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Solitary waves in twist-opening models of DNA dynamics
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We analyze traveling solitary wave solutions in the Barbi-Cocco-Peyrard twist-opening model of nonlinear
DNA dynamics. We identify conditions, involving an interplay of physical parameters and asymptotic behav-
ior, for such solutions to exist, and provide first-order ordinary differential equations whose solutions give the
required solitary waves; these are not solvable in analytical terms, but are easily integrated numerically. The
conditions for existence of solitary waves are not satisfied for trivial asymptotic behavior and physical values
of the parameters, i.e., the Barbi-Cocco-Peyrard model admits only solitary wave solutions that entail a global
modification of the molecule; this is compared with the situation met in another recently formulated class of

DNA models with two degrees of freedom per site.
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I. INTRODUCTION

When trying to model DNA dynamics, one is faced with
an extremely complex molecule [1,2]; the nearly regular
structure (a regular backbone with attached bases, them-
selves of four possible types with similar properties) sug-
gests considering it as a homogeneous polymer, deferring to
a later stage considerations involving inhomogeneities due to
actual base sequences. Such a model can support solitary
wave excitations; this is especially interesting since it is con-
jectured that solitonlike excitations could be present, and
play a functional role, in DNA [3]. They could be relevant
both for denaturation (relevant excitations would be breath-
ers [4-6]) and for DNA transcription (relevant excitations
would be traveling kink solitons [7,8]).

Such a polymer, albeit homogeneous, is still extremely
complex. Several physical considerations lead to consider-
ation of mainly two degrees of freedom, whose activation
energies are similar to and lower than those of others [7]:
radial openings of the double helix (dominant in denatur-
ation), and rotations in a plane roughly orthogonal to the
double helix axis (dominant in transcription).

It is thus natural, as a first approximation, to elaborate
models taking into account either one of these two degrees of
freedom, depending on the process one aims at modeling. In
fact, early models for DNA denaturation—e.g., the Peyrard-
Bishop (PB) model [9] and improvements thereof, in particu-
lar the Peyrard-Bishop-Dauxois (PBD) model [5,10]—
consider a radial degree of freedom; while models dealing
with the DNA structure modification met in the transcription
process—Ilike the Yakushevich (Y) model [11] and improve-
ments thereof [8,12]—consider angular degrees of freedom.
These simple DNA models are able to support relevant non-
linear excitations, and quite successful in describing several
experimentally measurable quantities associated with the dy-
namics of the DNA molecule [4,5,8].

In more recent years, the advancement of experimental
techniques to study the dynamics of a single DNA molecule
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(subject to exactly controlled external forces) called for more
detailed models, and a rather natural first step in this direc-
tion was to formulate models able to consider both the radial
and the torsional degrees of freedom mentioned above at the
same time. The first of these models was proposed by Barbi,
Cocco, and Peyrard (BCP) [13-15] and, together with the
Poland-Scheraga model [16,17], is at the basis of most of the
present-day DNA modeling [4-6,18-25], either in its origi-
nal form or in the modified version elaborated soon after-
wards by Cocco and Monasson [26]. These models were
built as a development of the PB and PBD models, and
hence mainly with the aim of studying DNA denaturation;
thus the analysis of their nonlinear excitations focused on
breathers (see [4,5] for the results of this analysis). On the
other hand, these models also take into account torsional
degrees of freedom, and could be relevant—as improve-
ments on the Y model—in the context of DNA transcription;
this calls for an analysis of traveling solitary waves solu-
tions.

As far as we know, theoretical analysis of traveling soli-
tary wave solutions (also called simply solitons in the fol-
lowing) of the BCP model is not present in the literature
except for our recent work [27] (for traveling solitons in the
PBD model, see [28]). In our previous work on the BCP
model [27] we used the setting and coordinates traditionally
employed in studying the BCP model; hence, in particular,
we used a fixed spatial frame. These coordinates (well
adapted to the study of spatially localized objects like breath-
ers) introduce some unneeded difficulty in the computations,
and also in the interpretation of results concerning traveling
kinklike solitary waves. In this paper, we will use a different
set of coordinates, describing deviations from equilibrium,
obtaining a simpler description of traveling solitons and
more complete results.

