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We study a discrete stochastic model of a molecular motor. This discrete model can be viewed as a minimal
ratchet model. We extend our previous work on this model, by further investigating the constraints imposed by
the fluctuation theorem on the operation of a molecular motor far from equilibrium. In this work, we show the
connections between different formulations of the fluctuation theorem. One formulation concerns the generat-
ing function of the currents while another one concerns the corresponding large deviation function, which we
have calculated exactly for this model. A third formulation concerns the ratio of the probability of observing a
velocity v to the same probability of observing a velocity −v. Finally, we show that all the formulations of the
fluctuation theorem can be understood from the notion of entropy production.
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I. INTRODUCTION

The living cell has evolved a diverse array of proteins,
which can perform a variety of chemical functions. These
proteins catalyze chemical reactions, control key processes
such as recognition or signaling, or act as molecular ma-
chines. Biological systems containing these elements are
typically described as active because they are in a nonequi-
librium state as opposed to nonactive systems which can be
considered at thermal equilibrium. Recently there has been a
lot of interest in the nonequilibrium properties of active bio-
logical systems, such as the hair bundle of the ear �1,2�,
active membranes �3�, active gels �4�, active networks �5�,
active lipid clusters �6�, living cells �7�, etc.

Clearly, one step toward understanding active biological
systems starts with the understanding of single active pro-
teins, such as, for instance, molecular motor proteins. These
molecular motor are nanomachines that convert chemical en-
ergy derived from the hydrolysis of ATP into mechanical
work and motion �8,9�. Important examples include kinesin,
myosin, RNA polymerase, and the F0 /F1 rotating motor.
Mechanotransduction �i.e., the process of conversion of
chemical energy into mechanical work� in motors has been
described theoretically by ratchet models �10,11�, which rely
on the fruitful concept of broken symmetry. According to the
Curie principle, directed motion requires to break the spatial
symmetry and the time reversal symmetry associated with
equilibrium �detailed balance�. The spatial symmetry is bro-
ken by the asymmetric interaction between the motor and the
filament, while the time reversal symmetry is broken by
chemical transitions, which break locally the detailed bal-
ance condition. From the continuous ratchet models de-
scribed by Langevin equations �10�, it is possible to con-
struct discrete stochastic models of molecular motors by
considering only localized discrete transitions as explained in
Ref. �12�. These discrete stochastic models are interesting
because they are minimal, in the sense that they contain the
main physical picture of ratchet models while being more
amenable to precise mathematical analysis �13–16�.

Recent advances in experimental techniques to probe the
fluctuations of single motors provide ways to gain insight

into their kinetic pathways �17–20�. However, a general de-
scription for fluctuations of systems driven out of equilib-
rium, and in particular of motors, is still lacking. Recently,
the fluctuation theorem �FT� has emerged as a promising
framework to characterize fluctuations in far-from-
equilibrium regimes. This theorem is in fact a group of
closely related results valid for a large class of nonequilib-
rium systems �21–25�. In a nutshell, FT states that the prob-
ability distribution for the entropy production rate obeys a
symmetry relation. The theorem becomes particularly rel-
evant for small systems in which fluctuations are large. For
this reason, the FT has been verified in a number of beautiful
experiments with small systems such as biopolymers and
colloidal systems �26�. In the specific case of molecular mo-
tors, FT leads to constraints on the operation of molecular
motors or nanomachines far from equilibrium in a regime
where the usual thermodynamic laws do not apply �27–29�.

In a recent work �30�, we have extended a two-states dis-
crete stochastic model introduced in Ref. �14� by including
an important variable, namely, the number of ATP consumed.
We have shown that this extended model satisfies FT, and we
have constructed a thermodynamic framework allowing us to
characterize quantities such as the average velocity, the av-
erage ATP consumption rate, and its thermodynamic effi-
ciency. We have also analyzed the different thermodynamic
modes of operation of the motor as functions of generalized
forces arbitrarily far from equilibrium. Using FT, we have
quantified the “violations” of Einstein and Onsager relations.
The deviations from Einstein and Onsager relations can be
studied by considering the linear response theory in the vi-
cinity of a nonequilibrium steady state rather than near an
equilibrium steady state. After determining the parameters of
our model by a fit of single molecule experiments with kine-
sin �17�, we have formulated a number of theoretical predic-
tions for the “violations” of Einstein and Onsager relations
for this motor.

In this paper, we further extend the analysis of this model.
In particular, we provide a more detailed study of the modes
of operation of the motor and its thermodynamic efficiency
in relation with the experimental data of kinesin. This part
contains important information which could not be presented
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in Ref. �30� due to limited space. The rest of the paper is
devoted to bringing together different formulations of FT,
explaining their connections and their physical implications.
One way to formulate FT involves the generating function of
the currents. We show that this formulation leads to two ver-
sions of FT, a long time version of FT similar to the
Gallavotti-Cohen relation which holds quite generally, and a
finite time version which is analogous to the Crooks-Evans
transient fluctuation theorem �24,25� which holds under re-
stricted hypotheses for the initial state. Another formulation
of FT takes the form of a property of the large deviation
function of the current. There are very few nonequilibrium
models for which the large deviation function of the current
is known exactly. Our model is sufficiently simple for this
analytical calculation to be possible, and by carrying it out
we show that the large deviation function of the current in-
deed satisfies an FT relation. A by-product of this calculation
is a third formulation of FT in terms of the ratio of probabili-
ties for observing a velocity v to the same probability for
observing a velocity −v. The prediction of this ratio of prob-
abilities, which is obtained from the large deviation function
of the current is one of the main results of this paper. We also
study the connections between FT and the notion of entropy
production. This entropy production can be explicitly calcu-
lated using the notion of affinities associated with a cyclic
evolution of the mechanical and chemical variables, and the
affinities precisely enter all the formulations of FT. We show
that the entropy production can also be obtained from an
evaluation of a quantity called the action functional �23�. The
entropy production and therefore also FT depends on the
coarse-graining of the description which we illustrate by
considering three different levels of description: purely me-
chanical, purely chemical, and a combination of the two.

The paper is organized as follows. In Sec. II, we introduce
the model, in Sec. III we consider the modes of operation of
the motor, its thermodynamic efficiency, and the comparison
of the model with experimental data for kinesin. Section IV
is devoted to the formulation of FT in terms of generating
functions, with its long time and its finite time versions, Sec.
V discusses the formulation in terms of the large deviation
function of the current and the significance of the third for-
mulation of FT in terms of a ratio of probabilities, and the
last section contains the discussion of the entropy produc-
tion.

II. TWO-STATE MODEL FOR MOLECULAR MOTORS

A. Construction of the model

As a result of conformational changes powered by hy-
drolysis of ATP, a linear processive motor, such as kinesin,
moves along a one-dimensional substrate �microtubule�. The
state of the molecular motor may be characterized by two
variables: its position and the number of ATP consumed. To
model the dynamics, we consider a linear discrete lattice,
where the motor “hops” from one site to neighboring sites,
either consuming or producing ATP �see Fig. 1�. An alternate
representation of the dynamics can be built in terms of cycles
�see Fig. 2�. The position is denoted by x=nd, where 2d
�8 nm is the step size for kinesin. The even sites �denoted

by a� are the low-energy state of the motor, whereas the odd
sites �denoted by b� are its high-energy state; their energy
difference is �E�kBT�, where kB is the Boltzmann constant
and T is the temperature. This model is suitable to describe a
two-headed kinesin walking on a microtubule, with the high-
energy state corresponding to the state where a single head is
bound to the filament, and the low-energy state correspond-
ing to the two heads bound to it. Because of the periodicity
of the filament, all the even �a� sites and all the odd �b� sites
are equivalent.

