-
tential is accumulated in time in dependency on the neuronal
input. Formally, the membrane potential is described as a
stochastic process evolving up to a time when an action po-
tential (spike) is produced, and then the accumulation pro-
cess starts anew. Thus, the interspike intervals (ISIs) are gen-
erated in accordance with a renewal process formed by the
first-passage times of the membrane potential to a threshold.
The firing is not an intrinsic property of the model; a firing
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threshold and subsequent reset of the process have to be
imposed. In other words, the first-passage time of the mem-
brane potential stochastic process through the firing thresh-
old corresponds to the time when the action potential is pro-
duced and then the membrane potential is instantaneously
reset to its initial value. In this paper we consider three well
known models belonging to this category, the randomized
random walk (RRW) model, the perfect integrator, also
called the Wiener process model, and one of the leaky
integrate-and-fire models, also called the Ornstein-
Uhlenbeck (OU) process model. From the biophysical point
of view, only the last-mentioned model can be considered as
a compromise between simplification of the biological reality
and a good description of the cell activity. However, despite
the fact that the two first-mentioned models are oversimpli-
fied, their endisputable advantage is their mathematical trac-
tability and thus they serve as examples of the behavior of
more sophisticated models.

The integrate-and-fire neuronal models have achieved
great popularity, as they show qualitatively many features
observed in real neurons [6-9]. However, the validity of any
model should also be tested quantitatively by comparison
with experimental data, and attempts in this direction can be
found in [2,3] where good correspondence with the model is
found. The first step for such a comparison is the estimation
of the parameters involved. The parameters of the considered
models can be divided into two groups [10]. The first group
contains parameters characterizing the neuron itself, and
such parameters are stable and can be deduced by some in-
direct methods. These parameters are usually related to the
intrinsic properties of the cell and have a direct biological
interpretation. Due to such properties they can be determined
from measurements that do not involve the application of the
model. The parameters from the second group are deter-
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mined by the properties of the input signal to the cell. These
parameters may vary rapidly and they can be estimated only
by assuming that the membrane potential obeys the equation
of the given model. Estimation procedures for these param-
eters are investigated in this paper, while the parameters
characterizing the neuron are considered to be known. The
problem can be classified, from a neuronal coding point of
view, as signal identification. Other applications in all fields
where the first-passage time problem is studied are straight-
forward.

From an experimental point of view, two types of record-
ing of the electrical activity of the nerve cell can be obtained.
The sequence of ISIs, the so-called spike train, can be ex-
tracted from extracellular recordings of the field potential. It
corresponds, in the considered models, to the sequence of the
first-passage times through the firing threshold of the sto-
chastic process describing the membrane potential. Thus,
from a statistical point of view, the problem is to estimate the
parameters of a stochastic process given the sample of its
first-passage times through a threshold. The solution of this
problem is well known for the Wiener model and has been
applied to neuronal data many times (comparison of the ISI
histogram with an inverse Gaussian distribution). On the
other hand, for the leaky integrate-and-fire model, it is a
mathematically complex task and only a few attempts have
been dedicated to this question [11-15]. Using intracellular
electrodes, the membrane depolarization can be recorded
during ISIs. It corresponds to sampling of trajectories of the
stochastic process, and the statistical problem is to estimate
the parameters from this type of data. This has been exten-
sively studied in the statistical literature [16], and also with
some applications in neuroscience [17-19]. However, in
these applications it has never been noticed that the presence
of the threshold brings a systematic error to the estimation
procedure. As described above, the trajectories of the process
are conditioned to take values that are below the firing
threshold and finally they are absorbed, meaning that they
terminate the first time they hit the threshold. The processes
in the presence and absence of the absorbing threshold have
different probabilistic characterizations. The problem of es-
timating the parameters of randomly stopped diffusion pro-
cesses has been studied in a theoretical framework in
[20,21]. Here we show that, if the parameters of integrate-
and-fire neuronal models in the presence of a threshold are
estimated by means of estimators derived for models in the
absence of a threshold, the estimates are biased. The bias of
the estimators is studied for each of the signal parameters
involved.

II. MODELS

In this section we summarize the basic properties of three
well-known models of the neuronal activity, namely, the so-
called RRW model and the Wiener process model, both of
them belonging to the class denoted as perfect integrators,
and the OU process model, which belongs among the so-
called leaky integrators (see [6]). These models assume that
the membrane potential evolves in time as a realization of a
stochastic process until it reaches a fixed threshold S for the
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first time. In that instant the cell generates an action potential
and the membrane potential is reset to a constant, the reset-
ting potential vy. The renewal point process given by the
first-passage times of the membrane potential to the thresh-
old describes the spiking activity. Formally, let V={V,,r
=0} with Vy=v, be the membrane potential stochastic pro-
cess and let

T=inf{t=0:V,= S,v, < S} (1)

be the first-passage time to the threshold S. The distribution
of the random variable T is the theoretical counterpart of the
IST distribution.