We will be able to identify conditions (on the parameters
appearing in the model) which—if satisfied—ensure the ex-
istence of solitary wave solutions; the latter will be described
by solutions to certain ordinary differential equations
(ODEs) which cannot be solved exactly (due to the analytic
form of the Morse potential) but are easily integrated nu-
merically. It should be stressed that, in order to have physical
significance, these solutions must have a certain limit behav-
ior (discussed below); the existence of solutions with the
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required limit behavior can be discussed in analytic terms,
and again is subject to certain conditions on the parameters
appearing in the model.

The conditions mentioned above are not satisfied when
we take parameters in the physical range and require solu-
tions to be asymptotic to the trivial equilibrium. Solitary
wave solutions become possible within the BCP model and
physically realistic values of the parameters if we allow
asymptotic behavior corresponding to a nontrivial equilib-
rium; roughly speaking, this means allowing the double helix
to have a slightly modified pitch (i.e., being overtwisted) far
ahead and behind the “active” region (the region where the
solitary wave differs substantially from equilibria). The pre-
cise meaning of these statements will become clearer in the
following.

In the Appendix, we will also discuss how these results
compare with those obtained for another class of models,
recently formulated [29-32], which also describe the DNA
double chain by means of two degrees of freedom per site,
but with a different geometry (more precisely, considering
purely torsional motions rather than torsional and rectilinear
ones).

A. Preliminary discussion

Before entering into the detail of our analysis of solitons
in the BCP model, it is appropriate to briefly discuss two
general points, i.e., (a) how relevant or justified is DNA mod-
eling by Hamiltonian or Lagrangian dynamics (see
[4,5,8,12,33-35] for a wider discussion of the validity and
role of conservative DNA modeling, in particular at the me-
soscopic level); and (b) how strict is the relation of our
analysis to physical DNA features.

As for (a), it is well known that DNA in vivo operates in
a highly damping fluid, and is on the other hand subject to
thermal noise; it may thus appear rather inappropriate to dis-
cuss its dynamics in terms of conservative dynamics. The
reasons to study conservative models of DNA are manifold.
First of all, a sound understanding of the dynamics of the
molecule per se is by all means desirable before tackling the
more involved theme of its dynamics in a realistic environ-
ment, and hence the interactions between DNA and the fluid
cell environment at realistic temperature. In recent years, an-
other reason arose: in fact, we are now able to perform de-
tailed and highly controlled experiments [36-39] in which a
single DNA molecule is manipulated, and these experiments
can be conducted by putting the molecule in an environment
and at a temperature which can (to a large extent) be chosen
by the experimenter [40-47] (see also [48,49] for recent re-
views of experimental techniques). These experiments have
in particular been able to study in great detail the elastic
behavior of DNA [50-54]. Thus, modeling of DNA without
damping and/or thermal noise due to interaction with the real
environment met in the living cell is actually appropriate to
confront theory with the outcome of some laboratory experi-
ments. A very recent proposal for measuring the speed of
would-be DNA solitons [28] is in fact based on one of these
conservative models (the PBD one), strictly related to the
BCP model we consider here.
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This discussion also anticipates considerations concerning
point (b), i.e., the relation of our analysis to DNA physical
features. It is rather obvious that our analysis is not relevant
in the context of DNA denaturation (which, as recalled
above, was the first motivation for the introduction of the
Peyrard-Bishop model and its refinements [9,10]); this not
only for the general considerations about the role of damping
and thermal noise in the dynamics of DNA in living cells (for
this, see, e.g., the discussion in [4,5]), but first and foremost
because the excitations we consider here (traveling solitons)
are not the kind of excitations (breathers [5]) which are
thought to be relevant in the context of DNA denaturation.

On the other hand, the traveling solitons we study could
be relevant in the context of DNA behavior in the course of
the transcription process. In a more direct way, they can be
searched for, and possibly observed if they exist, by means
of single-molecule laboratory experiments (such as, con-
cretely, the one proposed in [28]). A sound understanding of
the traveling solitons’ features and of the range of conditions
allowing or not allowing their existence can be considered a
significant test concerning the understanding of DNA fea-
tures relevant to the dynamics of excitations traveling along
the double chain in an orderly manner; these excitations
could be studied in laboratory experiments and according to
some authors [3,7,8,11,33,55] could be relevant (with all the
necessary modification in the modeling to take into account
the complex fluid environment in which this takes place) in
the transcription process.