The dynamics of the motor is governed by a master equa-
tion for the probability Pi�n ,y , t� that the motor, at time t, has
consumed y units of ATP and is at site i �=a ,b� with position
n:

�tPi�n,y,t� = − ��i
� + �i

��Pi�n,y,t�

+ �
l=−1,0,1

��� j
lPj�n + 1,y − l,t�

+ �� j
lPj�n − 1,y − l,t�� , �1�
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FIG. 1. A schematic of the rates for this two-state stochastic
model of a single processive molecular motor. The position of the
motor is n and y is the number of ATP consumed. The even and odd
sites are denoted by a and b, respectively. In the case of two headed
kinesin, site a represents a state where both heads are bound to the
filament, whereas site b represents a state with only one head
bound. Note that the lattice of a and b sites extend indefinitely in
both directions along the n and y axis. All the possible transitions
are represented with arrows on this particular section of the lattice.
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FIG. 2. Cycles associated with the evolution of the motor of Fig.
1. Left: cycle for the position variable n; the average length n un-
dergone by the motor corresponds to half the number of full turns of
the clock �the factor half is due to the period being equal to two
lattice units� and with the rates as shown. Right: cycle for the
chemical variable y, the average number of ATP units corresponds
to the number of full turns with the rates shown. The affinities
associated with these cycles are given by Eq. �11� for the mechani-
cal variable and by Eq. �62� for the chemical variable.
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with i� j, � j
���l� j

�l, and � j
���l� j

�l. We denote by � j
�l and

� j
�l the transition rates from a site j to a neighboring site to
the left or to the right, respectively, and with l�=−1,0 ,1�
ATP molecules consumed. Note that the index i is directly

linked with the parity of n. We expect the rates � j
�l and � j

�l to
be different even if no load is applied to the motor, because
the interaction between the motor and the filament breaks the
left-right �spatial� symmetry. This requirement is essential
for generating directed motion.

Another essential requirement for generating directed mo-
tion is to break time-reversal symmetry. Such a symmetry is
always present at equilibrium, where the detailed balance
condition holds. Detailed balance is broken in molecular mo-
tors due to chemical transitions involved in the mechan-
otransduction process. To obtain a simple description of this
process, we assume that transitions between the two states
Ma and Mb of the motor �11� are possible via two different
chemical pathways:

Ma + ATP�
�b

�a

Mb + ADP + P �2�

and

Ma�
�b

�a

Mb, �3�

where �a ��b� are forward �backward� rates. The first path-
way ��� represents transitions of the motor accompanied by
ATP hydrolysis, which we call “active,” and the second path-
way ��� represents transitions driven by thermal activation,
which we call “passive.” In the representation of Fig. 1, the
� pathway represents oblique transitions which change both
y and n whereas the � pathway is associated with horizontal
transitions which change only n. It is straightforward to gen-
eralize the model with more chemical pathways, but here we
focus only on these two �11�. In the absence of an external
force, transition state theory of chemical reactions requires
that �31,32�

�a

�b
= e−�+�� �4�

and

�a

�b
= e−�. �5�

Taking �a=�a
�1 ,�b=�b

�−1 ,�a=�a
�0 ,�b=�b

�0 and �a=�a
�1 ,�b

=�b
�−1 ,�a=�a

�0 ,�b=�b
�0, we construct the transition rates

from only four unknown parameters �, ��, �, and �� as
follows:

�b
�−1 = �, �b

�0 = �, �a
�1 = � e−�+��, �a

�0 = � e−�,

�a
�1 = �� e−�+��, �a

�0 = �� e−�, �b
�−1 = ��,

�b
�0 = ��, �6�

and with �b
�1=�a

�−1=�a
�−1=�b

�1=0. The only thermodynamic
force driving the chemical cycle is the free energy of hy-

drolysis. This is quantified by the chemical potential ��̃
�kBT��, which is defined by the standard expression �33�

��̃ = kBT ln� �ATP��ADP�eq�P�eq

�ATP�eq�ADP��P� 	 , �7�

where �¯� denotes concentration under experimental condi-
tions and �¯�eq denotes equilibrium concentrations. The
chemical potential of the hydrolysis reaction introduces a
bias in the dynamics of the motor, which is responsible for
breaking the time-reversal symmetry associated with the de-
tailed balance condition �which holds at equilibrium�.

Following Ref. �13�, the transition rates can be general-

ized to include an external force Fe according to �i
�l�Fe�

=�i
�l�0�e−�i

−f and �i
�l�Fe�=�i

�l�0�e+�i
+f, where f �Fed / �kBT�

and �i
	 are the load distribution factors. These load distribu-

tion factors take into account the fact that the external force
may not distribute uniformly among different transitions
�31�. Thus, we may write the nonzero rates in the presence of
force as

�b
�−1 = � e−�b

−f, �b
�0 = � e−�b

−f, �a
�1 = � e−�+��+�a

+f,

�a
�0 = � e−�+�a

+f, �a
�1 = �� e−�+��−�a

−f ,

�a
�0 = �� e−�−�a

−f, �b
�−1 = �� e�b

+f, �b
�0 = �� e�b

+f , �8�

In the above expressions, the values of the parameters �i
	 are

arbitrary except for the following constraint: After one pe-
riod, the work done by Fe on the motor is −Fe2d, implying
that �a

++�b
−+�a

−+�b
+=2. Indeed, as shown in Fig. 4, the sim-

plest model with all the �i
	’s equal to 1/2, which was studied

in Ref. �14�, does not reproduce the experimental curves of
velocity versus force for kinesin. The fact that the �i

	’s are
different from 1/2 agrees with standard models of kinesin, in
which several chemical transitions are involved, and the
force must be split unequally among the different transition
rates �8�. We note that this splitting of the force �which in-
volves the actual value of the �i

	’s� is a matter of kinetics,
whereas thermodynamics enforces only Eqs. �4� and �5�. The
expression of the rates given in Eqs. �6�–�8� is essential for
the analysis which we develop below: we emphasize that
these expressions are based on first principles. Once these
rates are decomposed into an active and a passive part, the
ratio of the passive transition rates in Eq. �5� follows from
the condition of microreversibility �detailed balance�, while
the ratio of the active transition rates in Eq. �4� requires a
more general principle for nonequilibrium chemical reac-
tions. Such a principle is based on the notion of affinity,
introduced by de Donder in Ref. �32� to characterize non-
equilibrium chemical reactions. The de Donder equation re-
lates the forward and the backward reactions rates �� and �� of
an elementary step, as a consequence of transition state
theory

��

��
= eA/kBT, �9�

where A is the affinity, defined as −��G /�
�T,P in terms of the
Gibbs free energy G and 
 the extend of reaction. At equi-
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librium, A=0 and Eq. �9� leads to �� =�� , which is the prin-
ciple of microreversibility. Note that Eq. �4� is indeed of the
form of Eq. �9�, with the choice �� =�a, �� =�b, and ��
=A /kBT when �=0. Thus we can consider Eq. �4� as a De
Donder relation, which generalizes the condition of micror-
eversibility far from equilibrium �32�. Equivalently one can
also interpret this equation as a particular case of generalized
steady state balance conditions, we shall come back to this
point in Sec. IV.