A. Randomized random walk model

In this model it is assumed that the membrane potential
changes according to the mutually independent excitatory
and inhibitory inputs received by the cell from the surround-
ing network of neurons and that both inputs are formed by
Poisson processes. Thus, the number of excitatory pulses in
the time interval (0,7] is given by a Poisson process with
intensity \*, denoted by N;, and analogously the number of
inhibitory pulses up to time ¢ is denoted by N,, which is a
Poisson process with rate A\~. Thus, from a rate coding point
of view, the rates A* and N\~ represent the intensities of the
input signals. It is assumed that excitatory and inhibitory
pulses evoke membrane potential jumps of size a, positive,
and i, negative, respectively. For the sake of simplicity we
consider a=—i. Thus the membrane potential at time ¢ is
given by one of the two following equivalent equations (see

[6]):
Vi=a(N;-N;) or V,=2X, (2)

with Vy=v,, N, is a pooled Poisson process with rate \*
+\7, and X; are independent random variables such that
P(X;=a)=\"/(\"+N\7), P(X;=—a)=N"/(A*+)\7), and Xy=v,.
For the sake of simplicity, the resetting potential v is put to
vy=0. Then process (2) is a model for membrane depolariza-
tion (the difference between the resting potential and the
membrane potential). It is easy to verify that the mean and
variance of the membrane potential at time ¢ are

E(V) =a(\* =\,

Var(V,) = a>(\* + \)r. (3)

We refer to the parameter m=\*—\" as the net input excita-
tion, since this difference is related to the drift of the mem-
brane potential resulting from the incoming inputs. From (3)
we also see that s>=\*+\" is related to the variability of the
membrane potential and we call it the net input variance.
Hence both m and s characterize the input signal. We denote
a=S§/a, and for simplicity we assume it is an integer number.
Notice that « is the minimum number of jumps required to
reach the threshold. The distribution of the membrane poten-
tial V, in the absence of a firing threshold is known (see [6]).
If N*=\" the passage through the threshold S is a sure event
and the probability density gg of the first-passage time 7 is
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At a/Ze—()\++)C)t
gs(t) = a(;) 7la(2t\s")\+)\‘), >0, (4)
where I;(-) is the modified Bessel function (see [22]). If \*
> \", the expected value and variance of the ISI distribution
are the following:

A +N)

F(T) = TG

Var(T) = « (5)

a
=)
for details, see [6].

B. Wiener process model

Let us introduce the Wiener process model as the diffu-
sion limit of the RRW model. Let {V/},_n be a sequence of
RRW processes such that the amplitudes a, of the jumps
decrease to zero as n— +, while )\Z and A increase to
infinity in such a way that the means a,(\;—\}) and the
variances aﬁ()\;+)\;) tend to the finite values u and o” re-
spectively. Such a sequence of stochastic processes can be
shown (see [6,23]) to converge weakly to a Wiener process
V, with parameters w and ¢2. The membrane depolarization
V, obeys the following equation:

V,=ut+oW, Vy=0, (6)

where W={W,,r=0} is the standard Brownian motion and
the resetting potential is set to zero with a simple translation
of the vertical axis. The parameters u and o” are called the
drift and infinitesimal variance. As follows from the model
construction, both of them describe the effect of the inputs
coming into the cell, and they replace m and s in the previ-
ous model.

For u©=0 the passage through the threshold S is a sure
event and the ISI distribution, that is, the density of the ran-
dom variable T, is given by the equation

(- ,ut)z)
200t )’

It can be obtained as the diffusion limit of Eq. (4) (see the
Appendix). According to the behavior expected from (5) and
the diffusion limit conditions on m and s2, the mean value of
T (mean ISI) and its variance, for u>0, are given by

S
gs(t) = oon eXP<— (7)

V

(T) = E, Var(T) = g (8)
5 w

C. Ornstein-Uhlenbeck model

This model belongs to the class of leaky integrate-and-fire
models. It is a generalization of the Wiener process model
that takes into account the spontaneous decay of the mem-
brane potential to the resting level in the absence of inputs. It
describes the membrane potential as an OU process, given
by the following stochastic differential equation:

dv,=[- B(V,—vo) + uldt + 0dW,, Vy=v,, 9)

where W is again the standard Brownian motion. Equation
(9) is usually transformed into an equation for the membrane
depolarization V,—v, and thus takes the form
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dV,= (= BV, + w)dt + ¢dW, V,=0, (10)

where both, the resetting potential and the resting potential
are equal to zero. The parameter 1/ is the membrane time
constant and we suppose it is known. The parameters u and
o? in Eq. (10) have the same meaning as in Eq. (6).
Equation (10) defines a Gaussian process with
E(V,) = £_ Ee_ﬁt,
B B

Var(V,) = %(1 — 2. (11)

Hence the transition density function of the process (10) in
the absence of the threshold is the following:

1
) \"l(’lTO'z/,B)(l _ 6—2,3(1—3‘))
" (_ (x = wB+ (B~ y)e )
(0%/B)(1 — eP)

The first-passage time of the process (10) to a constant
threshold cannot be calculated in a closed form and just its
Laplace transform is known (see [24]). However, the mo-
ments can be analytically calculated (see [25]), and the mean
first-passage time is given by (see [26])

flx,t

). (12)

[ ((SB-wNBo
N
E(T)=—

[1+ erf(x)]exzdx, (13)
18 —,u,/v?io

where erf(-) is the error function. The second-order moment
is explicitly given in [27,28].