II. THE BCP MODEL

The Barbi-Cocco-Peyrard model [4,13,15] describes the
DNA double chain in terms of an array of nucleotides at sites
n € Z on each chain i= * 1; their position as a whole is char-
acterized by two coordinates in a fixed plane orthogonal to
the double helix axis. Note that nucleotides are supposed to
move only in these planes.

A. Discrete BCP model
The (polar) coordinates used by BCP are the distance r'”

n
from the double helix axis and an angle zﬁﬁli) describing the
orientation of the base with a given spatial direction. The
equilibrium configuration for the chain is a regular double
helix. The equilibrium configuration is, of course, defined up
to a global rotation; this feature will show up again later,
leading to a conservation law.

If one restricts consideration—as suggested by Barbi,
Cocco, and Peyrard—to symmetric motions (note that the
equilibrium configuration is symmetric), this implies rfq_l)
:rﬁll), z/rfl_l): z,bill). We will from now on adopt this reduction,
and write

r=rl=n =g =g (1)

We will also denote by m the mass of the nucleotides, by &
the distance between planes of successive base pairs, by €,
the length of the phosphodiester chain segment linking bases
at sites n and n+1 on the same chain, by L the value of this
length in the equilibrium configuration; note that by elemen-
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tary geometrical constraints L>h, so we also write L=sh
with s=1+0>1. Moreover, we denote by D and «a the pa-
rameters appearing in the Morse potential

V(r,): = D{exp[- a(r, — Rp)] - 1}’ (2)

modeling the intrapair interactions mediated by hydrogen
bonding, with R, the equilibrium distance between such
bases, and finally by K the coupling constant for the har-
monic elastic interaction between successive bases (this is
the stacking potential); see [13,15] for details.

With these notation and variables, the BCP model is de-
scribed by the Lagrangian

L= E (mri + mri(pi) - E D(e_a(ry,—R()) _ 1)2
4= DK, = 1 = 2 G =20+ h,2)*. (3)

The term with coupling constant G, was introduced by BCP
in order to prevent some degenerate behavior allowed by the
discrete nature of the model [13,15]; as in the following we
will study the continuum version of the BCP model, it will
be inessential and we will set Gy=0.

The values proposed in [13] for the parameters appearing
in the model are

Ry=2 A, h=34 A, a=445 A7,

D=004 eV, K=1 eV A2,

m=300 amu=5.0X 1072 g=28 X 10'! eV/c?. (4)

In our discussion we will accept these values as the physical
ones. We stress that the distance h,=h between planes in
which base pairs at sites n and (n+1) move, measured along
the double helix axis, is a constant in this model; in a variant
of the model, due to Cocco and Monasson [26], this is not
the case. As for the lengths €, these are allowed to change.
They can be expressed in terms of the coordinates

(rn’rn+] ’lr//n’ l/fn+l) as

en = \y'/h2 + ri_l + ri - 2rn—lrn COS(lﬁn - ‘ﬂn—l); (5)

the equilibrium distance is obtained from this for 4,=h, r,
=r,_1=rg, and ¢, — ¢, =O6y=27/ P where Ph is the pitch of
the helix. In B-DNA, P=10 [2]. Hence

L=488 A, s=1435 o=0.435. (6)

Using (5), the Lagrangian £ defined in (3) is rewritten as
(recall we set G(=0)

L= E (mf",zl + mrﬁtﬂi) - 2 D(e~@n=Ro) _ 1)2 = E K{[h?

+rﬁ—1 +ri+_2rn—lrn COS(I//n— l;bn—l)]llz_L}z' (7)

B. Continuum BCP model

It is convenient to pass to the continuum approximation.
That is, the arrays r,(¢) and ,(r) will be replaced by (inter-
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polating) fields R(x,r) and W(x,r) such that, with & the dis-
tance between neighboring nucleotide planes, R(nd,t)
=r,(t), ¥(nd,t)= i,(1). In this way

r,(t) =Rné,1), (1) =¥([nd,1),

o1 (t) = R((n = 1)6,1) = R(nd,t) + R (nd,1) + O(8),

Y1) = W((n = 1)8,1) = V(nd,1) + ¥ (n6,1) + O(&).
(®)

We stress that we are keeping a distinction between the pa-
rameter &, entering into the expression of €, and hence of the
stacking energy, and the expansion parameter 6. This distinc-
tion is essential in obtaining the series expansions below.