B. Effective description of the dynamics

Let us now further analyze the conditions for directed
motion for this model, which as we mentioned earlier are
required to break both the spatial symmetry and the symme-
try associated with detailed balance. These conditions for
directed motion can be derived by constructing an effective
dynamics, which holds at long times and large length scales
�14�. Let us first consider a coarse-grained description in
which the position variable n is the only state variable. The
chemical variable y may not be accessible or we simply do
not wish to include it in this description. The dynamics of the
motor is then described formally by a master equation, which
can be obtained from Eq. �1� by integrating out over all
possible values of y. We are then left with a coarse-grained
master equation for Pi�n , t�=
dyPi�n ,y , t�, which is

�tPi�n,t� = − ��i
� + �i

��Pi�n,t�

+ �� j
�Pj�n + 1,t� + � j

�Pj�n − 1,t�� , �10�

with the same rates as before. Note that these rates may still
depend on the ATP concentration. As shown in Ref. �14�, an
effective potential can be constructed for this problem by
eliminating one of the sites �a or b� from the master equation
�10�, and describing the remaining dynamics in terms of an
effective potential. This is the effective potential under which
a random walker satisfying detailed balance would exhibit
the same dynamics. Of course, the same effective evolution
equation applies to occupation probabilities of site a or b.
This reasoning �14� gives the effective energy difference
�E=E�n+2�−E�n� between site n and site n+2, which we
write as �E=2kBT� with

� =
1

2
ln��a

��b
�

�a
��b
�	 . �11�

When the rates of Eq. �8� are used, we find that

� =
1

2
ln� �� + �����e�� + ���

��e�� + ����� + ���
	 − f . �12�

Note that the effective potential is independent of the load
distribution factors �i

	, and is identical to the expression ob-
tained in Ref. �14� except for the change in the sign of the
force �34�. A nice feature of Eq. �12� is that the conditions
for directional motion can now be immediately obtained
from it, in a way that is completely analogous to what is
done for the ratchets models in Ref. �10�. Directed motion is
only possible if the effective potential is tilted, i.e., �E�0.
Thus directed motion requires �i� an asymmetric substrate

which means either ���� or ���� and �ii� breaking of the
detailed balance condition, so that either ���0 or f �0.
When ��= f =0 the system is in equilibrium, the effective
potential is flat ��E=0� and no directional motion is pos-
sible. A difference between this model and with the various
ratchet models of Ref. �10�, is that in ratchets the position of
the motor is a continuous variable. In the classification of
ratchet models given in Ref. �11�, our model corresponds to
a system of class A for which diffusion is not necessary for
motion generation. In this class of models, the two ratchet
potentials are identical and shifted with respect to each other
in such a way that each chemical cycle generates with a high
probability a step in the forward direction. As a consequence
of this construction, one should expect �and indeed we will
find� that in this model there is a strong coupling between the
chemical and mechanical coordinates, and the motor has a
strong directionality and a large thermodynamic efficiency.

III. MODES OF OPERATION OF THE MOLECULAR
MOTOR, FIT OF EXPERIMENTAL CURVES

AND THERMODYNAMIC EFFICIENCY

A. Description of the dynamics using generating functions

In this section, we analyze the long time behavior of our
model using generating functions, which has the additional
advantage of making the symmetry of the fluctuation theo-
rem apparent as shown in the next section. Let us introduce
the generating functions Fi�� ,
 , t���y�ne−�n−
yPi�n ,y , t�,
whose time evolution is governed by �tFi=MijFj, where
M�� ,
� is the following 2�2 matrix which can be obtained
from the master equation of Eq. �1�:

M��,
� = � − �a
� − �a

� e��b
� + e−��b

�

e��a
� + e−��a

� − �b
� − �b

� � , �13�

with �n
��
���l�n

�le−l
 and �n
��
���l�n

�le−l
.
For t→�, we find


e−�n−
y� = �
i

Fi��,
,t� � exp��t� , �14�

where ����� ,
� is the largest eigenvalue of M. This ei-
genvalue, �, contains all the steady-state properties of the
motor and its exact expression is given by

���� = 1
2 �− �a − �b + ���a − �b�2

+ 4��b
�e� + �b

�e−����a
�e� + �a

�e−���1/2� , �15�

with the notations �a=�a
�+�a

� and �b=�b
�+�b

�.
The average �normalized� velocity v̄ is the current of the

mechanical variable, which is given by

v̄ = lim
t→�


n�t��
t

�16�

and similarly the average ATP consumption rate r is the cur-
rent of the chemical variable, which is given by
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r = lim
t→�


y�t��
t

. �17�

From Eq. �14�, we see that v̄=−����0,0� and r
=−�
��0,0� and from Eq. �15� we find explicitly that

v̄ = 2
�a
��b
� − �a

��b
�

�a
� + �b

� + �a
� + �b

�
, �18�

r =
��a
�1 + �a

�1����b
� + �b

�� − ��b
�−1+ �b

�−1���a
� + �a

��

�a
� + �b

� + �a
� + �b

�
.

�19�

The method also gives access to higher moments of n�t� and
y�t�. The second moments for instance can be expressed in
terms of the diffusion matrix

2Dij =
�2�

�zi � zj
�0,0� , �20�

with the understanding that z1=� and z2=
. These first and
second moments can also be obtained by calculating the av-
erage of n�t� and y�t� directly from the master equation �1�
�13,14,35�.

B. Modes of operation of the motor

From the conditions of vanishing of the currents v̄=0 and
r=0, we can construct a full operation diagram of a motor, as
shown in Fig. 3 for the case of kinesin. The curves v̄=0 and
r=0 define implicitly f = fst���� �the stalling force� and
��=��st�f�, respectively. The stalling force is

fst���� =
1

2
ln� �� + �����e�� + ���

��e�� + ����� + ���
	 , �21�

which means that for f = fst����, v=0, and �=0, where �
was defined in Eq. �12�. At the stalling point, the mechanical
variable is equilibrated but not the chemical variable. There-
fore, in general, the motor consumes ATP, i.e., r�0, even if

it is stalled �in fact, it is only at equilibrium f =��=0 that
both v and r vanish�. Near stalling for ���0, the motor
evolves in a quasi-static manner but irreversibly. A similar
phenomenon occurs in thermal ratchets �36,37�.

Likewise, the condition ��=��st�f� means that r=0. The
explicit form of ��st�f� is

��st�f� = ln
��e−�b

−f + ��e�b
+f���e�a

+f + ��e−�a
−f�

��e�a
+f + ��e−�a

−f���e−�b
−f + ��e−�b

+f�
. �22�

The four different regimes of operation of the motor, dis-
cussed in Refs. �10,30� for ratchet models can be recovered
here. In region A, where r���0 and f v̄�0, the motor uses
chemical energy of ATP to perform mechanical work. This
can be understood by considering a point on the y axis of
Fig. 3 with ���0. There we expect that the motor drifts to
the right with v̄�0. Now in the presence of a small load f
�0 on the motor, we expect that the motor is still going in
the same direction although the drift is uphill and thus work

is performed by the motor at a rate Ẇ=−f v̄�0. This holds as
long as f is smaller than the stalling force, which defines the
other boundary of region A. Similarly, in region B, where
r���0 and f v̄�0, the motor produces ATP from mechani-
cal work. In region C, where r���0 and f v̄�0, the motor
uses ADP to perform mechanical work. In region D, where
r���0 and f v̄�0, the motor produces ADP from mechani-
cal work. It is interesting to note that the large asymmetry
between regions A and C in Fig. 3 reflects the fact that kine-
sin is a unidirectional motor. Furthermore the regions A and
B do not touch except at the origin. With kinesin operating in
normal conditions in region A with ���15, the presence of
a gap between regions A and B means that kinesin should not
be able to switch into an ATP producing unit �region B�, and
indeed this has never been observed experimentally. Note
that the explicit expressions for fst and ��st obtained in this
model do not depend on the energy difference � between the
two states, due to a cancellation of the numerator and de-
nominator in Eqs. �18� and �19�. Thus the diagram of opera-
tion of the motor is valid for arbitrary value of �.