III. SIGNAL ESTIMATION IN THE ABSENCE
OF THE FIRING THRESHOLD

In this section we recall results on the estimate of the
input parameters from samples with no threshold condition
imposed.

A. Sampling strategy

We assume that the process V, is observed at regularly
spaced discrete instants. The sample is the sequence (V;)%_,,
that is, one trajectory of the process V, sampled at n time
points t;=ih, for i=1,...,n. The value of n is selected inde-
pendently of the behavior of the process V,, in contrast to the
approach in the next section. Let us remark that, for the
RRW process, we need to suppose that the constant step of
sampling % is sufficiently small to guarantee that the prob-
ability to have more than one event in the time interval [7,7
+h) is negligible for all ¢. This condition on % enables us to
assume that from the sample (V;)!_, we can deduce exactly
the number of events in the processes N, and N, .

The estimators considered throughout the paper apply to
the sample described above, i.e., made of just one discretely
observed trajectory of the process. However, if multiple tra-
jectories are available, the estimates from each trajectory can
be averaged so that the standard deviation of the estimate is
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reduced by a factor 1/\@, where N is the number of trajec-
tories. For a detailed example of the application of such es-
timators to experimental data, see [18].

B. Randomized random walk model

The unknown parameters are the intensities A* and A\~ of
the processes N; and N;. From Eq. (3), we see that these
parameters are involved in the mean and variance of the
process as m=A*—\" and s>=\*+\". Moreover, their sum
and difference have a clear interpretation in the construction
of the Wiener process as the diffusion limit of the RRW
process. To maintain such a correspondence, we consider
here estimators for m and s*> and we denote them by 7 and
§2, respectively.

Recalling that A* and N\~ are the intensity parameters of
the Poisson processes N; and N;, and that N and N, are
independent, we obtain the maximum likelihood estimator

. NN,
= T (14)
t, at,

where the second equality follows from definition of the pro-
cess V,, Eq. (2). The same arguments lead to the following
equation:

> (Vi=Viy)?
Ny +N;

F=—"—= 5 , (15)
I, at,

where the second equality holds if £ is sufficiently small to
have at most one jump in any time interval of length 4. When
V;—V,_, is different from zero, it means that we had an event
in Nf or N;, and the sum of all the differences gives the
number of events in N, up to the last time of observation ¢,.
It can be easily shown that both estimators (14) and (15) are
unbiased.

C. Wiener process model

Estimators for the unknown parameters w and o2 can be
derived by the maximum likelihood method, as for example
in [16,17]. The estimator for w is given by

> (Vi=Viy)
i=1

= . =

Vi
-

n

(16)

Let us remark that estimator (16), due to the convergence of
the RRW process to the Wiener process, could be obtained as
the diffusion limit of estimator ai [compare with Eq. (14)].
The estimator for o2, supposing w known, is given by the
expression

L 1S
67 = =2 (V;= Viy - ph)*. (17)
ni=1
If u is unknown, we can substitute u with & in the preceding

equation. It can be proved that the estimators 4 and 6° are
unbiased.
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If i is sufficiently small we can estimate the variance o°
by means of the following estimator, obtained by ignoring
the term wh in Eq. (17):

n

1
6-§pprox= t_z (Vi - Vi—l)z- (18)

ni=1

Indeed, estimator (18) has the bias u*k/n, which for small &
and large n can be disregarded. The advantage in introducing
such an approximation relies on the fact that 67, in (18) is
the diffusion limit of the corresponding estimator (15) for the
RRW model multiplied by a®. This property will be used
later on.

D. Ornstein-Uhlenbeck process model

The maximum likelihood estimator for the unknown pa-
rameters of the OU process can be found in [16] and in the
neuronal context were introduced in [17]. The log-likelihood
function for the OU process with transition probability den-
sity function (12) is given by

L(V], . ,Vn|/.L,(T2) = — g 10g<%(1 _ 6—2,311))

n

S [Vi— w/B+(u/B-V._)e PP
i-1 (1B (1 - e P

(19)

Assuming B known, we can solve the likelihood equation
exactly, and the resulting estimator for the drift parameter u
is the following:

n n
E Vi - e_ﬁhz Vi—l n-1
i=1 i=1

-7y, A<,
WAU—eP) ~ wpl-eP)  n 21 Vi

p=

(20)

The estimator for the diffusion coefficient, if u is known, is
given by

2o gé [Vi— wB+ (/B Vi)e PP
ni; (1/B)(1 = e72Ph) ’
To get the estimator for the diffusion coefficient when w is

not known, we can substitute (20) in the preceding equation
and add a factor to correct an asymptotic bias:

(21)

b 2 o Vi B+ (@WB-Vi)e T
T 121 (1/B)(1 = 728" '

It can be proved that the estimators (20)—(22) are unbiased.