Using (8) and omitting the curvature term, i.e., setting
G(=0 as anticipated (this is legitimate as we are now dealing
with a continuum version of the model; see the discussion in
[13,15] for details), and setting L=(1+0o)h, the BCP La-
grangian (7) is written, to second order in § and omitting an
inessential constant term (—Kh%0?), as

L =m(R} +R*W?) -~ V(R) + Ko(R: + R*¥3) 8. (9)

Note that the stacking term now enters in the Lagrangian
with a plus sign.

It should now be remarked that ¢, and hence W represent
angles with respect to a given fixed spatial direction. It is
more convenient to measure angles with respect to the direc-
tion corresponding to the equilibrium configuration. This is
given by a helix with pitch p=106 (i.e., of ten bases); thus at

equilibrium W(x,1)=W(x)=Bx with B=27/p=m/(58). In
B-DNA, we have hence

B=0.185 A7!. (10)
We will write ®=¥ -V and hence
V=b+pBx, V=0 . +8 V=0, (11)
We also write, for ease of notation,
k:=Ko& > 0; (12)
note for later reference that using (4) and (6) we get
Konys = 5.032 eV. (13)
With this notation the Lagrangian (9) reads
L =m(R* + R*®?) - V(R) + k(B°R* + 2BR*®, + R*®* + R?).
(14)

It should be stressed that £ does not depend on @; it follows
by the Noether theorem [56,57] that it admits a conservation
law, which will show up as the Euler-Lagrange equation as-
sociated with the field ®.

The Euler-Lagrange equations for (14) read

mR,, = mR®? — (1/2)V'(R) + k(RD? + B*R + 2BRD, — R,,),

mR*®, = -2mRR,®, - K[R°®, +2(B+ P)RR,]. (15)
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III. TRAVELING WAVE REDUCTION FOR THE BCP
MODEL

Equations (15) are nonlinear, and we have therefore little
hope of devising their general solution. We are especially
interested in traveling wave solutions, i.e., in solution de-
pending on x and 7 only through z=(x—wvt); thus we set

R(x,t) =R(x—v1), ®(x,1)=D(x—v1). (16)
With the traveling wave ansatz (16) and (15) reduce to

uf" = ufg'? = (112)V'(f) + Be(B+28")f,

wfg"==2uf'g" = 2Bkf", (17)
where for ease of writing we have defined the (positive, be-
cause k>0) constant

w=mv’+k>0. (18)

With the physical values (4), we get (here and below c is the
speed of light)

Mphys = 5.032 +2.804(v%/c?) X 10" eV. (19)

Equations (17) are ordinary differential equations describ-
ing traveling wave solutions for (the continuum approxima-
tion of) the BCP model. Note that the second of (17) is
rewritten as

d
d—[M(fzg’) +Brf’]=0, (20)
Z

stating that the quantity in square brackets is conserved along
the flow: we have the integral of motion

J:=(ug' + Br)f>. (21)

This also follows from the fact that £ does not depend on ®
(see above), J being just the momentum conjugate to ® un-
der the traveling wave ansatz.

The conservation law (20) allows us to write

g =) = B, g"==2Jf"1(uf) (22)

as solutions to (17); the constant J depends on initial data
(recall that g’ has the dimension of inverse length; J has the
physical dimensions of an energy times length,
[M][LP[T]?). With the physical values (4) we have

Jonys = [e0.93AA7" + g([5.032 + 2.804(v/c)?]} eV.
(23)

The dynamics is thus reduced [up to the quadrature corre-
sponding to the first of (22)] to the single equation

= (5] -ov 4
=—|\=z+y)-— ;
W\ f 2u
here we have simplified the writing by defining
v: = Bl — k) = Brem v*> 0. (25)

