
Dynamical origin of spectrally rich vocalizations in birdsong

J. D. Sitt,1 A. Amador,1 F. Goller,2 and G. B. Mindlin1

1Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
Pabellon I (1428), Buenos Aires, Argentina

2Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
�Received 30 April 2008; published 11 July 2008�

Birdsong is a model system for learned vocal behavior with remarkable parallels to human vocal develop-
ment and sound production mechanisms. Upper vocal tract filtering plays an important role in human speech,
and its importance has recently also been recognized in birdsong. However, the mechanisms of how the avian
sound source might contribute to spectral richness are largely unknown. Here we show in the most widely
studied songbird, the zebra finch �Taeniopygia guttata�, that the broad range of upper harmonic content in
different low-frequency song elements is the fingerprint of the dynamics displayed by its vocal apparatus,
which can be captured by a two-dimensional dynamical model. As in human speech and singing, the varying
harmonic content of birdsong is not only the result of vocal tract filtering but of a varying degree of tonality
emerging from the sound source. The spectral content carries a strong signature of the intrinsic dynamics of the
sound source.
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I. INTRODUCTION

Sound generation in songbirds and humans involves simi-
lar physical mechanisms �1�. Airflow passes between folds of
tissue �vocal folds in humans, labia in songbirds�, inducing
them to vibrate �2,3�. The folds act as pneumatic valves
�sound source� and modulate the pressure at the base of an
upper vocal tract, which filters the sound waves before they
are emitted. In this way, the source is responsible for the
periodic modulation of airflow, generating a signal with a
given spectral content. The filter enhances some of its fre-
quencies and weakens others.

The hard beak and tongue of birds do not provide similar
versatility for adjusting filter properties of the upper vocal
tract as is available to speaking humans. In songbirds, it is
thought that upper vocal tract filtering, through modulation
of oropharyngeal volume and beak aperture control �4–10�,
serves to reduce upper harmonics to produce nearly tonal
sounds. Although those studies address the origin of tonal
sounds, they do not provide insight into how sounds with
rich harmonic content are generated. Specifically, it is un-
known to what degree variations in upper harmonic content
are produced by the sound source. The source of spectral
content has potentially important implications for the motor
control of song production. Source generated harmonic con-
tent may emerge from the dynamics of the vibrating labia
whereas upper vocal tract filtering requires active control of
additional movements. Understanding the respective contri-
butions of vocal organ and suprasyringeal vocal tract struc-
tures to harmonic richness in birdsong is therefore important
for elucidating the central control mechanisms for song pro-
duction and ontogeny.

Many songbirds produce nearly tonal sounds, like Canar-
ies �Serinus canaria�, Brown thrushers �Toxostoma rufum�,
and Cardinals �Cardinalis cardinalis�. On the other hand, one
of the most widely studied songbirds, the Zebra finch, alter-
nates high-frequency tonal sounds with low-frequency vocal-
ization which are spectrally very rich. This species breeds

easily in the lab, and therefore is a widely studied animal
model for vocal learning. Part of the program of research in
this case focuses on unveiling the nature of its neural motor
control. For this reason, it is very important to separate
which features of its vocal output are directly controlled by
specific neural instructions, and which emerge from the me-
chanics of the vocal organ. In this work, we study the vocal-
izations of the zebra finch from this perspective. We analyze
the fundamental frequency and spectral content of the vocal-
izations, and show that these are strongly related. We show
that this dependence can be interpreted in terms of the dy-
namical process involved in the onset of the valve oscilla-
tions of the syrinx. The work is organized as follows. The
analysis of the experimental data is presented in Sec. II. The
dynamical model, and the analysis of its solutions are dis-
cussed in Sec. III. Simulations of the theoretical model, and
the acoustic synthesis of its solutions are described in Sec.
IV. Section V contains our conclusions.