(22)

IV. SIGNAL ESTIMATION IN THE PRESENCE
OF THE FIRING THRESHOLD

In this section we show that if we estimate the parameters
in the presence of a firing threshold by means of estimators
that are formally equivalent to those introduced in the previ-
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ous section, we get biased estimates for some of the param-
eters involved. Let us remark that the processes in the pres-
ence of the firing threshold terminate at S the first time they
hit it. Hence at any time their trajectories are conditioned to
take values that are below the threshold. We could say that
the process V, and the conditioned process, which we denote
as V7, are truly different processes. They have different dis-
tributions at any time, different transition probability density
functions, and hence different likelihood functions (in the
case of the Wiener process all the analytical expressions are
known for both processes; see, for example, [24]). As a con-
sequence, unbiased maximum likelihood estimators for the
process V, do not necessarily maintain their properties when
applied to a sample drawn from the conditioned process V7.

A. Sampling strategy

We assume the same sampling procedure as in the previ-
ous section. Hence the sample is one discretely observed
trajectory of the process (V¢)%,. The last time point of the
sampling #,=nh is a realization of the first-passage time 7 of
the considered process, and thus the value of the process at
that time is V=S (hence the sample is drawn from one ISI).
In this case the size of the sample cannot be arbitrarily fixed,
but is given by the random variable K=[T/h], where by [ ]
we denote the integer part. As in Sec. III, we suppose h
sufficiently small to guarantee that the probability to have
more than one event in the time interval [z,7+5) is negligible
for all 7. Again, if more than one ISI is available, the esti-
mates from each sampled trajectory can be averaged, reduc-
ing the variability.

B. Randomized random walk

As assumed, S/a=«a is an integer number. Given that 7
=T and that V=S, estimators (14) and (15) become

= (23)

S (vi- v

2 Np+Np = 1
K T @4)

Using Eq. (4), the expected value of the estimator (23) is
given by

+ —_—

A al2 e +3— Ny —
]E(rha) — a2(;> 2\’/)\+)\—f Z—Ze—[(x +N7)/2VATA ]Zla(z)dz,
0
(25)

where 1.() is the modified Bessel function (see [22]). Analo-
gous computations lead to the following expression for the
second moment of (23):
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FIG. 1. Bias of estimator (23) versus the net input excitation 1,
with error bars [+S(,), where S is the standard deviation; cf.
(26)], for two different values of s*=0.5625 (left panel) and
2.25 ms™' (right panel). Other parameters are a=1 mV and S
=10 mV.

)\+ /2 +% . [prvpet
E(I’?lg) — a3<F) 4()\+)\—) Z—3e—[()\ +NT)/2VATA ]ZIQ(Z)dZ.
0

(26)

The integrals that appear in (25) and (26) cannot be calcu-
lated analytically, but from their numerical evaluation it is
clear that estimator (23) is biased.

The results are illustrated by means of Figs. 1 and 2. In
Fig. 1 we plot the bias of estimator (23), i.e. [i(ri1,) —m, ver-
sus the net input excitation m. The bias is positive, constant
with respect to m, and increasing with s (note that the panels
have different scales). The standard deviation of the esti-
mates increases in both m and s>. The bias increases as a
increases (not illustrated).

In Fig. 2 we illustrate the effect of the overestimation of m
on the transfer function. Let us recall that the transfer func-
tion is the curve that plots the output firing frequency f
=1/E(T) versus the net input excitation, see, for example,
[29]. In Fig. 2 two kinds of transfer functions are given. The
theoretical transfer function (dash-dotted line) plots the
points (m,f(m)), where f(m) is computed according to Eq.

50

E

e

o

=

o

c 25 7
(]

>

o

9]

=

5

o Solid lines from

5 left to right:

o 52205625

s2=1
§2=225
0
-0.2 04 0.6 1.4

Net input excitation m (ms 1)

FIG. 2. Transfer functions of the RRW model, a=1, S=10 mV.
Dash-dotted line: theoretical transfer function. Solid lines: experi-
mental transfer function for the mean estimated values of the net

input excitation with error bars [ FS(i71,)] for three different values
of $2=0.5625, 1, and 2.25 ms~\.
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(5) as f(m)=m/a. The experimental transfer function (con-
tinuous lines, for three values of s?) plots the points
(KEGn,),f(m)). We call it experimental since from the experi-
mental viewpoint the net input excitation is estimated from
the sample. Since it is overestimated, as shown in Fig. 1, the
experimental transfer function is shifted to the right and the
amount of the shift is exactly the bias.

