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Recent experiments report that the long-looked-for thermotropic biaxial nematic phase has been finally
detected in some thermotropic liquid crystalline systems. Inspired by these experimental observations, we
concentrate on some elementary theoretical issues concerned with the classical sixth-order Landau–de Gennes
free energy expansion in terms of the symmetric and traceless tensor order parameter Q��. In particular, we
fully explore the stability of the biaxial nematic phase giving analytical solutions for all distinct classes of the
phase diagrams that theory allows. This includes diagrams with triple, critical, and tricritical points and with
multiple �reentrant� biaxial and uniaxial phase transitions. A brief comparison with predictions of existing
molecular theories is also given.
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I. INTRODUCTION

The biaxial nematic phase, predicted theoretically by Fre-
iser �1,2� over 35 years ago, is one of the perennially chal-
lenging problems of experimental soft-matter physics. Al-
though discovery of this phase was made by Saupe and co-
workers in a fine-tuned lyotropic liquid crystal system in
1980 �3�, only in the past three years—and following several
earlier attempts that proved unsuccessful in this regard �for a
comprehensive review, see, e.g., �4,5��—has strong experi-
mental evidence become available that this phase can also be
made stable in thermotropic liquid crystalline materials
�6–9�. This discovery raises the emerging theoretical prob-
lem of what mechanism is responsible for the stability of
thermotropic biaxial nematics, especially for bent-core sys-
tems �6,7� and for tetrapodelike molecules �8,10�, where this
phase was shown to be stable.

There are two nematic phases of distinct symmetries. The
ubiquitous uniaxial nematic phase has the D�h point group
symmetry �11–14�, which results in the definition of a single
mesoscopic direction, known as the director. The director is
a unit vector, denoted n̂, with the directions n̂ and −n̂ being
equivalent. One consequence of this is that there are two
different principal components of a second-rank tensorial
property, such as, e.g., the magnetic susceptibility. Generally,
two uniaxial nematic phases are distinguished: prolate �NU+�
and oblate �NU−�. The prolate uniaxial states usually occur
for rodlike molecules while disklike molecules yield the ob-
late uniaxial states. As opposed to the uniaxial nematic
phase, the biaxial nematic phase, denoted NB, is character-
ized by three orthonormal directors, the Goldstone modes,

which we denote �l̂ ,m̂ , n̂= l̂�m̂�. Due to overall lack of po-

larity of the known biaxial nematics, one finds that the l̂ and

−l̂, m̂ and −m̂, and n̂ and −n̂ directions are equivalent. That

is, from the symmetry point of view the biaxial nematic
phase is a structure of D2h point group symmetry and the
corresponding second-rank tensorial property has three dif-
ferent principal components.

Generally, first- and second-order phase transitions are
observed experimentally between the isotropic phase and dif-
ferent nematic phases and between the nematic phases. The
phase sequence of

I ↔ �NU−� ↔ �NB� ↔ �NU+� ↔ �NB� ↔ �NU−� ↔ �I�

is found with decreasing temperature �3,8,15,16�, where the
parentheses indicate that some of the phases may not appear.
In particular, the interesting reentrant uniaxial and isotropic
phases are observed in lyotropic systems �see, e.g., �16� and
references therein�.

On the theoretical level, possible effects of molecular
structure on nematic order have been studied. More specifi-
cally, molecular field theories of single-component systems
consisting of biaxial molecules and interacting via hard-core
or continuous potentials were shown to produce a stable bi-
axial phase �1,17–25�. A similar scenario emerges from com-
puter simulation studies �23–29� and from Landau treatments
�12,30–32�.

Of the theories cited, the simplest description of the
uniaxial and biaxial nematic phases is one offered by a sixth-
order Landau–de Gennes free energy expansion in terms of
the alignment tensor Q�� �6�. The theory is generally em-
ployed to interpret experimental data as well as to classify
possible topologies of the phase diagrams. Therefore it
seems quite important to know, if possible, the analytical
form of all distinct classes of the phase diagrams and limita-
tions on them that can be derived from this simple theory.
This task has only been partly realized so far �12,13,30–34�.
None of the papers cited shows, however, a full spectrum of
predictions of this theory. The closest to the ideal is the paper
by Prostakov �32�, but even there not all cases and analytical
solutions have been given.
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Owing to the current excitement in the field of thermotro-
pic biaxial nematics, we think it is important to reexamine
this fundamental theory. We give analytical formulas for all
distinct classes of the phase diagrams the model can predict
and for their stability range. We hope this will be of some
help for experimentalists in analyzing experimental data on
biaxial nematics and will bring partial order to existing mo-
lecular predictions on this phase.

This paper is organized as follows. After a brief discus-
sion of the Landau–de Gennes theory in Sec. II, we give
analytical solutions for the phase diagrams in Sec. III. Sec-
tion IV is devoted to a short discussion.

II. LANDAU–DE GENNES FREE ENERGY

The best way to account for a symmetry change that takes
place across a phase transition is by referring to an order
parameter. For a phenomenological description of nematics,
the relevant order parameters are tensors built out of the
directors. Among these the leading order parameter is the
second-rank symmetric and traceless alignment tensor Q. In
a standard parametrization, Q can be written as

Q =
q0

�6
�3n̂ � n̂ − 1� +

q2

�2
�l̂ � l̂ − m̂ � m̂� , �1�

where the directors �l̂ ,m̂ , n̂� are identified with eigenvectors
of Q corresponding to the eigenvalues �1=−

q0
�6

+
q2
�2

, �2=−
q0
�6

−
q2
�2

, and �3=−�1−�2=�2
3q0, respectively. The parametriza-

tion �1� for Q is chosen such that the formula for F is kept
concise. The isotropic state is stabilized when all three eigen-
values of Q are equal and hence vanish, which yields Q
�0. For the D�h-symmetric uniaxial states two out of the
three eigenvalues of Q are equal, i.e., q0�0, q2=0 or q0
�0, q2=�3q0 or q0�0, q2=−�3q0. In the general case, Q
has three different real eigenvalues that account for the
D2h-symmetric biaxial state. A microscopic interpretation of
the alignment tensor for simple molecular models is found in
�18,35� and can easily be extended to more general cases.