II. THE EXPERIMENTAL DATA

In this section we will present an acoustical description of
the zebra finch song. The sounds of six zebra finches were
recorded with a microphone �Audiotechnica AT 8356�. We
simultaneously measured the air sac pressure while the bird
was spontaneously singing. The pressure recording was per-
formed by inserting flexible cannula �Silastic laboratory tub-
ing, 1.65 mm outer diameter� through the abdominal wall
just posterior to the last rib, so that it extended a few milli-
meters into a thoracic air sac. The free end of the cannula
was connected to a miniature piezoresistive pressure trans-
ducer �Fujikura model FPM-02PG�, which was mounted on
the birds back �9�.

Males sing short stereotyped songs composed of different
sound elements �see Fig. 1�. These vary substantially in fun-
damental frequency �typically between 0.37–7.2 kHz�. Un-
like the mostly tonal songs of many other songbirds, zebra
finch song elements display a wide range of spectral content
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from harmonic stacks to near tonal elements �as an example
see Fig. 1�b� and 1�c�, respectively, which are sounds waves
corresponding to the syllables denoted by �b� and �c� in Fig-
ure 1�a��. Interestingly, upper harmonic content is correlated
with the fundamental frequency of sound. Low-frequency
sounds �fundamental frequency below 1.5 kHz� are spec-
trally rich, whereas high-frequency elements are more tonal
�see their corresponding spectra in the right panels of Figures
1�b� and 1�c� respectively�. In this work, we analyzed the
songs of six birds and described them acoustically. This de-
scription was performed in terms of an index describing the
spectral content of each syllable, and its value was compared
for sounds of different average fundamental frequency.

Two parameters are obtained from the fast Fourier trans-
form �FFT� of each sound segment: the average fundamental
frequency �AFF� and the mean spectral frequency �MSF�.
The AFF was determined as the mean pulse rate for low-
frequency sound segments and as the first peak in the FFT
for high-frequency sound segments, and the MSF as the sum
of the products of each frequency �i times the energy in that
frequency �i divided by the total energy E,

fMSF = �
i

�i�i

E
. �1�

The harmonic richness of a signal is usually quantified by
the average energy of its spectrum. In our case, we are inter-
ested in comparing the spectral content of different syllables
presenting different fundamental frequencies. In order to pro-

vide a measure of the spectral content of the syllable inde-
pendently of its fundamental frequency, we define the spec-
tral content index �SCI� as SCI= fMSF / fAFF, which allows us
to compare easily the spectral content of different syllables.

Despite being extracted from songs of different birds, in
Figure 2 points with coordinates �AFF, SCI� cluster tightly
within a bounded region across the �AFF, SCI� space, sug-
gesting the existence of a simple relationship valid among a
wide range of frequencies. The wide range of harmonic con-
tent present in the vocalizations, and the fact that low-
frequency syllables in the zebra finch are generated by pulse-
tone-like labial dynamics �11� strongly suggest that the
observed systematic relationship between fundamental fre-
quency and tonality emerges, at least in part, from the
mechanism responsible for sound generation itself. To ad-
dress this question, we performed a theoretical exploration of
labial dynamics, in order to identify a dynamical mechanism
capable of accounting for the observed relationship between
spectral content and fundamental frequency. Although re-
cently nonlinear models have shown to be consistent with a
variety of complex sounds, we aim at finding a dynamical
mechanism which can account for our observations in a low-
dimensional model of labial dynamics.