With the physical values (4), the result is
Vohys = 4.82 X 10°(0%/c?) (eV/ A)%. (26)
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IV. THE EFFECTIVE POTENTIAL

We will now focus on the task of determining traveling
wave solutions to the BCP model, i.e., solutions to (24). This
can be seen as the equation for a point particle of unit mass
in the effective potential

1 2
W(f): =2—M2<MVO‘)+JJ§— 7f2> + Wo; (27)

here W, is an additive arbitrary constant. The (conserved)
total energy for the motion in this effective potential is of
course given by

1
H(Ef) =S () + W) (28)
The motion with total energy E is thus described by

U+ BE-wE). (29)
dz

The effective potential W defined in (27) depends on the
parameters J and u (n addition to the physical parameters
appearing in the Morse potential, which we consider as
given); note that J is arbitrary (with />0 if and only if g’
>—Bk/ u) and is identified by the initial conditions, while u
depends on the speed of the traveling wave. The values of
these parameters affect not only the quantitative features of
W, but its qualitative behavior as well, as we discuss in the
following.

It follows easily from (27), the properties of the Morse
potential, and w>0 that

lim W(f) =0, lim W(f) = - . (30)
f—»() f—>:x:

The potential can have zero or two critical points depending
on the values of the parameters. We are especially interested
in the case where the potential admits nontrivial solutions
f(z) which go to stationary points for z— * o [these corre-
spond to solutions for which R(x,?) is asymptotically con-
stant for large |x|; due to conservation of J, this implies g’ is
also constant for large |x|].

In view of the properties of W, such large-amplitude trav-
eling waves can exist only if W has a maximum, to which the
required solution f(z) is doubly asymptotic for z— = o; this
solution represents a separatrix for the phase portrait of (28).
We have thus to determine for which values of the param-
eters this separatrix can exist, or equivalently for which val-
ues the potential W(f) has a local maximum. With this aim,
we write W'(f) in the form

W =- i[wm ).

w(f): = %[(ﬂ/ﬁ) + o).
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FIG. 1. Functions w; and w, defined in (31), with realistic val-
ues for the physical parameters [see (4)]. We plot the curve w,(f)
(dotted) together with w;(f) for J=1, u=2, y=0.01 (dashed) and
for /=0.5, u=2, y=0.01 (solid). This allows us to state that in the
latter case traveling wave solutions are possible, while in the former
they are not. See also Fig. 2.

wo(f): = V' (f) = 2aDe™*VRo(1 — e=@U=R0))  (31)

(see Figs. 1-3). Points with W'(f)=0 correspond to crossing
points for the graphs of w; and w,. A sufficient condition to
ensure these exist is provided by

wa(fo) = wi(fo), (32)

where f, denotes the point where w,(f) attains its maximum.
We have

fo=Ro+a " In(2), (33)

so that ¢~*U~Ro)=1/2; with the physical values (4) and (6) we
get

(Fo)phys = 2.156 A. (34)

Using (33) together with (31), we immediately get
wi(fo) =[2(/> + yfé)](ufé)“,

wa(fo) = (Da)/2. (35)
The condition (32) then reads

W
0.04

0.03
0.02

0.01

FIG. 2. Effective potential W(f) for realistic values of the physi-
cal parameters [see (4)]. We plot the potential for J=1, u=2, y
=0.01 (dashed) and for J=0.5, u=2, y=0.01 (solid). Note that in
the latter case there is a local maximum—and solutions doubly
asymptotic to it are possible—while in the former there is no criti-
cal point. This confirms the analysis based on the w; and w, func-
tions; see Fig. 1.

PHYSICAL REVIEW E 78, 011901 (2008)

W
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.008
.006
.004
.002

1.8 \2 2, 2.4 27 .8 3 £
-0.002

-0.004
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FIG. 3. Detail of the effective potential W(f) in this case where
(32) and (36) are satisfied and for the region of interest; the additive
constant is chosen so that E,=0. We have chosen realistic values of
the physical parameters [see (4)], and J=0.5, u=2, y=0.01.