The Landau–de Gennes phenomenological theory of non-
chiral systems is implicitly based on the hypothesis that equi-
librium properties of the system can be found from a non-
equilibrium free energy, constructed as an O�3�-symmetric
expansion in powers of Q. The only restriction on the expan-
sion is that it must be stable against an unlimited growth of
the order parameter. There are two types of O�3� invariants
that can be constructed out of Q, which involve traces and
determinants of powers of Q. But determinants can be ex-
pressed in terms of traces, and all traces of Qn with n�4 are
polynomials of Tr�Q2� and Tr�Q3� �12�. In addition, Tr�Q2�
and Tr�Q3� are bounded by the inequality

1

6
Tr�Q2�3 − Tr�Q3�2

=
1

3
��1 − �2�2�2�1 + �2�2��1 + 2�2�2 � 0, �2�

which is satisfied as an equality for the uniaxial phases.

A coordinate-independent form of the inequality �2� is
obtained by a very convenient reparametrization in Tr�Q2�
and Tr�Q3� that uses just two scalar parameters q and 0
���1. They are introduced through the relations

Tr�Q2� = q2 = q0
2 + q2

2 = I2, �3�

�6Tr�Q3� = q3�1 − �� = q0
3 − 3q0q2

2 = I3, �4�

where 	q	 is the norm of Q and � serves as a normalized
measure of phase biaxiality. The D2h-symmetric biaxial state
is characterized by �	0 with maximal biaxiality being ac-
complished for �=1. For the uniaxial phases �=0. In addi-
tion, for uniaxial Q tensors a transformation û→ ��Q��

−c
���u�u��, where c is an arbitrary constant making the
bilinear form �¯� positive definite, transforms a unit sphere
	û	=1 into an axially symmetric, prolate �q	0� or oblate
�q�0� closed surface. Hence the sign of q, being consistent
with the sign of Tr�Q3�, allows one to distinguish between
NU+ �q	0� and NU− �q�0� phases. Actually, q and � can
serve as invariant measures of order in uniaxial �q�0, �
=0� and biaxial �q�0, ��0� nematics. For the isotropic
phase q=0. The allowed variation of Tr�Q2� and Tr�Q3� and
consequently also of q and �, along with the identification of
different nematic phases, is shown in Fig. 1.

In the absence of electric and magnetic fields the bulk free
energy for the isotropic and the nematic phases has the form
�39�

F�Q� = F�Tr�Q2�,Tr�Q3�� = F�I2,I3� = F�q,�� . �5�

The minimal coupling Landau expansion of F that accounts
for the biaxial nematic phase has to be taken up to sixth
order with respect to Q. This theory, also known as the
Landau–de Gennes free energy of biaxial nematics, reads
�see, e.g., �12��

F = F0 +
1

2
aI2 −

1

3
bI3 +

1

4
cI2

2 +
1

5
dI2I3 +

1

6
eI2

3 +
1

6
�f − e�I3

2

+ ¯ = F0 + Fu�q� + Fb�q�� +
1

6
�q6�2

¯ �6�

with

Tr�Q2������
6
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FIG. 1. Allowed variation of the independent degrees of free-
dom Tr�Q2� and Tr�Q3� �shaded area� and identification of the cor-
responding phases. Shown are also lines of constant biaxiality pa-
rameter �.
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Fu =
1

2
aq2 −

1

3
bq3 +

1

4
cq4 +

1

5
dq5 +

1

6
fq6, �7�

Fb =
1

3
bq3 −

1

5
dq5 −

1

3
�q6. �8�

In Eq. �6� the F0 part represents the unimportant free energy
of the reference isotropic phase; Fu is the free energy of the
uniaxial phases ��=0�, and the remaining two terms repre-
sent biaxial contributions. The coefficients of the expansion
generally depend on temperature �inverse density� and other
thermodynamic �control� parameters. In what follows we
will keep an explicit dependence only on the temperature. In
particular, the coefficient a=a0�T−T��, with T being the ab-
solute temperature, is the only term in the expansion that is
assumed to be explicitly temperature �or density� dependent.
On general thermodynamic grounds �see, e.g., �35�� one can
show that a is usually the first of the coefficients in the
expansion �6� that changes sign as temperature is lowered.
The sign change is a result of competition between either
energy and entropy or different forms of entropy. The param-
eter T� accounts quantitatively for this competition and rep-
resents the spinodal temperature for the first-order phase
transition from the isotropic to the uniaxial nematic phase.
As for the remaining parameters, a0	0 by definition, and
stability of the expansion requires e	0 and f 	0. Except for
cases of multicritical behavior, the signs of b ,c ,d ,e , f are
assumed not to change in the vicinity of T�. Hence, these
coefficients, being weakly temperature dependent, are as-
sumed constant and taken at T=T�. Thus, for a given mol-
ecule, the parameters b , c , d , e, and f are treated as con-
stants and a as a linear function of temperature. In principle,
values for these constants could be derived from knowledge
of molecular interactions, but in keeping with the spirit of
Landau theories, we will consider them as completely phe-
nomenological and therefore to be found by experiment.
Analogous to the use of mixtures of 8CB
�4–n–octyl–4�–cyanobiphenyl� and 10CB
�4–n–decyl–4�–cyanobiphenyl� to tune parameters in study-
ing the nematic to smectic-A transition, one might probe the
parameter space experimentally by making appropriate mix-
tures.