III. A DYNAMICAL MECHANISM

In songbirds, as in humans, the generation of sound re-
quires the onset of labial oscillations �3�. The theory of dy-
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FIG. 1. Example of a zebra
finch song, shown spectrographi-
cally �a�. In the lower panels, ex-
amples of different sound types
�indicated by the bars in �a� are
analyzed: rich harmonic content
sounds �B� and tonal sounds �C��.
�b�. Low fundamental frequency
sound wave �left panel� extracted
from the bout displayed in �a�, and
its corresponding spectrum �right
panel�. �c� High fundamental fre-
quency sound waves �left� are
more sinusoidal and their spectra
are less rich �right�. In both right
panels, the first peak corresponds
to the fundamental frequency of
the sound fragment: 560 Hz for
�b� and 5940 Hz for �c�.
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namical systems allows a classification of the ways in which
a physical system can undergo a qualitative change in its
behavior as parameters are changed �12,13�; in our case, the
ways in which a labium can abandon its stationary state for
an oscillatory one. One of these ways is known in the math-
ematical literature as a saddle node in a limit cycle bifurca-
tion �SNILC� �13�. The oscillatory regime starts as a stable
stationary state and is annihilated by an unstable one �Fig. 3�.
Right after the bifurcation, the system oscillates, spending a
large amount of time in the region of the phase space
�x ,dx /dt� where the annihilation took place. The reason is
that right after the bifurcation, there is a saddle node rem-
nant. In �13� it is shown that in fact, the period T of these
oscillations blows like �ac−a�−1/2, where a is the control pa-
rameter and ac its value at the bifurcation point. Since close
to the bifurcation, the system spends practically all the time
visiting the remnant of the saddle node pair, the periodic
solution looks like a sharp peak taking place during a small
fraction of its period. Therefore, this mechanism provides an
oscillation with a rich spectral content.

As parameters are further moved, the oscillation becomes
more tonal. Therefore, this dynamical mechanism is a good
candidate to account for the observed spectral features.
Moreover, it can be identified in a physical model of labial
dynamics.

One of the simplest physical models to account for the
transfer of the kinetic energy of air flow to vocal fold oscil-
lations is built upon experimental observation that the vocal
folds support both lateral oscillations and an upward propa-
gating surface wave �14�. As the opposing labia have a con-
vergent profile when they move away from each other and a
more planar profile when they move towards each other,
there is a greater pressure on the labia during the opening
phase and an overall gain in energy in each cycle of oscilla-
tion. This composed motion can be visualized as the super-

position of a lateral motion and an upwards propagating
wave. This model was used to synthesize sound both for
humans and for birds �15,16�. We performed a mathematical
implementation of this model. First, we wrote the dynamical
equation for the variable x, describing the midpoint position
of a labium from the rest position,

dx

dt
= y �2�

m
dy

dt
= − k�x�x − ��y�y − cx2y − g0 + alps

�a + 2�y

a01 + x + �y

= f�x,y� , �3�

where the first term corresponds to a nonlinear restitution
force, and was approximated as k�x�=k1+k2x2. The second
term accounts for dissipation, with ��y�=�1+�2y2. The third
term is also a nonlinear dissipation that becomes relevant as
x takes large values, corresponding to large departures from
the rest position. In this way, this position dependent nonlin-
ear dissipation serves to model collisions between labia or
with containing walls, either one bounding the motion. The
term g0 is a force that is independent of the labial dynamics,
and serves to model active gating �17�.

Finally, the last term describes the force acting on the
labium due to the interlabial pressure. It is written in terms of
� which stands for the time it takes the labial wave to propa-
gate half the vertical size of the labia, al the area of the labia
�14�, �a=a01–a02 with a01 and a02 the half separations at the
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FIG. 2. �Color online� The spectral content of the syllables and
sound frequency are correlated. We show the analysis for 172 sound
segments uttered by six zebra finches. For each syllable we com-
pute the spectral content index �SCI� and the average fundamental
frequency �AFF� �see Methods�. Each syllable analyzed is repre-
sented by a point. Different point types correspond to different
birds. The dotted line is obtained through a numerical experiment
where only ps �air sac pressure�, was changed generating sounds of
frequency smaller than 1.5 kHz and then filtered with a tube of
length 20 mm and reflection coefficient �=0.95. The solid line was
computed changing the parameters ps �air sac pressure� and g0 �dor-
sal muscle activity� from �2004 Pa, −0.04 dyn� to �2004 Pa,
−0.0328 dyn� linearly and then filtered with the same tube.
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FIG. 3. The physical model can exhibit a saddle-node in a limit
cycle �SNILC� bifurcation. We sketch the dynamics of the midpoint
position of the labia in a region of the parameter ps �parameter g0