To calculate the expected value of estimator (24) let us
recall that the probability P, that the first-passage time
through the threshold § comes at the kth jump, for k= «, and
a and k with the same parity, is given by (cf. [30], Chap. 2,

formula 7.11)
)\+ (a+k)/2 )\— (a—k)/2
()\++)\‘> ()\++)\‘> - @D

Moreover, the time of the kth event in a Poisson process of
parameter s”>=\*+\" is I'(k,s?) distributed with density
fI(¢). Tt follows that the probability that the first passage
occurs at the kth jump and at time ¢ can be calculated by
means of the density P.f1(7).

Since k=« and has the same parity, let us write it as k
=a+2v, v=0. The expected value of (24) for a# 1 is thence

k
a
Pk=_ a+k
k

o0+

2
B= | 2T

0 =0

+00

+00 t
= 2 ((1+ 2V)Pa+2v f?dl‘
v=0 0

= (a+2v)< A )W( A ) AN
=D a
o \a+v J\NTENT NN a+2v-1

a()\+

@ 1
) (>\++>\—)F<1+5,——+2;1
27272

a—1\N "+ N\~
LN (1 A )) 08)
N TN N
=2 [\ =)+ ah N = S (m + as?),
a -1 a -1
(29)
where F(-,-;-;-) is the hypergeometric function, and the

equality between the last two lines is due to formulas
15.1.13, 15.2.21, and 15.2.26 in [22]. If a=1 the estimator
(24) has infinite expectation. Indeed, for a=1 and »=0, the
function f' reduces to the density of an exponential random
variable and the integral in Eq. (28) diverges. Note that this
term accounts for those trajectories that are absorbed at the
first jump for which the first-passage time is too short to let
the integral converge. The bias is linear in both m and s> and
vanishes for a— o°.

Analogous computations allow us to calculate the second
moment of (24) and the variance, for a# 1,2, is

PHYSICAL REVIEW E 78, 011918 (2008)

Var(s?)
_ (Ba*—4a? +4)m’ + (& + 5a°)ms” + (a* + 6% — 4)s*
- (a®=4)(a?-1)? '

(30)

For a=1,2 the variance diverges.

In order to get some insight into the results illustrated
above, let us examine two special cases where the presence
of biases could be guessed without calculations. Consider a
RRW with m=0. Since the passage through the threshold is a
sure event, the estimator (23) for m is well defined and
strictly positive. Hence it has a positive bias. In order to
understand why the estimate of s is biased too, consider the
case with only upward jumps (A\"=0). In this case m=s> and
N7=a. Therefore estimators (23) and (24) are identical: since
1, is positively biased, so is §§ Let us finally observe that if
« is large the threshold is far away with respect to the am-
plitude of the jumps and, since few trajectories undergo a
fast absorption, the biases are very small.

C. Wiener process model

For the Wiener model in the presence of a threshold the
estimator (16) for the parameter u becomes

s
T 31
fa= (1)

and the approximated estimator (18) for ¢ under the condi-
tion u’h< o becomes

. 1
O-ipprox,a = }E (Vla - V?_l)z» (32)

i=

where K=[T/h]. As already shown in [21], the estimator (31)
is biased. In fact,

E(f,) = p+ ? (33)
The bias does not depend on u, whereas it is linear in o2;
thus it becomes relatively more relevant for small w and
large o2. We can observe that, as long as the first-passage
time density of the RRW model converges in the diffusion
limit to that of the Wiener process model, the two estimators
(23) and (31) converge and so do the expectations [compare
formulas (25) and (33)]. The variance of £, can be calcu-
lated by direct integration of the first-passage time density
(7) and we have

o’
Var(i,) = E(S,u +207). (34)

The transfer functions are completely similar to those of the
RRW model.

Although the density of the absorbed Wiener process can
be explicitly calculated (see [24]), we cannot compute the
expectation of (32) by direct integration. The estimator (32)
is the same function of V“ as is the estimator (24) of the
variance of the RRW model, but multiplied by a’. As the two
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processes (2) and (6) converge in the diffusion limit, we can
conclude that the expectation of (32) is equal to the limit of
the expectation (29). Hence, if we substitute the parameters
m=N"—\" and s>=\*+\~ with their asymptotics m~ u/a
and s>~ o2/a® in (29) and multiply by a?, we get
; a*s 52

) = PHED) = 5

=0

(35)

We conclude that, even if the estimator s for the absorbed
RRW model is biased, by taking its diffusion limit aippmx »
the bias vanishes.