The parametrization of F in terms of q and �, Eq. �6�,
leads to a simple determination of the absolute minima of F
and, hence, a construction of the corresponding phase dia-
grams. Clearly, the form of Q, Eq. �1�, implies that the I-NB
and the NU-NB phase transitions can be either first or second
order. In other words we may expect first-order, second-
order, and tricritical behavior at I-NB and NU-NB transitions,
depending on model parameters.

III. PHASE DIAGRAMS

Out of the five material parameters b ,c ,d ,e , f ��= f −e�,
introduced in Eq. �6�, two are redundant and can be set equal
to 0 or 
1. This is a direct consequence of the freedom to
choose a scale for the free energy and for Q. If not specified
otherwise, we choose e=1 and c=0, 
1, and investigate the
phase diagrams in the �a , b� plane as functions of d and f .

Additionally, we assume f 	0 to guarantee the stability of
the expansion �6� against unlimited growth of q and replace
f −e by � ��= f −e� f −1� whenever convenient. We also
make use of the free energy invariance with respect to the
transformation: �b ,d ,q�→ �−b ,−d ,−q�, which limits d to d
�0. The diagrams for d�0 are obtained as mirror images
with respect to the b=0 line of those for d	0, followed by a
subsequent change of NU
 into NU�.

Interestingly, the relatively simple expansion �6� generates
a rich spectrum of possibilities for phase diagrams. We show
that for d�0 all of them can be divided into ten distinct
classes, where four involve only uniaxial phases. The re-
maining cases, corresponding to d�0, are obtained from the
classes discussed by applying the aforementioned b=0 mir-
ror transformation.

A. Phase diagrams with uniaxial phases: qÅ0, �=0

We start by considering regions of stability of the uniaxial
nematic. The necessary conditions for this phase to become,
at least, locally stable read

�Fu

�q
= q�a − bq + cq2 + dq3 + fq4� = 0, �9�

�2Fu

�q2 = a − 2bq + 3cq2 + 4dq3 + 5fq4 	 0. �10�

The limit of local stability is attained when the inequality
�10� becomes an equality, which, together with �9�, describes
a saddle bifurcation in the model and represents spinodal
lines. These conditions are particularly simple to solve for a
and b in a parametric, q-dependent form. The nontrivial so-
lution is

a = cq2 + 2dq3 + 3fq4, �11�

b = 2cq + 3dq2 + 4fq3, �12�

which, together with the trivial one �a=0,q=0 �∀ b��, de-
fines the borders of the area in the �a ,b� plane, where the
solutions to the Eq. �9� are, at least, locally stable. Clearly, q
runs over all real numbers. The subsequent calculation of the
free energy at these local minima allows us to select the
global minimum within the family of uniaxial solutions.

A complete analysis of the model, including calculation of
the free energy, proceeds in a similar way. In particular, we
determine parametrically the transition line between the iso-
tropic and the uniaxial phases by solving the system of equa-
tions �Fu=0,�Fu /�q=0� for a�q� and b�q�. The solution
reads

a =
cq2

2
+

4dq3

5
+ fq4, �13�

b =
3cq

2
+

9dq2

5
+ 2fq3. �14�

Subsequent analysis of Eqs. �11� and �13� allows us to single
out four topologically distinct classes of the phase diagrams
with uniaxial and isotropic phases. The representatives of
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each class are shown in Figs. 2–5. The corresponding global
stability sectors in the �c ,d , f� parameter space are given in
Figs. 12–14 below.

We shall now characterize each of the ‘‘uniaxial’’ classes
of the diagrams.

1. Special class (a)

The first class is obtained for the special case d=0, Fig. 2.
We note that the unique constant value d=0 is unlikely to
occur for any given pure material so this phase diagram is
primarily of theoretical interest.

It contains a line of first-order I↔NU+ phase transitions
for b	0, a line of first-order I↔NU− phase transitions for
b�0, and a degenerate biaxial phase of q�0 and arbitrary

�, stable only along the b=0 line. We shall come back to the
degenerate case in the last section of this paper. The I↔NU


lines have a common tangent a=0. For c�0 the four lines
meet at an isolated, tetracritical point, also often referred to
as the Landau point. Its coordinates are �a ,b�= �0,0�. For c
�0 the Landau point becomes a quadruple point of coordi-
nates �a ,b�= � 3c2

16f ,0�, marked as ‘‘T’’ in Fig. 2. The whole
phase diagram is given analytically by

b2 =
��c2 + 16af�3 − c�c2 − 48af�

16f
, �15�

where a�
3c2

16f ��c� with � being the step function.

�1 0 1 2

a

�1

0

1

2

b
�a�

I

NU�

NU�

T

FIG. 2. Special phase diagram with a direct, first-order phase
transition from isotropic to uniaxial nematic phases, where gray
color refers to phase transitions involving the NU− phase. For b=0 a
phase transition between isotropic and highly degenerate phase of
q�0 but of arbitrary � takes place at the quadruple point �T�. For
c	0, T became a tetracritical point. Parameters taken are �c ,d , f�
= �−1,0 ,1�. Thin dashed lines, representing spinodals, are the solu-
tions of Eq. �11�; also the a=0 spinodal is shown.

�1 0 1 2

a

�1

0

1

2

b

�b�

I

NU�

NU�

T

FIG. 3. Generic phase diagram with a direct, NU+-NU− first-
order phase transition. Parameters taken are c=d= f =1. For detailed
definition of all symbols and lines used see caption to Fig. 2. The
triple point �T� is localized at �a ,b�= �0,0�.