=−0.0399 dyn�, which is divided in two regions by a bifurcation
line. For low values of the air sac pressure �ps�, there are three fixed
points where the stationary state is stable and no oscillations occur
�see A�. As ps is increased, and crosses the bifurcation line, an
oscillation of zero frequency is born, with finite amplitude and a
pulselike time trace �see B1�. As the pressure is further increased
and the system moves away from the bifurcation line, the frequency
of the solution increases, and the time trace becomes tonal �see B2�.
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rest �nonoscillating� state �14,15� �see Fig. 4�. In the last
term, it was neglected the contribution due to the pressure
fluctuations at the base of the tract �18�. This approximation
allows a treatment of the sound oscillations independently of
the properties of the filter, and leads to a paradigm known as
the source-filter model for sound production. We checked
numerically its applicability for the parameters of our prob-
lem.

With the numerical integration of this set of equations, we
model the airflow fluctuations at the base of the vocal tract.
These sound waves are filtered by the tract, which is as-
sumed to be a tube of length L and reflection coefficient �.
The pressure fluctuations at the base of the trachea at time t,
a�t� are given by

a�t� = pf�t� − �a�t −
2L

v
� , �4�

where � accounts for the reflection coefficient at the end of
the trachea, pf accounts for the pressure fluctuations induced
by airflow modulations �18�, and v is the sound velocity.

In this way, we model the sound in terms of a source,
whose dynamics is ruled by Eqs. �2� and �3�, and a filter
which ultimately enhances some frequencies and depresses
others. We performed a mathematical implementation of this
model, and searched for a region in its parameter space
where the sounds source presents the dynamical behavior
described above, i.e., the arousal of oscillations with low
frequency and a high spectral content.

Simulations for three different values of driving pressure
within that region are illustrated in Fig. 3 �points A, B1, and
B2�. In the first case �A�, the system does not oscillate. An
attractor coexists with a saddle fixed point, and a repulsor.
The unstable manifold of the saddle is part of the stable
manifold of the attractor. In this way, when the saddle and
the attractor collide in the bifurcation point, a limit cycle is
created. This bifurcation is called SNILC, and is a qualita-
tively different process than the Hopf bifurcation �studied in
the framework of this model in previous works �15��. The
organization of the invariant manifolds described above was
unveiled through numerical simulations in which a variety of
initial conditions were used to generate trajectories represen-
tative of the flow. Yet, the fixed points and their local stabil-
ity can be computed from Eqs. �2� and �3�. They are located
at y=0 and x such that

− k�x�x − g0 + alps
�a

a01 + x
= 0. �5�

The zeros of this function, xf, were found numerically for the
parameter values of our problem. At the bifurcation point,

� �f�x,y�
�x

�
�xf,0�

= 0, �6�

and therefore the Jacobian of the vector field �2� and �3� has
one zero eigenvalue. For the parameters of our problem the
other eigenvalue is negative. This identifies the bifurcation as
a saddle node.

In the SNILC bifurcation, the oscillations preserve a sig-
nature of the slowing down that occurs in the region of the
phase space where the saddle and the attractor collided. For
this reason, oscillations are born not only with zero fre-
quency but also with a high spectral richness: the oscillations
differ greatly from a harmonic oscillation. Notice that as we
move apart from the bifurcation point, the frequency of the
oscillations increases, and the spectral content becomes
poorer.