4P+ yf) < (Da)(ufy). (36)

Note that, while J is a free parameter, depending on initial
conditions, vy can be expressed in terms of the physical pa-
rameters and v; doing this, (36) reads

v? ( J? ) 1
= =(245-1.09—— | X 1072, 37
c? eV? A? (37)

This sets a limit on J to allow the existence of traveling wave
solutions: it follows from (36) we should have J?
<[(Da,u,f8)/ 4—yf(2)], and using physical values we get

J<Jy=15 eVA. (38)

Finally, if crossing points exist we denote them by f,, and f,,,
with f,,<fy. We can immediately check that f,, (f);) corre-
sponds to the local minimum (local maximum) for W(f).

V. TRAVELING WAVE SOLUTIONS AND ASYMPTOTIC
BEHAVIOR

We assume from now on that (32) and (36) are satisfied,
so that traveling solitary wave solutions exist; we discuss
some features of these solutions.

A. Solutions

We denote again by f), the point at which W(f) has the
local maximum, and by E,=W(f,,) the value of W at this
point. Call, for ease of notation, f| the other point at which
W(f,)=E,, and choose for definiteness f(0)=f;. Then the
solitary wave solution we are looking for is a solution to

;ﬁ;: + V=2[E,-W(f)] (for t= +]t),  (39)

and is antisymmetric in #; by construction this satisfies f;
<f(z) <fy for all z.
This is a separable equation, i.e., we can write

1
=d =7Z. 40
f e v e (40)

Unfortunately, due to the functional form of the Morse po-
tential, we are unable to perform the integral on the left-hand
side; on the other hand, (39) is readily integrated numerically
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-40 -20 20 40

FIG. 4. Solitary wave solution f(z) for W as in Fig. 3 (see
caption there for values of the parameters); here f is given in ang-
stroms. In this case f,=2.4505, f;=1.9280, and E,=0.005185.

(see Fig. 4). Once this f(z) is known, the corresponding g(z)
is readily obtained from the integral of motion (21) (see Figs.
5 and 6).

B. Asymptotic behavior

We stress that the asymptotic behavior of the angle g(z)
for z— * o is given by

8(2) = c+ +pz; (41)

correspondingly f(z) is asymptotic to a constant value f.,
=fy which is not exactly R, but slightly bigger. Obviously
the constant of motion J can be evaluated on the asymptotic
state; in this way we get

T=(up+Br)fy. (42)

The effective motion corresponds to an equilibrium between
the restoring force due to the potential and the centrifugal
force corresponding to the angular speed p.

In terms of the original system, the appearance of a trav-
eling localized twist defect in the DNA double helix is ac-
companied by a long-range deformation consisting in the
helix getting a slightly smaller pitch ahead of, and behind,
the twist defect. It may be interesting to note that a connec-
tion between global twisting and existence of solitons was

FIG. 5. Solution g(z) corresponding to the f(z) shown in Fig. 4.
This is obtained making use of (21), with the values given in the
caption to Fig. 3 for the constants J and w; the value of o is as in
(6), and we plot, together with g(z) (solid curve), also the solutions
g+(z)=c++pz (dotted lines) to which it is asymptotic for r— = oo,
These are obtained for p=~0.077 642 2, c. = *£0.314 062

PHYSICAL REVIEW E 78, 011901 (2008)

-20 -10 10 20

FIG. 6. [g(z)—go(z)]/ , with the definition gy(z)=pz with p as
in the caption to Fig. 5, i.e., the angle shift with respect to a regular
helix, measured in multiples of 7.

also one of the conclusions reached by other authors [58] in
their analysis of the Peyrard-Bishop-Dauxois model [10].

C. Standard helix as asymptotic condition

If we require that asymptotically (for z— * ) g'(z) —0,
then J is no longer a free parameter; it is instead determined
as

J=1J:=Bkf,. (43)

Note that f), was defined as the local maximum for W(f),
which in turn depends on J. In this case we should define

W(f) as W(f) restricted to J =j, that is,

VAV—L< V(f) z 2) (44)
—'2M2 wV(f +jg"7f .

This should satisfy a self-consistency condition, i.e.,
W' (fy,)=0; this reads explicitly

aDe W Ro)(1 — =V R0y = = (B2 + ) for = Bicf
(45)

(the last equality follows from the definition of y). Note that
in this condition no term depends explicitly on v; all param-
eters are fully determined in the physical case.