�0.2 0 0.2

a

�0.2

0

0.2

b

�c�

INU�

NU�

NU�
T

critical
point

T

FIG. 4. Generic phase diagram with a direct, NU−-NU− first-
order phase transition terminating at a critical point. Parameters
taken are �c ,d , f�= �1,1.05,0.306�. Note that one of the spinodal
lines connected with the NU+ phase is separated from the transition
line I-NU+ by less than the thickness of the graph, and, hence, is
invisible. For detailed definition of all symbols and lines used, see
caption to Fig. 2.

�1 0 1 2

a

�1

0

1

2

b

�d�

I

NU�

NU�

T
critical
point

FIG. 5. Degenerate version of phase diagram shown in Fig. 4.
The NU−-NU− line �together with the critical point� belongs to the
NU−-NU+ line starting at a=0, both being straight lines. The dashed
straight line above the critical point is a continuation of the
NU−-NU− line and serves as a reference to the NU−-NU+ line. Param-
eters taken are �c ,d , f�= �1,1 ,6 /25�. For detailed definition of all
symbols and lines used, see caption to Fig. 2.
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Now we concentrate on more complex cases with d�0.
They are gathered in three classes of diagrams, denoted �b�–
�d�. Classes �b� and �c� are generic, but class �d� is special
because it requires a unique relationship between c, d, and f ,
which is not likely to happen for any given molecule.

2. Class (b)

Diagrams that belong to this class are similar to �a� except
for an additional first-order phase transition line between the
NU+ and NU− phases. A typical situation is shown in Fig. 3.

Also in this case the transition line can be given in an
analytical form as

a = u�2du�d + 2fu� + c�2d + 5fu��
�5c + 2u�4d + 5fu��

4�d + 5fu�2 ,

�16�

b = −
u�3cd + 2u�3d2 + 7fud + 5f2u2��

2�d + 5fu�
�17�

with the free energy

Fu = −
u2�3d + 5fu��5c + 2u�4d + 5fu��3

240�d + 5fu�3 . �18�

The parameter u must satisfy the inequalities

−
3d

5f
� u � −

d

5f
for 25cf � 6d2, �19�

−
d

5f
� u � 0 for 25cf � 6d2. �20�

Generally, this topology is observed for the cf
d2 parameter

taken from outside the interval � 6
25 , 9

25� �see the discussion
below leading to inequalities �24� and �25�� and is the most
typical for the uniaxial family of phase diagrams, Figs.
12–14 below. The appearance of the NU+−NU− line is a result
of competition between the third- and the fifth-order invari-
ants in the free energy expansion when the coefficients
weighting these terms are of opposite signs. For 25cf �9d2

the three phases I, NU+, and NU− meet at the triple point T, of
coordinates �a ,b�= �0,0� where u=0 and Fu=0. At T the
lines I-NU+ and I-NU− have a common tangent given by the
a=0 line. For 25cf �6d2 the triple point moves away from
the origin to a new location at

a =
3�6d2 − 25cf�2

10 000f3 , �21�

b =
9d�6d2 − 25cf�

500f2 , �22�

which is obtained by substituting u=− 3d
5f into Eqs. �16�.

3. Class (c)

This class of the phase diagrams is perhaps the most in-
teresting one among the uniaxial topologies. In addition to

the NU+-NU− transition line, shown in Fig. 3 and given by
�16� and �20�, it also displays a direct NU−-NU− first-order
phase transition line terminating at a critical point of the
liquid-vapor type.

Again, this behavior results from the aforementioned
competition between the third- and fifth-order terms in the
free energy expansion. An example of the NU−↔NU− line,
together with the lines I↔NU−, I↔NU+, and I↔NU+↔NU−,
is shown in Fig. 4. The lines terminate at the I-NU+-NU−
triple point of coordinates �a ,b�= �0,0� and at the I-NU−-NU−
triple point given by the formula �21�. The necessary condi-
tion for this class of the diagrams to appear is a requirement
that the spinodal has two cuspidal points for the oblate states
�q�0�. After inspecting the q dependence of the curve �11�
one easily finds that the �a ,b� coordinates of these points are
obtained by substituting

q
 =
− d 
 �d2 − 8

3cf

4f
�23�

into Eq. �11�. Additionally, the conditions 0�8cf �3d2∧c
	0 �in our rescaling c=1� must be met for the cuspidal
points with negative values of q to occur. Taken together,
these conditions guarantee that there exist two local minima
�usually one of them becomes the global one� and two local
maxima in the free energy branch for the oblate states �q
�0�. The local minima can finally convert into a stable
NU−-NU− line, Eq. �16�, if

6d2 � 25cf � 9d2 ∧ c 	 0, �24�

−
d

2f
−

�9d2 − 24cf

6f
� u � −

3d

5f
. �25�

Note that the conditions �24� and �25� are more restrictive
than the ones for the cuspidal points of the spinodal. The first
one, �24�, states that the I-NU−-NU− triple point disappears
�and hence also the NU−-NU− line� for b	0. Additionally, it
guarantees the appearance of the I-NU−-NU− triple point
�cusp� in the Fu�q�0�=0 branch of the free energy for b
�0. The second inequality, �25�, represents actually the
same restrictions, but expressed in terms of u. Finally, coor-
dinates of the critical point are obtained by substituting q−,
Eq. �23�, into Eq. �11�. This leads to

a =
4cf�3d2 − 2cf� − 3d4

96f3 −
d�3d2 − 8cf�3/2

96�3f3
, �26�

b =
9d3 − 36cfd + �3�3d2 − 8cf�3/2

72f2 . �27�

The sector of stability of the class �c� is shown in Fig. 14
below. It is restricted to the area given by 6d2 /25� f
�9d2 /25∧ f �1. The richest phase sequence obtained for
this class as temperature is lowered is I-NU+-NU−-NU−.