C. Fit of experimental curves of velocity versus force
for kinesin

We now discuss how the parameters of the model were
determined using experimental data obtained for kinesin. In
Fig. 4 �which is also Fig. 4 of Ref. �30��, we have fitted
velocity vs. force curves for two values of ATP concentra-
tions, and also several curves of velocity vs ATP concentra-
tion at different forces using the data of Ref. �17�. We have
assumed that e��=k0�ATP�, which is well verified at moder-
ate or high levels of ATP. At low concentration of ATP, there
is no such simple correspondence because it is no more le-
gitimate to treat the ADP and P concentrations as constant.
We think that this is probably the reason why the fit is not as
good for the lowest ATP values �this concerns the first point
in the curve at Fe=−5.63 pN and low ATP value in Fig. 4�.
Nevertheless, we can fit very well the majority of the experi-
mental points with this model and we obtained the following
values for the parameters: �=10.81, k0=1.4�105 �M−1, �
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∆µ∆µ

−10 −5 0 5 10

ff

v=0

r=0

D

B

A

C →

FIG. 3. Four modes of operation of a molecular motor, as de-
limited by v̄=0 and r=0 �10�. The lines are generated with param-
eters that we have extracted by fitting the data for kinesin in Ref.
�17� to our model, and this fit is shown in Fig. 4.
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=0.57 s−1, ��=1.3�10−6 s−1, �=3.5 s−1, ��=108.15 s−1,
�a

+=0.25, �a
−=1.83, �b

+=0.08, and �b
−=−0.16. These values

are reasonable within the present accepted picture of the
nano-operation of kinesin �8�. Indeed, � and k0

−1 represent,
respectively, the typical binding energy ��10kBT� of kinesin
with microtubules and the ATP concentration at equilibrium
��10−5 �M�. Moreover, �a

−=1.83 indicates that the back-
steps �transitions a→b� of kinesin contain most of the force
sensitivity �8�. Furthermore, our framework allows us to es-
timate a maximum stalling force of −7 pN.

A useful quantity to consider is the distance l, which is the
motor walk using the hydrolysis of one ATP molecule, which
is

l =
v̄
r

. �23�

We find for this model in agreement with Ref. �17�. that l
�0.97�2d� in the absence of load, which corresponds to one
step �8 nm� per hydrolysis of one ATP molecule. Thus the
coupling ratio of kinesin is indeed independent of ATP con-
centration and is 1:1 at negligible loads. We also find a glo-
bal ATP consumption rate of r�111 s−1, in excellent agree-
ment with known values �8�. It should be remarked that the
global ATP consumption rate measurements done in ATPase
assays in the bulk are in agreement with the single molecule
experiments, which are intrinsically very different experi-
ments. Kinesin is well described by tightly coupled models
which incorporate a single mechanically sensitive rate and
this is consistent with our findings that there is only one
transition �transitions a→b� that has all the force sensitivity,
i.e., the largest load distribution factor. In principle, by
changing the parameters of the model, we could characterize
motors which are less tightly coupled, but there will always

be some coupling because, by construction, the mechanical
steps are intrinsically linked with the chemical cycle.

We have compared our fit with that carried out by Fisher
et al. in Ref. �13�. where the same data was fitted, and we
observe that the outcome of both fits is comparable. In this
comparison, there is an issue of complexity of the model
under consideration to be taken into account. This is espe-
cially important in fitting experimental data of kinetics,
which is typically hard to fit because one has many param-
eters to fit in an expression which is a sum of exponential
functions. The model of Ref. �13� is of higher complexity
because it involves four states instead of two states for our
model, thus we might be tempted to say that our model does
better in fitting the same data with less complexity. We be-
lieve that this is true when considering the data for the ve-
locity only, but if we were to include also the data for the
diffusion coefficient �which is related to the randomness pa-
rameter defined in Ref. �17��, we agree with Ref. �13� that a
model with four states would then do better than a model
with only two states.

D. Thermodynamic efficiency

Another important quantity that characterizes the working
of a motor is its efficiency �10,36�. In region A, it is defined
as the ratio of the work performed to the chemical energy

� = −
f v̄

r��
= −

fl

��
. �24�

By definition, � vanishes at f =0 and at the stalling force
fst����. Therefore, it has a local maximum �m���� for some
fm���� between fst� fm�0. Near equilibrium, �m���� has
a constant value �m

eq along a straight line fm������� inside
region A �10�. However, far from equilibrium, the picture is
drastically different. We find that �i� fm���� is no longer a
straight line, �ii� �m−�m

eq��� for small ��, and �iii� �m
�1 /�� for large ��. Therefore, �m must have an absolute
maximum at some ���1. One can also consider the curves
of equal value of the efficiency within region A. In the par-
ticular case of the linear regime close to equilibrium, these
curves are straight lines going through the origin �10�, but in
general far from equilibrium these curves are not straight
lines as can be seen in Fig. 5, and the maximum efficiency is
reached at a point within region A.

Note that �m is substantially larger than �m
eq. For instance

with the parameters used in Fig. 5, the maximum efficiency
is around 0.59 while �m

eq�0.03 �see also Fig. 3�b� of Ref.
�30� which contains a plot of �m as a function of �� under
the same conditions�. Hence, this motor achieves a higher
efficiency in the far-from-equilibrium regime as was also
found in other studies of molecular motors using continuous
ratchet models �see, e.g., Ref. �11��. Under typical physi-
ological conditions ���̃�10−25kBT�, kinesin operates at an
efficiency in the range of 40–60 %, in agreement with ex-
periments �8�. It is interesting to note that kinesins operate
most efficiently in an energy scale corresponding to the en-
ergy available from ATP hydrolysis.