The condition (45) should be seen as an equation for f,
with given values of the physical parameters; this is a tras-
cendental equation and hence cannot be solved in closed
form. Moreover, we are not guaranteed a solution exists.
When this is the case, the numerical solution for given values
of the parameters is elementary.

When we set the parameters to their physical values, it
turns out that (45) admits no solution. In order to have a
solution, and keeping the experimental values for the geo-
metrical parameters in the BCP model, we should set the
ratio Da/ K between coupling constants for different interac-
tions to about four times its physical value (see Fig. 7). Thus
we have shown that albeit traveling localized twist defects in
the DNA double helix (as described by the BCP model) can
exist, they cannot be asymptotic to the DNA double helix in
its native (equilibrium) state for parameters in a physically
acceptable range; in this range such solutions must instead be
necessarily accompanied by an overtwisting of the helix in
front of and behind them.
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FIG. 7. Condition (45) expressed as F(y)=0, with y=f,,/ R, and
using the function F(y)=aDe ®Ro0=D(] —g=aRob-1))_ B2,y R,,. Here
we plot F(y) for physical values of all the parameters but D; the
latter is set to g times its physical value (Dy=0.04 eV), and we plot
F(y) for g=1 (continuous line) as well as for g=2,3,4,5 (dashed
lines, from below). The compatibility condition can first be satisfied
when g=¢y>4, i.e., for a value of the coupling constant (actually,
of the ratio between the coupling constants D and K, associated
with the pairing and stacking interactions, respectively) which is
more than four times the physical one.

VI. CONCLUSIONS AND DISCUSSION

We have considered the Barbi-Cocco-Peyrard twist-
opening model for DNA dynamics [13-15], looking for trav-
eling solitary wave excitations. We worked in a continuum
approximation, so that the system is defined by the field La-
grangian (9), passing to a “helical” frame of reference by the
simple change of coordinates (14). We noted that the La-
grangian does not depend on the field ® and hence, by the
Noether theorem [56,57], the model admits a conservation
law.

With the traveling wave ansatz (16), the Euler-Lagrange
field equations are reduced to the two ODEs (17); one of
these is just stating that the quantity J defined in (21) is
constant under the dynamics, so that we are reduced to the
study of a single equation which depends parametrically on
J. This equation can be seen as describing the motion of a
particle of unit mass in the effective potential W.

The solitary wave solutions to the original partial differ-
ential equation (PDE) system we are looking for are repre-
sented by homoclinic solutions for this equation, doubly
asymptotic to a local maximum of W; they exist only when
the parameters entering into W are such that W itself admits
a local maximum. We derived a condition for this to be the
case, i.e., for the BCP model to admit traveling solitary wave
(hence localized) solutions (32). This shows there will be a
maximal allowed speed for such waves (36). The resulting
equation cannot be solved exactly due to the specific form of
the Morse potential, but we are guaranteed that solutions of
the desired form exist—provided condition (32) is
satisfied—and these are easily computed numerically.

Special attention should be given to the limiting condi-
tions for this equation, inherited from boundary conditions
for the Euler-Lagrange PDEs corresponding to the Lagrang-
ian (14). In fact, solutions going asymptotically to the trivial
equilibrium—identified by R=R;, and W =2km—are possible
only for a certain range of values of the parameters; this
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range does not include the physical values of parameters as
identified by Barbi, Cocco, and Peyrard [5,13,15].

On the other hand, different limiting behaviors are also
possible, corresponding to nontrivial equilibria. In terms of
the resulting mechanical model for traveling wave solutions,
these are obtained when the potential force produces the re-
quired centripetal acceleration to keep the mass in a circular
motion. In terms of the DNA molecule, these correspond to a
double helix with an untwisted region, a twist defect, which
travels at constant speed and with a slight overtwisting in
front of and behind the twist defect. The range of parameters
for which these solutions are possible includes the physical
range as identified in [5,13,15]. It should be stressed that
checking a relation between the existence of solitons and a
global overtwisting is within experimental reach, and actu-
ally goes in the same direction as the recent proposal by
Zdravkovi¢ and Satari¢ [28] of an experiment to check the
existence and measure the speed of traveling solitons in
DNA, based on their analysis in terms of the Peyrard-
Bishop-Dauxois model [10].