4. Special class (d)

A quite interesting and untypical situation is met when
cf /d2 approaches one of its two limiting values in �24�. For
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cf = 6
25d2, Fig. 14, the NU−-NU− transition line and a part of

the NU+-NU− transition line become reduced to a common
straight line

b = −
5f

2d
a, a � 
−

8d4

625f3 ,0� . �28�

That is, the NU−-NU− transition line becomes also a line of
triple points with the critical and triple point collapsing at
a=− 8d4

625f3 ! This case, illustrated in Fig. 5, makes us expect
that when higher orders in the expansion �6� are taken into
account the degeneracy of the NU−-NU−-NU+ line should be
removed and replaced by an �I�-NU−-NU−-NU+ bubble-shaped
diagram with up to three triple points. The parentheses indi-
cate that the branch I-NU− does not need to be present. At
cf = 9

25d2, which is the second of the two limits, the NU−-NU−
line becomes reduced to a single critical point located at
�a ,b�= � 2d4

625f3 ,− 7d3

125f2 �. The point belongs to the I-NU− transi-
tion line.

The phase diagrams described so far are stable against
formation of the biaxial phase given that �� f −1�0. If this
condition is satisfied we can always find a uniaxial state with
free energy lower than or equal to the free energy of any
biaxial state. Indeed, consider a biaxial phase of 0���1. A
sufficient condition for the equilibrium value �b of � in the
biaxial phase is then given by

� �F

��
�

�b

= Fb�q� +
1

3
�q6�b = 0, 0 � �b � 1, �29�

which, when solved for Fb�q� and substituted back into the
biaxial free energy formula, Eq. �6�, yields

Fbiax � F�q,�b� = F0 + Fu�q� −
1

6
�q6�b

2. �30�

Equation �30� clearly shows that only for �	0 �f 	1� is
there a chance to get a stable biaxial nematic phase. For �
�0 the uniaxial state is always more favorable. The same
conclusions are drawn for the biaxial state of �=1. By a
direct calculation of the free energy, we find for this case that
the biaxial state of the free energy F�q=qb ,�=1�, is always
less stable than one of the two uniaxial states �q= 
qb ,�
=0�, where qb is the value of q in the biaxial phase.

B. Phase diagrams with biaxial nematic phase:
qÅ0, 0���1

The discussion of the previous section shows that, gener-
ally, a stable biaxial nematic phase is found for �= f −e� f
−1	0. In this section we analyze this case more thoroughly.
We start by pointing out that the sign of the Fb�q� term in Eq.
�6� determines the relative stability of the biaxial order with
respect to all other phases involved. Generally, a uniaxial
phase becomes unstable against formation of the long-range
biaxial order if Fb�q��0, which implies that

b �
3

5
dq2 + �q3, q � 0. �31�

In addition, for Fb�q��− 1
3�q6, or, equivalently,

b �
3

5
dq2, q � 0, �32�

the phase biaxiality � attains its maximal value �b=1, Eq.
�29�. The equality sign in the condition �31� marks a bifur-
cation from the uniaxial to the biaxial phase. Together with
�9�, this can be solved for a and b to give the spinodal lines
in a parametric form:

�a,b� = 
− cq2 −
2d

5
q3 − q4,

3d

5
q2 + �q3� . �33�

A few general conclusions can be drawn from the formulas
�6� and �33� and inequality �31�. First of all, if Eq. �33� is
satisfied on a globally stable uniaxial nematic branch, the
transition NU-NB is second order. Satisfying relation �33� on
a locally stable uniaxial branch results in a first-order
NU�I�-NB phase transition. That is, the bifurcation scenario
allows for the possibility of a tricritical point on the NU-NB
line. The second-order I-NB transition is only admitted to
states of maximal biaxiality ��=1�.

For the biaxial branch of the free energy a more quantita-
tive analysis can be given. In particular, the biaxial free en-
ergy �30� can be expressed in an equivalent form as

Fbiax = −
b2

6�
+

1

2
�q2 +

1

4
�q4 +

q6

6
, �34�

where

� = a +
2bd

5�
, � = c −

6d2

25�
, and �2 � 4� . �35�

A convenient parametric form for the I-NB line now easily
follows from the equation Fbiax=0, supplemented with the
condition for qb: ��Fbiax /�q�q=qb

=0. The solution of practical
importance may be expressed as


a = −
2bd

5�
− �q2 − q4,b2 = −

1

2
q4�4q2 + 3���� . �36�

Additionally, a stability criterion of the biaxial solution is
given by the condition that the determinant of second deriva-
tives of the free energy is positive definite. This means that
the biaxial phase is locally stable if

�2F

�q2

�2F

��2 − 
 �2F

�q � �
�2

� 0 ⇒ 4� + ����2 − 4� − �� 	 0.

�37�

The limiting case of vanishing determinant gives two straight
lines in the �a ,b� plane, ��=0, �2=4��, which are further
spinodals of the model.