10
0

10
1

10
2

10
3

10
4

[ATP] (µM)

v
(n

m
/s

)

0

200

400

600

800

-6 -4 -2 0

20

40

60

80

v
(n

m
/s

)[
2

m
M

AT
P

] v
(n

m
/s)[5

µ
M

ATP
]

F (pΝ)

10
1

10
2

10
3

e

FIG. 4. Kinesin velocity vs ATP concentration under an external
force �30�. The solid curves are the fits of our model to data from
Ref. �17�. From the top down, the plots are for Fe=−1.05,−3.59 and
−5.63 pN, respectively. Inset: Kinesin velocity vs force under a
fixed ATP concentration. The solid curves are fits to the data of Ref.
�17�. From the top down, the plots are for �ATP�=2 mM and
5 �M. From this fit, we obtained the following parameters for our
model: �=10.81, k0=1.4�105 �M−1, �=0.57 s−1, ��=1.3
�10−6 s−1, �=3.5 s−1, ��=108.15 s−1, �a

+=0.25, �a
−=1.83, �b

+

=0.08, and �b
−=−0.16.
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IV. FINITE TIME AND LONG TIME FLUCTUATION
THEOREM

A. Long time FT

We note that the rates of Eq. �8� satisfy the following
generalized detailed balance conditions:

�b
�−lPb

eq = �a
�lPa

eqe+��a
−+�b

+�f−��l, �25�

�b
�−lPb

eq = �a
�lPa

eqe−��a
++�b

−�f−��l, �26�

for l=0,1. Here, Pa
eq=1 / �1+e−�� and Pb

eq=e−� / �1+e−�� are
the equilibrium probabilities corresponding to f =0 and ��
=0. We note that these relations �25� and �26�, while valid
arbitrarily far from equilibrium, still refer to the equilibrium
state via the probabilities Pi

eq. Using the definition of the
equilibrium probabilities, one can in fact rewrite Eqs. �25�
and �26� as

ln
�b
�−l

�a
�l

= � + ��a
− + �b

+�f − ��l , �27�

ln
�b
�−l�

�a
�l�

= � − ��a
+ + �b

−�f − ��l�, �28�

for l , l�=0,1. Note that these relations are analogous to the
De Donder relation of Eq. �9� and to the transition state
theory equations of Eqs. �4� and �5�. Moreover, by combin-
ing these two equations, using the constraint that the sum of
the load distribution factors is two and then multiplying the
result by kBT, one obtains

kBT ln
�b
�−l�a

�l�

�a
�l�b
�−l�

= Fe�2d� − ��̃�l − l�� , �29�

which has the form of the steady state balance condition
discussed in Refs. �38,39�. As pointed out in these refer-
ences, by identifying the left hand side of Eq. �29� with the

heat delivered to the medium, i.e., with the change of en-
tropy of the medium, the right-hand side of Eq. �29� can be
interpreted as the sum of the mechanical work Fe�2d� and the
chemical work −��̃�l− l�� on that particular set of cyclic
transitions �l , l��. In that sense, Eqs. �27�–�29� can be under-
stood as formulations of the first law at the level of elemen-
tary transitions. It is interesting to see that these steady state
balance relations also lead to a FT as we now show below.

Using Eqs. �25� and �26�, it can be shown that M and
M†, the adjoint of M, are related by a similarity transfor-
mation

M†�f − �,�� − 
� = QM��,
�Q−1, �30�

where Q is the following diagonal matrix:

Q = �Pb
eqe��a

++�b
−�f/2 0

0 Pa
eqe��a

−+�b
+�f/2� . �31�

This similarity relation implies that M�� ,
� and M†�f
−� ,��−
� have the same spectra of eigenvalues and there-
fore

���,
� = ��f − �,�� − 
� , �32�

which is one form of FT. Since this relation holds at long
times irrespective of the initial state, it is a Gallavotti-Cohen
relation �32�. Such a symmetry is illustrated graphically on
Fig. 6 for a simplified case where the chemical variable is
absent.

B. Implications of FT in the linear regime

Here, we discuss the implications of FT in the linear re-
gime, which leads to the Einstein and Onsager relations near
equilibrium. Differentiating Eq. �32� with respect to � and 
,
we obtain

v̄ = −
��

��
�0,0� =

��

��
�f ,��� , �33�
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FIG. 5. Curves of equal efficiency � within region A �which is
delimited by the solid line and by the y axis�. The parameters are
those used in Fig. 3 and obtained from the fit of Fig. 4. From the
outside to the inside the curves correspond to �=0.2, �=0.3, �
=0.4, �=0.5, and �=0.58. The absolute maximum efficiency for
these parameters is about 59% and is located at ���14 and f �
−4.9.
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FIG. 6. Graphical illustration of the symmetry of the long-time
fluctuation theorem �for simplicity a model without chemical vari-
able has been used�. The largest eigenvalue � is shown as function
of �=� / f for different values of the normalized force f . The sym-
metry of the long time fluctuation theorem corresponds to the sym-
metry of this curve with respect to �=1 /2.
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r = −
��

�

�0,0� =

��

�

�f ,��� . �34�

The response and fluctuations of a motor are quantified, re-
spectively, by a response matrix �ij and by the diffusion ma-
trix Dij defined in Eq. �20�. The physical meanings of �ij are
as follows: �11��v̄ /�f is the mobility, �22��r /��� is the
chemical admittance, and �12��v̄ /��� and �21��r /�f are
the Onsager coefficients that quantify the mechanochemical
couplings of the motor. Near equilibrium, where f and ��
are small, a Taylor expansion of the right-hand sides of Eqs.
�33� and �34� with respect to f and �� leads to

� ��

��
�

f ,��

� � ��

��
�

0,0
+ f� �2�

�2�
�

0,0
+ ��� �2�

�� � 

�

0,0
,

�35�

� ��

�

�

f ,��

� � ��

�

�

0,0
+ f� �2�

�
 � �
�

0,0
+ ��� �2�

�2

�

0,0
.

�36�

Using the definitions of v̄ and r from Eqs. �33� and �34�, one
obtains directly

v̄ = �11
0 f + �12

0 ��, r = �21
0 f + �22

0 �� , �37�

with �ij
0 =�zi

�zj
��0,0� /2�Dij, which are the Einstein rela-

tions, and �12
0 ��
����0,0� /2=���
��0,0� /2��21

0 , which
is the Onsager relation. Thus, FT describes the response and
fluctuations near equilibrium �22,28�.

It is interesting to investigate how Einstein or Onsager
relations are broken in nonequilibrium situations. The “vio-
lations” of Einstein and Onsager relations when linear re-
sponse theory is used in the vicinity of a nonequilibrium
state rather than near an equilibrium state were studied in
Ref. �30�. There, we quantified the violations of Einstein and
Onsager relations, respectively, by four temperaturelike pa-
rameters Tij and by the difference of the mechanochemical
coupling coefficients ��. Of course, these effective tempera-
tures are not thermodynamic temperatures: they are merely
one of the ways to quantify deviations from Einstein rela-
tions; similarly our definition of �� is just one of the pos-
sible ways to study the “violations” of Onsager relations:
strictly speaking there are no real violations since Einstein
and Onsager relations apply only to systems at equilibrium.
We have shown in Ref. �30� some of the possible behaviors
of Tij and �� for a kinesin motor using the parameters of the
fit discussed above: in particular, we found that for kinesin
the maximum value of �� is ���45 pN−1 s−1, and that at
large ��, ���−10 pN−1 s−1. We also found that �i� one of
the Einstein relations holds near stalling �a point which we
justify more precisely in the next section in Eq. �59��, �ii� the
degree by which the Onsager symmetry is broken ����0� is
largely determined by the underlying asymmetry of the sub-
strate, �iii� only two “effective” temperatures characterize the
fluctuations of tightly coupled motors, �iv� kinesin’s maxi-
mum efficiency and the maximum violation of Onsager sym-
metry occur roughly at the same energy scale, corresponding
to that of ATP hydrolysis ��20kBT� �30�. Experimental and

theoretical violations of the fluctuation-dissipation relation
have been observed and studied in many active biological
systems �1,3–5,7�, but to our knowledge no experiments test-
ing the fluctuation-dissipation or the Onsager relations have
been carried out at the single motor level.