Let us consider the diffusion limits of the two special
cases (m=0 and A"=0) presented in the previous section.
The example with m=0 can be proposed again for the
Wiener model with u=0 and with the same arguments the
bias can be guessed. Indeed the first passage is a sure event
and, even if E(T) is not finite, k(1/7) # 0. On the contrary,
the case with A™=0, which suggested the presence of the bias
of §§ in the RRW model, in the diffusive limit falls into the
degenerate case 0°=0 and fails to give any insight. Indeed
both conditions g~am and o®~a%s® are required, but m

=s2.

D. Ornstein-Uhlenbeck process model
The estimator (20) for the parameter w in the presence of
the threshold becomes

s S BY
Fa= a1l — e Phy ¥ 2 (36)

and the estimators (21) and (22) for o> with & known and
unknown, respectively, become

E [Vi— B+ (u/pB- 1)e_ﬁh]2

Ko 1/8(1 - ‘W‘) G37)
and
2 o [VE= B+ (B B= Ve e PP
—1,21‘ 1/B(1 — e72Ph) - (8

The first-passage time density and the probability distribu-
tion of V¢ are not known analytically and the expectation of
the estimators (36)—(38) cannot be calculated directly; thus
we evaluate them by means of the Monte Carlo method.
For each choice of the parameters, we generate N
=10 000 trajectories, both absorbed and not absorbed. With
the N estimates obtained using estimators (20), (21), and
(38), we build confidence intervals at the 95% level for the
mean of &, and the mean of é'i The discretization step is
fixed to £=0.01 ms, so that the sample sizes n are suffi-
ciently large in each of the N repetitions and for every con-
sidered value of the parameters. The lengths of each pair of
absorbed and not absorbed trajectories, and hence the sample
sizes, are identical. To ensure this, we always first generate a
trajectory until it is absorbed and then generate a trajectory
in the absence of the threshold with the same length. In such
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FIG. 3. Confidence intervals at 95% level for the bias of esti-
mator £, (36) in the OU process model in dependency on w and for
two different values of 02=0.25 (left panel) and 2.25 mV? ms™!
(right panel). Dark gray: u estimated in the absence of the thresh-
old. Light gray: u estimated in the presence of the threshold. Con-
tinuous line: ¢/, i.e., bias predicted by Eq. (33) holding for a
Wiener process with the same parameters. Other parameters are S
=10 mV, v,=0 mV, 8=0.05 ms~'.

a way any property of the estimators that depends upon n
affects both estimates equally. The samples are generated
using the classical algorithms for discrete time approxima-
tions of the solution of stochastic differential equations (see
[31]). For the simulation of absorbed trajectories we use the
bridge process correction proposed in [32].

The values of the parameters have been chosen in a bio-
logically compatible range. The threshold is fixed at §
=10 mV. The net input excitation parameter varies in the
range we[0.4,1.5] mV ms™!. The diffusion parameter o°
varies in the interval [0.25,2.25] mV? ms~'. The membrane
time constant is fixed at 1/8=20 ms. The chosen range of
the parameters covers both the subthreshold (u/B8<S) and
suprathreshold regimens (u/8>>S). In particular, the chosen
ranges are consistent with the values estimated from biologi-
cal data in [18].

In Fig. 3 we plot the confidence intervals for the bias of
the estimated u in the absence (dark gray) and in the pres-
ence (light gray) of the threshold. In the presence of the
threshold, there is a positive bias, constant in u and increas-
ing with 2. Let us remark that the bias is very well fitted by
the value 6°/S given by Eq. (33), which holds for a Wiener
process with the same parameters (continuous line in the
figure).

The theoretical and experimental transfer functions of the
OU process model (10) are plotted in Fig. 4 for two different
values of 2. Using Eq. (13), as in [2,33,34], the theoretical
transfer function plots 1/k(7) versus u and the experimental
transfer function plots the firing frequency versus the esti-

2140 27140

= £

= =

L. 70 <70

2 2

3 S

g g

& L]

20 £ 0

38 02 1 1.8 58 02 1 1.8

Net input excitation u (mV ms -1) Net input excitation u (mV ms -1)

FIG. 4. Transfer functions of the OU process model with §
=10 mV, B=0.05ms™', vo=0mV, and for two values of o2
=0.25 and 2.25 mV?ms~!. Dash-dotted line: theoretical transfer
function. Solid line: experimental transfer function.
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FIG. 5. Confidence interval at 95% level for the mean of esti-
mator 6'2 (37) in the OU process model in dependency on u
(known) and for two values of ¢2=0.25 and 2.25 mV? ms~!. Dark
gray: estimated o2 in the absence of the threshold (21). Light gray:
estimated ¢ in the presence of absorbing threshold (37). Other
parameters are S=10 mV, vy=0 mV, B=0.05 ms~!.

mated value of u obtained from Eq. (36). Since the estimator
(36) is biased, the experimental transfer function is displaced
to the right and the bias is exactly the amount of the shift.