We generated synthetic data through the integration of the
model for parameters fixed to, alab=2.10−4 cm2, m=0.4 ng,
k1=0.36 dyn /cm, �1=4.44 10−5 dyn s /cm, , g0=0.0399 dyn,
�=5.10−6 s, a01=0.1 cm, a02=0.11 cm, k2=400 dyn /cm3

and �2=4.10−11 dyn s3 /cm3. The spectral content was com-
puted for 41 simulations of 114 ms �after a transient of
114 ms with a time step dt=3.5.10−3 ms�. Spectral content
and fundamental frequency were analyzed in the same way
as the experimental sounds. The theoretical curve �shown in
Fig. 2 with a dotted line� provides a close fit to the experi-
mental data for sounds of fundamental frequency smaller
than 1.5 kHz.

This curve was generated synthesizing sounds with values
of ps from 2000 to 2008 Pa, corresponding to oscillations
from 30 Hz to 1.5 kHz. The further away from the bifurca-
tion point, the sounds had smaller periods. For each of these
sounds, the spectral content was computed as in the experi-
mental case. Later, the SCI was computed as a function of
the fundamental frequency.

The tube parameters were searched so that the difference
between the experimental values and their theoretical coun-
terparts would minimized 	2, the values found were �
=0.95 and L=20 mm. In Fig. 5�a�, we show 	2 as a function
of � and L.

Different dynamical mechanisms would have not allowed
us to recover the behavior of the SCI index along the whole
range of frequencies. We tested an alternative hypothesis:
that oscillations are born in a Hopf bifurcation instead of a
SNILC, for that we used a previous minimal syrinx model
�17�

dx

dt
= y , �7�

dy

dt
= − khx − �ps − �h�y − chx2y , �8�

in which frequency is controlled by the kh parameter and the

a02

a
01

Ps

x

L

α

Labia Tract

FIG. 4. Scheme of the syrinx-filter model. ps stands for the
subsiringeal pressure, x the midpoint displacement of the labia, a01

and a02 the half separations at the rest �nonoscillating� state, L the
tube length, and � the reflection coefficient at the end of the trachea.
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Hopf bifurcation is crossed when ps
�h. With ps and �h
fixed at 8000 and 1000, respectively, and sweeping kh from
5.106 to 2.109 we generated sounds of fundamental frequen-
cies of 350 to 7100 Hz and searched for the best filter to
minimize 	2. We found a very weak dependency of 	2 with
the filter parameters and a failure to capture the behavior of
the SCI index for low frequencies. In Fig. 5�b� we show the
relationship of 	2 and L given a fixed � for the Hopf and
SNILC models.

In this way we show that the SNILC mechanism for the
onset of oscillations allows us to account for the relationship
between spectral content and fundamental frequency, at least
for low-frequency sounds. In this mechanism of sound pro-
duction pressure alone can control the fundamental fre-
quency of the uttered sounds. Higher frequency sounds could
be synthesized further increasing the pressure, but to achieve
such low spectral content, pressure should take unrealisti-
cally high values. In fact, high-frequency sounds are gener-
ated with the same values of air sac pressure used to utter
low-frequency sound �see Fig. 6�a��. Therefore air sac pres-
sure alone can not determine the high-frequency melodies:
another mechanism should be present for high frequency
sounds.

In Fig. 2 we show the results of our model for high-
frequency sounds. In order to synthesize these sounds, we
swept the parameters g0 and ps from −0.04 to −0.0328 dyn
and from 2004 to 2010 Pa, respectively, corresponding to os-
cillations from 1.5 to 6.3 kHz. This approach is consistent
with experimental observations of no ventral syringeal

muscle activity for low-frequency sounds �19�. The data
were analyzed as the low-frequency sounds for 100 simula-
tions of 16.4 ms �after a transient of 16.4 ms with a time step
dt=2.10−3 ms�, and the SCI computed for each simulation
was plotted against the fundamental frequency in Fig. 2 with
a continuous line.

In Fig. 6�a� we analyze the relationship between funda-
mental frequency of the sound and air sac pressure. Different
point types correspond to different syllables. Note that in the
low frequency range �dotted rectangle in Fig. 6�a�� there are
four different syllables.