C. Finite time FT

The similarity transformation �30� implies that all the ei-
genvalues of M�� ,
� and M†�f −� ,��−
� are identical,
not just the largest one. This more general property allows us
to prove a transient FT, because the dynamics of the model at
finite time involves all the eigenvalues of M and not just the
largest one. The price to pay to have a FT relation valid at
finite time is that the initial state can no more be arbitrary.
We show here that the relation still holds, in the particular
case when the initial state is prepared to be in an equilibrium
state �which corresponds to the condition f =��=0� and
when, in addition, a specific condition on the load distribu-
tion factors is obeyed. To see how this comes about in this
model, we assume that the motor at time t=0 is at the origin
n�0�=y�0�=0 in an equilibrium state, and we calculate the
values of the position n�t� and of the chemical variable y�t�
at time t. We denote the initial state by the vector

�F0� = �F�t = 0�� = �Pa
eq

Pb
eq	 .

With 
0�= �1,1�, the initial state vector is normalized since

0 �F0�=1. Let us introduce U�� ,
 , t�=eM��,
�t, the evolution
operator for the generating functions Fi. By taking the expo-
nential of Eq. �30�, one finds that this operator also obeys an
FT relation

U†�f − �,�� − 
,t� = QU��,
,t�Q−1. �38�

We calculate the following average, similar to Eq. �14�:


e−�f−��n�t�−���−
�y�t�� = 
0�U�f − �,�� − 
,t��F0�,

= 
F0�U†�f − �,�� − 
,t��0�,

= 
F0�QU��,
,t�Q−1�0�,

= 
0�U�f ,
,t��F0�,

= 
e−�n�t�−
y�t�� . �39�

We have used Eq. �38� to derive the third equality, and the
final equation requires the condition 
F0�Q= 
0�, which is
equivalent to Q−1�0�= �F0� since Q is diagonal. Using Eq.
�31�, we find that this relation holds if the initial state is in
equilibrium and if the following condition holds

�a
− + �b

+ = �a
+ + �b

−. �40�

Equation �39� is analogous to the Evans transient time fluc-
tuation theorem �24� and to the Crooks relation �25�. An
important point here is that the initial state must be an equi-
librium state while the final state at time t does not have to be
�and in general is not� an equilibrium state. Crooks relation
can be derived using a path representation of the ratio of
forward to backward probabilities according to a specific
protocol, assuming a Markov process and using a general-
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ized detailed balance relation between successive states. In
our case, the equivalent of the generalized “local” detailed
balance condition needed for the proof is Eq. �38�. The sym-
metry of the transient fluctuation theorem is illustrated
graphically in Fig. 7 for a simplified case where the chemical
variable is absent �or integrated out�.

V. FLUCTUATION THEOREM FOR THE LARGE
DEVIATION FUNCTION

A. Explicit calculation of the large deviation function
of the current

Here, we again take advantage of our knowledge of the
function �, which contains all the information about the long
time dynamical properties of the model, to obtain an explicit
expression for the large deviation function of the current. To
simplify the presentation, we consider the simplified descrip-
tion, given in Eq. �10�, in which the chemical variable y is
not taken into account. In this case, the generating function is
defined by Fi�� , t���y�ne−�nPi�n ,y , t�, and the matrix
M��� becomes

M��� = � − �a
� − �a

� e��b
� + e−��b

�

e��a
� + e−��a

� − �b
� − �b

� � . �41�

By definition, � is the largest eigenvalue of M���, so simi-
larly to Eq. �15� we have

���� =
1

2
�− �a − �b + ���a − �b�2

+ 4��b
�e� + �b

�e−����a
�e� + �a

�e−���1/2� , �42�

with the notations �a=�a
�+�a

� and �b=�b
�+�b

�.
We have already seen that ���� has the property that


e−�n��e����t for large t. On the other hand, the large devia-
tion function G�v� is defined for large time t by

P�n

t
= v	 � e−G�v�t, �43�

in terms of P�n / t=v� the probability to observe a current v
after the motor has gone a distance n from the origin in a
time t. The relation between ���� and G�v� is


e−�n� =� e−�ndnP�n� , �44�

=� tdvP�n

t
= v	e−�vt, �45�

�� dve�−G�v�−�v�t. �46�

Using the saddle point method, we find that ����
=maxv�−G�v�−�v� and thus ���� and G�v� are Legendre
transform of each other. We have also −G�v�=max�����
+�v�, which can be written in parametric form

��

��
�� = ��� + v = 0, �47�

����� + ��v = − G�v� . �48�

Using Eqs. �42�–�48�, we find the following expressions for
G�v� �see the Appendix for details of the derivation�: for v
�0

G�v� =
�a + �b

2
+

��

2v
�Y−�v� −

1

Y−�v�
	 − v�−�v� �49�

and for v�0,

G�v� =
�a + �b

2
+

��

2v
�Y+�v� −

1

Y+�v�
	 − v�+�v� , �50�

where

Y	�v� =
1

2
�Z�v� 	 �Z�v�2 − 4�,

�	�v� = −
�

2
+

1

2
ln�Z�v� 	 �Z�v�2 − 4

2
	 ,

�51�

and

Z�v� =
v2

��
+ �v4

�
+ 4 +

v2�2

�
	1/2

, �52�

with the following parameters:

� = 4�a
��b
��a
��b
� , �53�

�2 = ��a + �b�2 − 4��a
��b
� + �a

��b
�� , �54�

and � is the effective potential defined in Eq. �11�. As shown
in Fig. 8, the function G�v� has a single minimum at the
average velocity v= v̄, which was defined in Eq. �18�, and at
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FIG. 7. Graphical illustration of the symmetry of the finite-time
fluctuation theorem for a simplified model without chemical vari-
able. The left hand side of Eq. �39� is shown as function of �
=� / f for different times �arbitrary units�. The symmetry of the fi-
nite time fluctuation theorem amounts to the symmetry of this curve
with respect to �=1 /2.
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this point G�v= v̄�=0, which can be deduced from Eq. �48�.
Remarkably, although G�v� is a complicated nonlinear func-
tion of v, the difference G�v�−G�−v� is a simple linear func-
tion of v as required by the fluctuation theorem. Using the
expressions �48� and �49�, it is straightforward to verify that

G�v� − G�− v� = �v , �55�

which in turns implies that the ratio of the probabilities to
observe v or −v for large t must obey

P� n
t = v�

P� n
t = − v� = e−�vt. �56�

From Eq. �55�, and the fact that G�v� and ���� are related by
a Legendre transform, we obtain a third formulation of the
fluctuation theorem

���� = ��− � − �� . �57�

Near equilibrium, the large deviation function is well ap-
proximated by a half parabola when both v when v̄ are either
positive or negative. For v̄�0, this part of the large devia-
tion function becomes flatter and flatter, when going away
from equilibrium �i.e., for increasing entropy production�. As
a result, the remaining part of the large deviation function for
v�0 must be linear G�v�0��−�v, so that Eq. �55� is
obeyed. This linear part for v�0 and the half parabola for
v�0 can be seen in Fig. 8.