In Fig. 5 we plot the confidence intervals for the mean of
% in (37), in dependency on known x for different values of
0. We compare estimates in the absence of the threshold
(21) (dark gray) with estimates from absorbed trajectories
(37) (light gray). The estimator (37) seems to be unbiased
even for the absorbed trajectories. Very similar graphs are
obtained for the estimator of 2 with u unknown. This result
is consistent with that obtained for the Wiener process.

V. QUANTIFICATION OF THE BIASES AND
COMPARISON WITH OTHER SOURCES OF ERROR

In the previous section we showed that the estimates of
some parameters are biased due to the presence of the thresh-
old. In this section we evaluate the magnitude of the biases
in dependency on the model and its parameters, and we com-
pare it with other sources of errors. As a measure of statisti-
cal variability we consider the standard deviation of the es-
timate. We also study the errors due to a possible
misspecification of one of the parameters that are considered
to be known (the ratio @=S/a for the RRW, the threshold S
for the Wiener model, and S and S for the OU process). To
avoid mutual dependencies between these presumably
known parameters, we always consider only one wrongly
specified parameter at a time. Let us remark that the errors in
the estimates we are comparing in this section have quite
different character. For example, the statistical variability is
not systematic, in contrast with the other considered errors,
and it can be reduced by averaging the estimates over many
ISIs.

A. Randomized random walk model

We focus on the parameter m=\"—\". In Fig. 6 we com-
pare the following three quantities: (1) the relative bias (%)
[cf. Eq. (25)]:

E(’ﬁa) -m

m

100 X

(2) the relative statistical variability of the estimate [cf. Eq.

(20)]:
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FIG. 6. Relative errors for estimated m in RRW model for two
values of s2=0.25 and 2.25 ms™'. Solid line: absorption bias. Dot-
ted line: standard deviation. Dashed line: errors introduced by mis-
specification of a by 10%. S=10 mV, a=1 mV.

S(i,)
X ==

m

100

and (3) the relative error that is introduced if the value «
+¢ is erroneously assigned to the ratio a=S/a calculated
according to the formula

5 EGi,
101 5 (@ + ) — B ()] = £ 100 x Eth,)
m o m

The errors are presented as functions of m for two different
values of s2. As illustrated in Fig. 1, the bias is constant in m;
hence the relative bias has the functional form const/m. The
error introduced by a misspecification of « is proportional to
the relative estimate of m. If m, were unbiased, the error
would be constant (equal to 100e/ @), but due to the increase
of the relative bias for smaller m, the error steers toward
larger values.

In the considered range of the parameters, the bias due to
the absorbing boundary is never negligible. In particular, for
small values of m (we considered here values ranging down
to m=0.01 ms™'), the relative bias has the same order of
magnitude as the relative statistical variability, and they are
so important that we cannot get reliable estimates without
correcting the bias and averaging over many ISIs. For such
values of m the error due to an erroneously assigned « is
negligible with respect to the others. As m increases (with the
constraint m < s?), the relative bias and statistical variability
are reduced and settle on a constant value with the same
order of magnitude as the error introduced by misspecifica-
tion of «, which for the chosen values of the parameters is
10%.

If « is misspecified by a negative ¢, the error keeps the
same magnitude but in the opposite direction. The same
holds true for misspecification of S in the Wiener and OU
models.

B. Wiener model

We have shown that the estimate of ¢~ is unbiased. On the
contrary, the estimate of w is affected by absorption bias. To
quantify it, we plot in Fig. 7 the analogous quantities as for
the RRW model (m is replaced by u). The explicit expres-
sions for all the considered relative errors are easily derived
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FIG. 7. Relative errors for estimated u in the Wiener process
model for two values of 6°=0.25 and 2.25 mV?>ms™'. Solid line:
absorption bias. Dotted line: standard deviation. Dashed line: mis-
specification of S by 10%. S=10 mV.

from Egs. (33) and (34). In particular, since the bias is con-
stant in u and equal to ¢?/S, the relative absorption bias is
10002/ (Sw).

Again, for small values of w the relative absorption bias
has the same order of magnitude as the relative standard
deviation, and they are so important that we cannot get reli-
able estimates without correcting the bias and averaging over
many ISIs. In the same range, the error due to a misspecified
value of the threshold § is negligible. As w increases, both
the relative absorption bias and the relative standard devia-
tion_decrease to zero (the former as 1/u and the latter as
1/ ) while the error due to misspecification of S settles to
100e/S.