In the model, high-frequency sounds can be synthesized
changing the parameter representing the activity of the sy-
ringeal muscles. Changing linearly the parameters represent-
ing air sac pressure and dorsal muscle activity, we generated
synthetic sounds. In this way, we can achieve high funda-
mental frequencies with the same pressure range used for
low fundamental frequencies. In Fig. 6�b�, we replicate all
the different sounds with the physical model varying just ps
for low fundamental frequencies, and varying simultaneously
ps and g0 �which represent the activity of the dorsal muscles�
for high values of fundamental frequencies. The paths fol-
lowed in the parameter space �ps ,g0� to generate the syn-
thetic syllables are described in detail in caption of Fig. 6.

Low-frequency synthetic sounds were generated and fil-
tered moving ps close to a parameter value where a SNILC
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FIG. 6. �Color online� Experimental and synthetic sounds of one
bird. The simultaneous measurement of sound and air sac pressure
�ps� while a zebra finch is spontaneously singing allows us to ana-
lyze the relationship between fundamental frequency of the sound
and air sac pressure. Different point types correspond to different
syllables. Note that in the low-frequency range �dotted rectangle in
�a�� there are four different syllables. We can replicate all the dif-
ferent sounds with the physical model varying just ps for low fun-
damental frequencies, and varying simultaneously ps and g0 �which
represent the activity of the dorsal syringeal muscles� for high val-
ues of fundamental frequencies �b�. The paths in the parameter
space �ps ,g0� to generate the synthetic syllables with high funda-
mental frequency are as follows: for squares from �2000.8 Pa,
−0.0.384 dyn� to �2001.4 Pa, −0.0384 dyn�; for down triangles
from �2001.6 Pa, −0.0356 dyn� to �2000.8 Pa, −0.0356 dyn�; for
circles from �2001.2 Pa, −0.0399 dyn� to �2001.4 Pa,
−0.0359 dyn�; for up triangles from �2001.2 Pa, −0.0396 dyn� to
�2001.3 Pa, −0.0359.8 dyn�
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bifurcation took place in order to generate the theoretical fit
of Fig. 2 for low-frequency experimental sounds. Similarly,
further changing g0 and filtering the sound generated by the
source with the same filter, we generated high-frequency
sounds which fit closely the experimental points.

IV. DISCUSSION AND CONCLUSIONS

The relationship between the sound spectral content and
average fundamental frequency of the different sound ele-
ments in the songs of zebra finches most likely reflects dif-
ferences in source generated harmonic content, paralleling a
similar relationship for the human voice �20�. Assuming that
the labial oscillations responsible for the airflow modulations
during the vocalizations are born in a specific dynamical
way, we generated sounds with a physical model previously
presented in the literature, and found a close agreement with
the observed data. Although the model had been already used
in the literature to emulate birdsong, it had never been ex-
plored fully in mathematical terms. For this reason, the dy-
namical regime presenting pulselike solutions �as the sounds
uttered by zebra finches at low frequencies� had never been
reported. The oscillations born in the bifurcation discussed in

this article start with finite amplitude, zero frequency and
pulselike shape, at a pressure threshold value. The spectral
content of the sound generated depends on the pressure used
during the vocalization: it becomes poorer the larger the dif-
ference between the used pressure and the threshold value.
For high-frequency sounds, the use of additional motor con-
trol does not strongly affect their spectral content. Oscilla-
tions born in Hopf bifurcations do not show a similar depen-
dence of spectral content on frequency, and therefore cannot
account for the dynamics described here �15�. In this way,
the strong dependence of spectral content on fundamental
frequency emerges largely from the dynamics of the sound
source in its vocal apparatus, and is less dependent on direct
control of the upper vocal tract. This system illustrates the
need to fully explore the deep interaction between a nervous
system and the peripheral system it controls in order to un-
derstand the emerging behavior �21�.
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