We would like to make two final remarks concerning the
relation of our work on the BCP model to parallel investiga-
tions on different DNA models. First, we note that our find-
ings for the BCP model, and in particular the relation be-
tween traveling twist defects and overtwisting, could and
should be compared with that arising from the study of other
models also combining two degrees of freedom per nucle-
otide; in particular, those where both degrees of freedom are
angular ones [29-31] (see the Appendix). In that case, trav-
eling solitons (with physical values for the parameters ap-
pearing in the model) can exist with no need for the over-
twisting needed in the BCP model. In this sense, an
experiment of the type proposed by Zdravkovi¢ and Satari¢
[28] could establish not only if traveling solitons are present
in DNA in laboratory conditions, but also (in case they are
found to exist) which one of the models analyzed in the
literature—i.e., the Peyrad-Bishop-Dauxois [4,5,10], the
Barbi-Cocco-Peyrard [4,5,13,15], the Cocco-Monasson
[4,5,26], the Yakushevich [8,11], and the composite Yakush-
evich models [29,31,32]—better describes its features.

Second, we would like to mention that recent work [59]
stressed the possible relevance of nonlinear stacking
interaction—whose physical relevance was already pointed
out by Peyrard and co-workers [4,5,10] (see also [26])—in
the generation of traveling solitary waves with compact sup-
port; see also [60,61] in this respect. A different mechanism,
based on a nonsmooth behavior of the on-site potential in
elastic chains, was considered in separate work [62,63] (al-
beit not yet applied to DNA modeling). This might be rel-
evant in the present context, as waves built by this mecha-
nism would automatically have a limiting behavior
corresponding to trivial equilibria (albeit carrying a non-
trivial topological charge). It is thus natural to wonder if the
BCP model, with modifications either in the stacking poten-
tial or in the pairing one, can carry twist defects with strictly
compact support also within the physical range of param-
eters. If this was the case, one would like to investigate if an
experiment such as the one proposed by Zdravkovi¢ and Sa-
tari¢ [28] can discriminate between predictions by such mod-
els and those by fully smooth models; see above. This lies
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well outside the limits of the present work, and we hope to
be able to analyze this question in a later contribution.
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APPENDIX: COMPARISON WITH DOUBLE-TWIST
MODELS

As mentioned above, the BCP model [13—15] was the first
to consider in precise mathematical terms a description of the
DNA double chain associating with each nucleotide two de-
grees of freedom (a rectilinear and an angular one). A rel-
evant extension of this model was provided by Cocco and
Monasson [26], who considered the same topology—i.e., a
phase manifold (R, X S') for each nucleotide—but a differ-
ent geometry: in their model, the length of backbone units
linking different sugars on DNA chains is fixed, but the dis-
tance between planes of subsequent base pairs can vary as a
consequence of the backbone movements in space.

A different kind of model, still associating with each
nucleotide two degrees of freedom, but in this case both
angular (albeit one of them constrained to a finite region)
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was recently introduced in [29]. As in this case each nucle-
otide can change its state by exciting two rotation angles, we
will refer to this class of models as double twist models.
(Note that as one of the angle is restricted—to take into
account steric hindrances related to the actual spatial confor-
mation of the DNA molecule [1,2]—the phase manifold is in
this case I X S! for each nucleotide, where [ is a finite inter-
val.)

These models can be seen as an extension of the classical
Yakushevich model [8,11,12] rather than of the Peyrard-
Bishop one; it is thus not a surprise that they display a dif-
ferent behavior, especially concerning solitary wave solu-
tions. In particular, it has been shown [29-32] that these
support solitons that are deformations of standard sine-
Gordon solitons [5,64] and in particular have speed near to
that of the latter.

We recall in this respect that for the physical range of
parameters the Y model admits soliton solutions (carrying an
integer twist defect) with limiting solutions corresponding to
trivial equilibria [5,7,8]. It should also be recalled that the Y
model has a weak point in that it predicts an unphysical
speed of transverse phonons with physical values of the pa-
rameters (or, seen from a different perspective, requires un-
physical values of the parameters in order to fit the physical
value of this speed) [65]; this is not the case with the double
twist models [29-32].
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