Detailed analysis of the relative stability of I, NU, and NB
phases shows that all uniaxial phase diagrams, Figs. 2–5,
have their biaxial counterparts. Generally, the biaxial phase
replaces, at least partly, the NU+-NU− transition line by the
two lines NU+↔NB and NU−↔NB. They can be given in a
parametric form as functions of the real parameter q1,

5
a = q1��6q2 − 10q1
2�d2 − 10�q1d + 25q2�q2 + c��� ,

�38�
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5
b = 6d2q2 − 25��q4 − q1
3�d + fq1� + c�q2 − q1

2�� , �39�

50q2� = 4d2 − 40�q1d − 50��


 �2�
2�2d2 + 40�q1d + 25�2� − c��� , �40�

with 
=2d+5�q1 and �= fq1
2+c. The parameter q1 runs over

the uniaxial branches, where q1	0 for NU+ and q1�0 for
NU−. By analyzing various cases we are able to single out six
additional classes of the diagrams, shown in Figs. 6–11, that
supplement the uniaxial family. Again, the phase diagrams
with the NB phase should be correlated with Figs. 12–14,
where sectors of absolute stability of a given class are shown
in the �c ,d , f� parameter space.

The discussion of the biaxial phase diagrams will proceed
in a similar way as for the uniaxial case, that is, we again
start with the case of d=0. In this limit we can distinguish
between the two different classes of the diagrams, all being
symmetric with respect to the b=0 line.

1. Special class (e)

The first class, shown in Fig. 6, is similar to �a�, Fig. 2.
The only difference is that the line separating NU+ and NU−
splits itself into NU+↔NB and NU−↔NB lines of second-
order phase transitions with the NB phase positioned in be-
tween. We find this class stable for c�0 and f 	1 ���
	0�. As previously, the uniaxial lines are given by �15�. For
the NU-NB lines the formulas �38� now simplify to

b2 =
1

2
�3ac − c3 + �c2 − 4a�c2 − a���2, �41�

where a�0. The four phases I, NU+, NB, and NU− meet at the
Landau �tetracritical� point L= �a ,b�= �0,0�. Additionally,

for c=0 the NU+-NB and NU−-NB lines have a common tan-
gent at L, which is given by the a=0 line. For c=1 this
tangent is the b=0 line.

2. Special class (f)

The diagrams of this class, Fig. 7, are also derived from
�a� and observed when c�0. Again the uniaxial lines are

�1 0 1 2

a

�1

0

1

b
�e�

I

NU�

NU�

NB

L

�e�

I

NU�

NU�

NB

L

FIG. 6. Special phase diagram for d=0 and c�0. Biaxial phase
is sandwiched between two uniaxial phases. A direct phase transi-
tion from the isotropic phase to the biaxial nematic is possible
through the Landau point. Solid lines represent phase transitions of
first order, dashed lines second order. Two cases are shown: c=0,
d=0, f =1.5 �thin lines� and c=1, d=0, f =1.5 �thick lines�. As
previously, gray lines represent phase transitions involving NU−

phase.

0.2 0.4

a

�1

0

1

2

b �f�

I

NU�

NU�

NB

TCP

TCP T

TTCP

TCP

FIG. 7. Special phase diagram for d=0 and c�0. Biaxial phase
becomes stable between two uniaxial phases. A direct phase transi-
tion from isotropic phase to biaxial nematic is possible along the
line between the two triple points T that replace the Landau point.
Solid lines represent phase transitions of first order, dashed lines
second order. TCP stands for tricritical point. Two cases with f
�2 are shown: c=−1, d=0, f =1.7 �thin lines� and c=1, d=0, f
=3.1 �thick lines�. For the meaning of lines, see caption to Fig. 6.

0 1

a

�1

0

1

2

b

�f’�

I

NU�

NU�

NB

T

T

TCP

FIG. 8. Generic phase diagram for d�0 and c�0. Biaxial
phase becomes stable between two uniaxial phases. A direct phase
transition from the isotropic phase to a biaxial nematic is possible
along the line between two triple points �T� that replace the Landau
point. Only one tricritical point �TCP�, along NU+-NB, is possible
for this class of diagrams. Parameters taken are c=−1, d=1, f
=3. For the meaning of lines, see caption to Fig. 6.
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given by Eq. �15� and the NU-NB lines by Eq. �41�. The latter
represent thermodynamically stable, second-order transition
lines if

a �
3c2�2f − 1�
4�f + 1�2 for 1 � f � 2, �42�

a �
c2

4
for f 	 2. �43�

A new feature shown is a splitting of the Landau point into
two triple points where I, NU, and NB meet. The position of
the triple points is

�a,b2� = 
3c2�2f − 1�
4�f + 1�2 ,−

27c3�f − 1�2

8�f + 1�3 � . �44�

Both triple points are connected by a direct I↔NB line of
first-order phase transitions, for which we have

�2 �1 0 1

a

0

1

2

b
�g�

I

NU�

NU�

NB

T

T

TCP

FIG. 9. Generic phase diagram for d�0 and c�0. Biaxial
phase becomes stable between two uniaxial phases. A direct phase
transition from isotropic phase to a biaxial nematic is not possible.
Two triple points �T� are connected by the NU+-NU− line of first-
order phase transitions. One tricritical point �TCP� appears on the
NU+-NB line. Maximum along NU−-NB allows for two biaxial nem-
atic phases on the temperature scale, separated by the NU− phase.
The low-temperature biaxial phase is referred to as reentrant NB.
Parameters taken are c=0, d=2, f =1.6. For the meaning of lines
see caption to Fig. 6.

�2 0 2

a

�1

0

1

2

b

�h�

I

NU�

NU�

NB

L

FIG. 10. Generic phase diagram for d�0 and c=1. This class of
the diagrams is a deformed version of �e�. A major difference be-
tween �e� and �h� is a maximum along NU−-NB that allows for
reentrant NB. Parameters taken are c=1, d=1, f =1.5. For the
meaning of lines and of reentrant NB, see captions to Figs. 6 and 9,
respectively.