It is interesting to note the central role played by the
quantity � defined initially as an effective potential, and
which now enters the three formulations of the fluctuation
theorem in Eqs. �55�–�57�. Note that these equations were

obtained for arbitrary forms of the rates �a
� , �b

� , �a
�, and

�b
�. If we make a specific choice for these rates as in Eq. �8�,
with no chemistry, i.e., for ��=0, we recover �=−f , and
then Eq. �57� reduces to ��f −��=����, which is indeed
compatible with Eq. �32� when there is no chemical variable
and no dependence on the rates on chemistry. If the rates are
those of Eq. �8� for ���0, we obtain using Eq. �12�, the
expression

P� n
t = v�

P� n
t = − v� = e�f−fst�����vt �for t → �� �58�

with the stalling force defined in Eq. �21�, and related to �
by �=−f + fst����.

Note that an Einstein relation can be obtained near stall-
ing, by performing a Taylor expansion of the right-hand side
of Eq. �57� with respect to −�, in a way similar to what was
done in Eqs. �35� and �36� for the derivation of the Einstein
and Onsager relations. This procedure means that for f
� fst����,

v̄ �
1

2
�f − fst������ �2�

�2�
�

0
, �59�

which shows that near the stalling force, the Einstein relation
holds in this description where the chemical variable is ab-
sent �30�.

B. Discussion

Note that Eq. �58� puts a constraint on the ratio of the
probabilities of observing a velocity v to the probability of
observing a velocity −v. These velocities should be esti-
mated from the ratio n / t based on an observation of the
motor running a distance n �or a distance −n�, after a time t.
This relation has been proven here in the limit of long time t,
but we expect that such a relation will also hold at finite time
t under some conditions, as suggested by our derivation of
the transient FT of Eq. �39�. Such a relation at finite time was
also investigated in Ref. �28�.

Single molecule experiments on kinesin in which back-
ward steps were studied were performed in Refs. �19,40�. In
particular, it was shown in these references that ATP binding
was necessary for backward steps, and that the ratio of the
overall probability of making one forward step �whatever the
time� to the overall probability of making one backward step
�whatever the time� is an exponential function of the load,
which approaches one near the stalling force. It is important
to point out that this ratio which was measured experimen-
tally is not the same quantity as the left-hand side of Eq. �58�
although both quantities should be related. In view of this,
Eq. �58� should be considered as a prediction for the behav-
ior of single motors like kinesin, which to our knowledge has
not yet been tested experimentally. This suggests that it
would be very interesting to probe Eq. �58� experimentally,
by trying to compute directly the distributions P� n

t = 	v� for
various times. At the same time, it would be also useful to
study more extensively the behavior of motors of various
types near stalling as function of the ATP concentration. No
notable difference could be measured in the stalling force at
an ATP concentration 1 mM or 10 �M in the experiments
of Ref. �19� on kinesin, although in principle according to
general grounds �16,38� one should expect that the behavior
of motors near stalling �and in particular the stalling force of
the motor itself� should depend on the ATP concentration and
more generally on the details of the chemical cycle of ATP
hydrolysis.
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FIG. 8. Large deviation function G�v�, the solid line is the exact
expression using Eqs. �49� and �50� and the points are the numerical
evaluation of the Legendre transform using Eq. �48�. For the values
of the rates used here, the average velocity, as given by Eq. �18�, is
v̄�80: thus, the system is far from equilibrium. Note that G�v� is
minimum at v̄ and that G�v̄�=0.
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C. Other forms of FT relations

We have seen that the form of the FT relation depends on
the state variables of the system, or in other words, it de-
pends on the level of coarse-graining of the description. We
consider in this paper the following levels of description. �I�
The mechanical displacement n is the only state variable. �II�
The chemical variable y is the only state variable. �III� Both
variables n and y are taken into account. For case �I�, the
dynamics is described by the simplified master equation �10�
and Eqs. �55�–�57� are the appropriate forms of FT. For case
�II�, we find that FT can be written in the following forms
�we shall omit the large deviation function form of FT for
cases �II� and �III��:

P� y
t = r�

P� y
t = − r� = e−�rt, �60�

which also holds generally for t→� and

��
� = ��− � − 
� . �61�

In the above two equations, −� can be interpreted as the
affinity �32� associated with a chemical cycle �see the repre-
sentation of the chemical cycle in Fig. 2, and the next section
for a discussion on the notion of affinity�. We find that � is
given by

� = ln��b
−1�a

0

�a
1�b

0 	 , �62�

where �a
l =�� a

l +�� a
l and �b

l =�� b
l +�� b

l for l=−1,0 or 1. The
physical interpretation of � can be clarified by using a
method similar to �14�: after integrating out the position vari-
able n from Eq. �1�, and decimating over the odd or even
sites, one can derive an effective evolution equation for the
occupation probabilities of the remaining sites. In this equa-
tion, � plays the role of a effective potential for the chemical
variable. When the rates of Eq. �8� are used, we find that this
quantity is given by

� = − �� + ��st�f� . �63�

As expected, the conditions for which � vanishes are the
same as those for which the chemical current r, given in Eq.
�19�, vanishes.

For case �III�, the FT can be written as follows:

P� n
t = v, y

t = r�
P� n

t = − v, y
t = − r� = e−��̃v+�̃r�t �64�

for t→� and

���,
� = ��− �̃ − �,− �̃ − 
� . �65�

Here, the affinities associated with the mechanical and

chemical variables are given, respectively, by −�̃ and −�̃.
Note that these quantities are in general not the same as the

ones calculated above in cases �I� and �II� �i.e., �̃�� and

�̃���. When the rates of Eq. �8� are used, �̃=−f and �̃
=−��, so that Eq. �32� is recovered from Eq. �65�.

VI. FLUCTUATION THEOREM AND ENTROPY
PRODUCTION

In this section, we discuss the connections between the
fluctuation theorem described in the last section and the en-
tropy production �23�. In particular, we show by an explicit
calculation, that the parameters �, �, f , and �� that appear
in the symmetry relations Eqs. �55�–�58� are identical to the
affinities associated with the various macroscopic currents
�mechanical and chemical� flowing in the system �28�. Af-
finities, introduced a long time ago in chemical thermody-
namics �32�, represent intrinsic quantities that depend only
on the microscopic transition rates of the system. Thus, the
fact that these quantities also appear in the fluctuations theo-
rems, valid far from equilibrium, shows a remarkable con-
nection between classical thermodynamics and nonequilib-
rium statistical mechanics.

We shall first discuss the simplified model, in which the
chemical variable y is not taken into account in the descrip-
tion as a state variable �case �I��. The mechanical entropy
SM�t� then only contains contribution from the disorder in the
distribution of the mechanical variable n and is defined as

SM�t� = − �
i=a,b

�
n

Pi�n,t�ln Pi�n,t� �66�

in units where kB=1. Using the master equation �10�, one can
calculate the variation of SM�t� with time

dSM

dt
= �

i�j
�

n

��i
�Pi�n,t� − � j

�Pj�n + 1,t��ln
Pi�n,t�

Pj�n + 1,t�
,

�67�

where i , j take the two possible values a and b but are dif-
ferent from each other. By transforming the last term in this
equation as follows:

ln
Pi�n,t�

Pj�n + 1,t�
= ln

�i
�Pi�n,t�

� j
�Pj�n + 1,t�

− ln
�i
�

� j
�

,

the time derivative of the entropy can be rewritten as the
difference of an entropy production �which is always posi-
tive� and an entropy flux. Since we are interested in a sta-
tionary state where dS /dt=0, both contributions must be
equal. From such a calculation, one finds that the entropy
production and the entropy flux in the long time limit are
given by

�M =
�a
��b
� − �a

��b
�

�a
� + �b

� + �a
� + �b

�
ln��a

��b
�

�a
��b
�	 = − �v̄ , �68�

where � is the effective potential defined in Eq. �11�, and v̄
is defined in Eq. �18�. According to the general definition
�28�, we deduce from Eq. �68� that the mechanical affinity of
the displacement variable is −�.