C. Ornstein-Uhlenbeck model

The estimate of o is practically unbiased. A bias on w is
detected and in order to quantify it, we plot in Fig. 8 the
analogous quantities introduced in the previous sections. In
this case the relative bias and standard deviation have been
computed from the sample mean and sample variance of es-
timator (36) averaged over the 10 000 simulated trajectories.
The relative error introduced if the value S+¢ is erroneously
assigned to the threshold level S (with & 10% of S) is calcu-
lated according to the formula

100 . .
7{M[Iu‘a(s + S’UO’B)] - M[,U«a(S,U(),B)]}
_ _100eph (l)
Sl —ePyAT)
50 100 -
§ 02=025 %
° 2
o= 0 o
0.4 15

Net input excitation w (mV ms™") Net input excitation w (mV ms™')

FIG. 8. Relative errors for estimated w in the OU process model
for two values of 0°=0.25 and 2.25 mV2 ms™!. Solid line: absorp-
tion bias. Dotted line: standard deviation. Dashed line: misspecifi-
cation of S by 10%. Dash-dotted line: misspecification of 3 by 10%.
§=10 mV, vy=0 mV, 8=0.05 ms™".
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where by M we denote the sample mean. The error due to a
wrongly identified time constant is illustrated too. The rela-
tive error that is introduced if the value B+ ¢ is erroneously
assigned to B (let us assume ¢ is 10% of B) is computed as

%{M[m,vo,ﬂ + )] = ML(S.00. A1)

For S and S respectively fixed to 10 mV and 0.05 ms™', the
computational time required to simulate trajectories with
small x4 may become excessively long; hence we consider
only values larger than ©=0.4 mV ms™".

As already remarked in Sec. IV D (see Fig. 3), the absorp-
tion bias is very well approximated by the expression ¢°/S
holding for a Wiener process with the same parameters, cf.
Eq. (33). Hence the plot of the relative bias (Fig. 8, black
continuous line) fully overlap the gray line computed accord-
ing to such a formula.

For small ¢ (Fig. 8, left panel) and small u, all the errors
have the same order of magnitude, while for increasing u the
relative absorption bias and the error due to a 10% misspeci-
fied B decrease and become negligible with respect to the
error due to a 10% misspecified S. For large o” (Fig. 8, right
panel), the relative bias due to absorption has the same order
of magnitude as the relative standard deviation and they are
so important that we need to correct the bias and to consider
many ISIs in order to get reliable estimates. The relative
error due to misspecification of S by 10% is constant and
comparable with the relative absorption bias only for large
values of u. On the contrary, the relative error due to mis-
specification of 8 by 10% is always negligible in the consid-
ered range of the parameters. If ¢ is negative, the error keeps
the same magnitude but in the opposite direction.

VI. CONCLUSIONS

We showed that the estimators of the net input excitation
(m=N\*=\" for the RRW model and u for the Wiener and
OU process models) are biased in integrate-and-fire neuronal
models. For both the RRW model and the Wiener process
model, we gave analytical formulas for the bias [see Egs.
(33) and (25)], while for the OU process model we estimated
the bias from simulated trajectories. We obtained the result
that, in the considered range of the parameters, the bias on
is very well approximated by the formula that holds for the
Wiener process model, with the same parameters (see Fig.
8). In every case considered, the bias is not negligible and it
is at least of the same order of magnitude as the errors com-
ing from the misspecification of the known parameters.

On the contrary, the estimate of the net input variance
(s2=\*+\" for the RRW model and o2 for the Wiener and
OU process models) is biased only for the RRW model,
while the bias vanishes for the Wiener and OU process mod-
els.

Let us remark that, since the estimate of the net input
variance is unbiased in both the Wiener and OU models, we
can correct the bias of the estimated net input excitation us-
ing in both cases the expression ¢°/S, analytically derived
for the Wiener model.
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We could say that the main reason behind the finding of
these biases is that the absorption at the threshold changes
the process, its distribution, and its expected value at any
time. Hence estimators that have been calculated for the pro-
cess V, in the absence of a threshold do not maintain their
properties when computed on a sample drawn from the ab-
sorbed process V7.
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APPENDIX: DIFFUSION LIMIT OF THE FIRST-PASSAGE
TIME DENSITY OF THE RRW PROCESS

Let us prove that under the assumptions of the diffusion
limit introduced in Sec. III C, the first-passage time density
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of the RRW process converges to that of the Wiener model.
Let us consider Eq. (4), and take the limit for small ampli-
tudes a of the steps, asking for correspondingly increasing
values of the parameters A™ and N\~ in such a way that a(A*
—\7) and a®>(N*+\") respectively tend to to the values w and
o?. The following asymptotics hold: \*~(1/2)(0?/a®
+u/a) and \™~(1/2)(0%/a*~ula). By substituting these
expressions into Eq. (4) we get

S{o*+ap\* f 55
gg(t)=—<0_2 ,U«) e-#r/azls/d ot — 2.
ta\o"—ap a

(A1)
Due to the uniform asymptotic expansion for large orders of

the modified Bessel function (formula 9.7.7 of [22]), we
have

a1+ (1PN a (S22 )+
b

t s
]S/a<_z\'0'4—M2a2) ~ e
a \2mmto

and taking the limit of Eq. (A1) using the previous expansion
we get Eq. (7).
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