�0.2 0 0.2
a

�0.1

0

0.1

0.3

0.5

b

�i�

I

NU�

NU�

NB

T

T

TCP

critical
point

FIG. 11. Generic phase diagram for d�0 and c=1. It combines
properties of �g� and �c�. Parameters taken are c=1, d=3, f
=2.75.

1 2

d

1

2

3

4

f

�f’�

�b��a�

�f�

�f�TCP� c��1

1 2

d

1

2

3

4

f

FIG. 12. Sectors, in �c=−1,d , f� parameter space, of absolute
stability of phase diagrams labeled from �a� through �i�. �f-TCP�
stands for �f� class with two tricritical points, Fig. 7. Deformed
versions of �f� and �f-TCP� diagrams are realized within sectors
marked white.
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b2 =
1

4
��c�c2 − 6a� − �c2 − 4a�3/2� . �45�

Depending on f , the phase transition between NU and NB can
be either first or second order. For 1� f �2 only second-
order NU-NB transitions are realized. For f 	2 the second-
order transition line �41� is separated from the triple point by
the NU-NB line of first-order phase transitions ���0�. Both
NU-NB lines meet at the tricritical point given by

�a,b2� = 
 c2

4
,−

1

8
c3�2� . �46�

3. Class (f�)

Now we turn to a more complex case, namely, that of d
�0. It is quite convenient to discuss new features of the
diagrams that emerge in this case by referring directly to the
parameter space division as shown in Figs. 12–14. New
classes will be parametrized by c= 
1,0. It turns out that,
for c=−1, the effect of nonzero d is merely to distort the
phase diagrams classified as �f�. The distorted diagrams that
preserve all features of �f� are separated from the class �f��,
Fig. 8, by curves

d2 =
25c��� − 1�2�

6�� − 2�� − 2�
, 0 � � � 4 + 2�3. �47�

The curves are pictured in dark gray in Fig. 12. The area to
the right, shown as light gray, represents the class �f��. The
class differs from the deformed versions of �f-TCP�-like dia-
grams with two tricritical points �TCPs� and of �f� without
tricritical points by the presence of one tricritical point on the
NU+-NB transition line.

4. Class (g)

The case c�0, Fig. 13, results in a new class of the dia-
grams shown in Fig. 9. One of the differences between �g�
and �f��, exemplified in Fig. 9, is the absence of the direct
transition between I and NB. The NB phase branches off the
NU+-NU− first-order transition line at the NU+-NB-NU− triple
point. Interestingly, we observe a maximum along the
second-order NB-NU− transition line at the location given by

�a,b� = 
16d4�� − 1�
625�4 ,

4d3

125�2� . �48�

This maximum indicates that we can observe a reentrant bi-
axial nematic phase as temperature is lowered. Consequently,
it leads to a very rich sequence of phase transitions, e.g.,
I-NU+-NB-NU−-NB. The reentrant phase and hence also the
maximum disappear for f �2. In the interval 2� f �1
+2 /�3, shown as sector �g�� in Fig. 13, the remaining fea-
tures of the diagram Fig. 9 are left unchanged.

5. Class (h)

For c=1 we identify two new classes of diagrams, de-
noted �h� and �i�. The class �h�, Fig. 10, is derived from �e�,
the difference again being the presence of a maximum along
the second-order NB-NU− transition line at �a ,b� given by Eq.
�48�. That is we again can observe a sequence of phases with
a reentrant biaxial nematic. Sector �h�, Fig. 14, is separated
from the neighboring sectors �g� and �h+c� by the following
lines: the dashed one given by f =1+6d2 /25 �0�d�5 /�3�
and the continuous one given by f =9d2 /25 �d	5 /�3�.

6. Class (i)

This class of diagrams is essentially a combination of �g�
and �c� and yields the richest sequences of phases and of
corresponding phase transitions. They include a reentrant bi-
axial nematic, NU+-NB, tricritical point and a line of phase
transitions between identical uniaxial phases terminating at a

1 2

d

1

2

3

20
f

�f’�

�g��g’�

�b��a�

5�2
�����
3

1�2������
3

�e�

�f�TCP� c�0

1 2

d

1

2

3

20
f

FIG. 13. Sectors, in �c=0,d , f� parameter space, of absolute
stability of phase diagrams labeled from �a� through �i�. �g�� stands
for �g� class without reentrant NB �i.e., without a maximum along
NU−-NB�.

1 2 3 4
d

1

2

3

4

f

�h�

�b��d�
�b�

�a�

�h�c�

�g�

�i�

�g�

�e�

�c�

c�1

1 2 3 4
d

1

2

3

4

f

FIG. 14. Sectors, in �c=1,d , f� parameter space, of absolute
stability of phase diagrams labeled from �a� through �i�. �h+c�
stands for diagrams that combine properties of �h� and �c� �see Figs.
4 and 10�.
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critical point. An exemplary phase diagram is given in Fig.
11. The sector of stability for this class, denoted �i� in Fig.
14, is limited by the following curves: f =1+6d2 /25 �d
	5 /�3�, f =9d2 /25 �5 /3�d�5 /�3�, f =1 �5 /3�d
�5 /�6�, and f =6d2 /25 �d	5 /�6�. In a small sector, named
�h+c�, the tricritical point and the NU+-NU− line disappear,
the resulting phase diagrams being a combination of �h� and
�c�.

C. Degenerate phase diagrams with b=0

The special case b=0 is of theoretical interest even
though it is not likely to be observed experimentally. It re-
quires a few comments for not all phase sequences with b
=0 can be identified from the diagrams that we have given so
far. There are also subtle symmetry issues due to the pres-
ence of accidental degeneracy.