It is interesting to recall that this result can also be derived
in a different way: in Ref. �23�, it was proven that the en-
tropy flux can be calculated by using a fluctuating quantity
W�t�, called the action functional, which can be seen as a
local measure of the lack of detailed balance on a given path
at time t. The matrix N��� that describes the evolution of the
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generating function of 
exp�−�W�t��� is given by

N = � − �a
� − �a

� �a
��1−���b

�� + �b
�v�a

��1−��

�b
��1−���a

�v + �a
�v�b

��1−�� − �b
� − �b

� � .

This matrix is obtained by deforming the original Markov
matrix by a parameter �. We emphasize that this deformation
is not the same as that used in Eq. �41� to calculate the large
deviation of the currents. The time derivative of W�t� is pre-
cisely the entropy flux. Therefore, we have, in agreement
with Eq. �68�,

�M = −
�q

��
�0� = − v̄� , �69�

where q��� is the largest eigenvalue of N���. Since the ma-
trix N has the property N†���=N�1−��, its largest eigen-
value q��� satisfies a fluctuation theorem

q�1 − �� = q��� . �70�

Note that Eq. �68� is valid for arbitrary transition rates; if we
make a specific choice for the rates such as that of Eq. �8�,
we find that �= �−f + fst�����v̄ when ���0. When ��=0,
we recover �=−f v̄, a well-known result �11�, but our more
general expression for ���0 shows explicitly the depen-
dence of the entropy production on a measurable quantity
�� and its connection to the FT which we saw in Eq. �58�.

If we now use a description of the model where only the
chemical variable y is taken into account �case �II�� and the
total displacement n is integrated out, we can define a
“chemical entropy” SC�t� as follows:

SC�t� = − �
i=a,b

�
y

Pi�y,t�ln Pi�y,t� . �71�

Calculations similar to the ones described above allow us to
derive the purely chemical entropy production in the station-
ary state

�C =
�a

1�b
0 − �a

0�b
−1

�a + �b
ln� �a

1�b
0

�b
−1�a

0	 = − r�; �72�

the chemical current r and the chemical affinity � were de-
fined in Eq. �19� and Eq. �62�, respectively. We also note that
the entropy production in Eq. �73� can be calculated using an
action functional whose generating function is the largest
eigenvalue of the Markov matrix suitably deformed �23�.

Finally, we can use the complete description of Eq. �1�, in
which both the displacement n and the chemical variable y
are taken into account �case �III��. In this case, the entropy is
given by

S�t� = − �
i=a,b

�
n

�
y

Pi�n,y,t�ln Pi�n,y,t� . �73�

Again, if we make the specific choice for the rates of Eq. �8�,
we find that the following well-known result �11� is recov-
ered for the entropy production:

� = f v̄ + r�� . �74�

This relation makes explicit the fact that f is the affinity of
the mechanical position variable with the current v̄, and that
�� is the affinity of the chemical variable with the current r.
We note that these affinities are different from those found
above in the purely mechanical and in the purely chemical
models, which correspond respectively to Eqs. �11� and �63�.
The fact that the expression of the entropy �and hence that of
the affinity� strongly depends on the level of coarse-graining
used in a given description should not come as a surprise.
The two affinities f and �� appear in the Gallavotti-Cohen
relation �32�. This suggests that one should be able to con-
struct an effective potential describing the evolution of the
motor in a two-dimensional phase space of n and y, and that
this potential should be equivalent to the potential of mean
force discussed in Ref. �41�.

We have seen here that the FT for the currents and the FT
for the entropy are closely related; this fact is true for a large
class of models as explained in Ref. �23�. However, although
the FT for the entropy holds generally for any Markovian
dynamics as shown in Ref. �23�, a FT for the currents exists
only if the dynamics can be decomposed into cycles with
well defined affinities �28�. This is why the periodicity of the
motion of the motor along track and of the evolution of the
chemical variable was a crucial assumption in our derivation
of the FT for the currents but was not used when deriving the
FT for the entropy.

VII. CONCLUSION

We have studied a discrete stochastic model of a molecu-
lar motor, which is a minimal ratchet model. We made con-
tact in this paper between various formulations of FT.
Through a detailed analysis of a simple model, we have
brought out some physical implications of FT for molecular
motors in general and for kinesin in particular. One impor-
tant message is that FT puts constraints on the operation of a
molecular motor or nanomachines far from equilibrium. Fur-
ther experimental work and theoretical modeling is necessary
to check more precisely the implications of FT for molecular
motors. For instance, it would be interesting to study a mo-
lecular motor in which both the velocity and the average ATP
consumption rate could be measured simultaneously, or if
this is too difficult study more extensively the behavior of
motors near the stalling force as function of ATP concentra-
tion. This would allow a study of the violations of the
fluctuation-dissipation at the level of a single motor, which
would lead to much deeper insights into the mechanotrans-
duction mechanism of molecular motors.

Due to the broad applicability of the ratchet concept in
biological systems, we believe that the results of this paper
should be of general applicability: the model could describe
processive molecular motors of various types, nanomachines
similar to enzymes performing chemical cycles or polymers
which are translocated through a pore under the action of a
force �for instance, the force created by an electric field ap-
plied to a charged polymer�. More generally, we hope that
the present work illustrates the usefulness of statistical phys-
ics of nonequilibrium systems for the understanding of active
systems, and in particular biological systems.
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APPENDIX: CALCULATION OF THE LARGE DEVIATION
FUNCTION G(v)

To obtain an explicit form for G�v�, we take the square of
Eq. �47�,

� ��

��
�� = ���	2

= v2. �A1�

Using Eq. �42� the derivative on the left-hand side can be
written as

��

��
=

1

4

U����
�U���

, �A2�

with U���= ��a−�b�2+4��b
�e�+�b

�e−����a
�e�+�a

�e−��. After
performing the change of variable

Y = e2���a
��b
�

�a
��b
�

, �A3�

and using the parameters � and � introduced in Eqs. �53�
and �54�, we can write

U���� = 4���Y −
1

Y
	 , �A4�

and Eq. �A1� becomes

16��Y −
1

Y
	2

= 16v2��2 + 2���Y +
1

Y
	� . �A5�

We deduce that Z=Y +1 /Y satisfies

Z2 −
2v2

��
Z − 4 −

v2�2

�
= 0. �A6�

There are two solutions to this equation but since Z�0, only
the positive solution must be retained which is Eq. �52�. To
obtain Y in terms of Z�v�, one must solve another second
order equation Y2−ZY +1=0. This equation has two positive
acceptable solutions, which are the two solutions Y	�v� of
Eq. �51�. We have Y+�v��Y−�v�=1 /Y+�v�. Using Eqs. �47�
and �A2�, we see that Y+�v� corresponds to v�0. Similarly,
Y−�v� corresponds to v�0. Once the relation Y =Y�v� is de-
termined, it is easily inverted using Eq. �A3� to yield ���v�,
which is precisely �	�v� in the second equation of Eq. �51�.
The final expression of G�v� is obtained by substituting this
result into Eq. �48�.
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