The identification of phases and of phase sequences for
b=0 is straightforward for d�0, in which case they follow
directly from the diagrams representing classes �b�, �c�, �d�,
�f��, �g�, and �h�. Only the case d=0, represented by the
diagrams �a�, �e�, and �f�, requires separate comments. By
inspecting the free energy expansion �6� for b=d=0 we find
immediately that only three states can be realized at equilib-
rium: �i� a degenerate uniaxial state of �=0 for f �1; �ii� a
degenerate biaxial-uniaxial state of arbitrary � for f =1, and
�iii� a biaxial state of maximal biaxiality ��=1� for f 	0.

The uniaxial state, denoted �i�, has the same free energy
for oblate and prolate states, which means that the system
creates oblate and prolate domains with the same energy
cost. Due to this accidental degeneracy the symmetry group
of the state can be classified as D�h�Z2. Consequently, the
transition from the isotropic phase to the degenerate uniaxial
phase can be either second order �c=1� or first order �c=
−1� with a tricritical point at c=0. The transition temperature
and the order parameter for temperatures below the transition
are given by �a=0 for c=0,1; a= 3

16f for c=−1� and q2

=
�c2−4af−c

2f , respectively.
The states �ii� and �iii� have mathematically the same

form of the free energy as that for the degenerate uniaxial
case. All formulas are reproduced from the case �i� if we
substitute f =1 there. Hence, again, the phase transition from
the isotropic phase to the corresponding ordered phase can
be either first or second order with an intermediate tricritical
point. The difference between the cases �ii� and �iii� is in
their symmetry. For �ii�, the only restriction on Q is
Tr�Q2�=const. The accidental degeneracy of the equilibrium
solutions for Q is the rotational invariance in five-
dimensional space of components Q��. The relevant symme-
try group is thus O�5�, which seizes up the difference be-
tween uniaxial and biaxial domains. We call it the degenerate
biaxial-uniaxial phase. In the case �iii� the tensor Q is given
by Eq. �1� with, e.g., q0=0, that is, by one of the three de-
generate solutions satisfying the maximal biaxiality condi-
tion Tr�Q3�=0.

IV. DISCUSSION

The Landau–de Gennes theory of biaxial nematics pre-
sented in this paper has been elaborated to show the outcome

for the mathematical structure of the expansion that is based
solely on the order parameter Q. The phenomenological ap-
proach is particularly simple, and the knowledge of the full
spectrum of predictions of one of the most commonly cited
theories is desirable, particularly because of current interest
in seeking for stable thermotropic biaxial nematic phases.
Analytical formulas are given for almost all transition lines,
characteristic points of the lines, and the stability range of a
given class of the phase diagrams. Except for the purely
uniaxial group of the diagrams for f �1, the biaxial phase is
naturally stabilized between prolate and oblate uniaxial nem-
atics. Phase transitions to the biaxial phase can be either first
or second order with the possibility of a tricritical point. Due
to a competition between cubic and fifth-order invariants, the
direct NU−-NU− and NU+-NU− transitions and the reentrant
biaxial nematic phase are also possible. The Landau
I-NU+-NB-NU− �tetracritical� point can split into two triple
points positioned either on the I-NB transition line or on the
NU+-NU− line.

The possibility of an NU−-NU− transition is somewhat un-
usual and deserves some discussion. In terms of development
of the order parameter, the free energy develops three rela-
tive minima corresponding to no order �the isotropic state�,
weak order, and strong order. This is a logical consequence
of the fact that our free energy expansion goes out to sixth
order in Q, which was necessary in order to stabilize a biax-
ial nematic phase. Therefore it is an unavoidable possibility
that an NU−-NU− transition may occur �40�, in analogy to
liquid-liquid phase transitions or isostructural phase transi-
tions between crystalline states of the same structure. The
question then arises of what would happen if the expansion
were carried out to eighth or higher orders. Would one expect
an NU−-NU−-NU− sequence? While mathematically and ther-
modynamically it would be possible, the resulting conditions
for the parameters would most probably appear very hard to
meet. Indeed, the general success of Landau theories sug-
gests that the truncation of the expansion at the minimum
level necessary for stability of the phases is valid. Therefore
it is expected that the values of the higher-order phenomeno-
logical parameters, when confronted with actual experi-
ments, will be such as to not introduce additional transitions.

One may wonder why the biaxial nematic phase is so
difficult to find experimentally. The practical difficulty could
be that for real systems the parameter f , responsible for the
stabilization of the biaxial nematic phase, is much too small
compared to other coefficients of the Landau expansion, so
we effectively stay in the uniaxial sector of the diagrams �f
�1�. An alternative explanation could be that smectic and
crystalline phases, not taken into account, may interfere be-
fore the right thermodynamic parameters are reached.
Clearly, the best choice of the Landau coefficients to get NB
absolutely stable would be that where NB bifurcates directly
from the isotropic phase. At the microscopic level it would
then be of interest to construct molecular models showing
generic types of the diagrams identified phenomenologically.
For this goal it is necessary to establish a bridge between
molecular and phenomenological approaches; in particular
one needs a molecular interpretation of the alignment tensor
and, at least, of the �a ,b� parameters entering the expansion.
The problem is relatively simple in the mean-field approxi-
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mation and the solution has already been given �18,35� for
the class of so-called L=2 models with D2h-symmetric hard
molecules and soft interactions �18,21�. Applying formulas
�14�–�20� from �35� to the mean-field versions of the models
�17,20–22,36,37�, we recover diagrams represented by �e�
�17,22,36�, �f� �20,21�, and �g� �37�. Evidence for degenerate
states �b=d=0� has been given by De Matteis and Virga
�38�.
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