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We report on an interesting formulation of a phase-field model which incorporates a description of individual
phases and particles with preserved volume evolving in a system of multiple phases such that the interfacial
energy decreases. In our model, an antiforcing free energy density is defined to fulfill constraints on selected
volume fractions by counterbalancing phase changes. Phases are defined as regions with energy bearing
boundaries that may differ in their physical states, i.e., the regions may be distinguished in structure �crystal
transformations�, in composition �alloys, mixtures of fluids�, or in the orientation of the crystal lattice �grains�.
The method allows one to simulate the formation of equilibrium crystal shapes and of the migration of inert
particles and phases in microstructures. We show two- and three-dimensional simulations of bubble ensembles
and foam textures and demonstrate the excellent agreement of crystal morphology configurations with analyti-
cal results.
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I. INTRODUCTION

Inhomogeneous systems characterized by multiple re-
gions of different physical states, which will be called phases
in the following, frequently involve energy contributions lo-
cated along the phase interfaces. In this paper, we present a
phase-field model that allows us to study the evolution of
multiphase systems in which the interfacial energy decreases
and some of the phases obey volume constraints, i.e., on the
time scale of the interface motion, volume changes of those
phases due to more or less complex physical processes can
be neglected.

Applications of models for systems with a conserved vol-
ume for all constituents �cells, bubbles, or grains� range from
foam structures and bubble clusters �1–3� to crystal growth
with surface attachment limited kinetics �4� and morphologic
stability of double crystals �5�. On the other hand, there are
various systems driven by the reduction of surface energy, in
which only part of the phases involved are subject to a con-
stant volume. These can be found in the coarsening of poly-
crystals in contact with inert particles or second-phase grains
�6,7� or in equilibrium with a melt phase �8�. The presented
model is based on a previously developed phase-field model
�9� for multiphase systems. For a set of order parameters,
each one representing a particular phase, the evolution is
given as a gradient flow dynamics of the interfacial energy.
For the latter one the Ginzburg-Landau approach has been
used to state it in terms of the order parameters. To take
volume constraints of some of the phases into account, the
idea is to add a so-called “redistribution energy” to the sys-
tem energy, whence additional forcing terms appear in the
evolution equation. The new energy contribution involves
time dependent coefficients that have to �and indeed can; we
will state explicit formulas� be adaptively chosen in such a
way that the volume constraints are fulfilled during the evo-
lution. In some sense, these new forces act in the opposite
direction of the interfacial forces arising from the Ginzburg-
Landau energy and hence may be considered as antiforces.

The Ginzburg-Landau energy consists of a gradient poten-
tial and a multiwell potential. Multiwell potentials of ob-
stacle type revealed to be advantageous with respect to the
calibration of surface energy densities �10,11� but lead to
variational inequalities. They therefore require a special nu-
merical treatment as, e.g., in �12�. In �13�, a model with
volume preserving Allen-Cahn type phase equations coupled
with Navier-Stokes type linear momentum equations is pre-
sented and applications to drop formation processes are
shown.

The paper is organized as follows: In Sec. II A, we sub-
sume all relevant details of the multiphase-field model in-
cluding the different contributions to the free energy of the
system. An extension of the model including the volume
conservation of arbitrary phase-field parameters is given in
Sec. II B. Starting from the formulation of the evolution
equations, a nonlocal term for the bulk free energy is de-
rived, which reconstitutes the volume changes during the
evolution. In Sec. III, we present an effective numerical
method to solve the evolution equations for the phase fields.
As concrete examples for the application of the new model,
simulations of bubble ensembles, double crystals, and foam
structures are carried out and the results discussed in Sec. IV.

II. PHASE-FIELD MODEL FOR MULTIPHASE
SYSTEMS

A. Basic multiphase-field model

We consider a general system of N phases, i.e., of N re-
gions with energy bearing boundaries that may differ in their
physical states. The different physical states can represent
either different structures, compositions, or orientations of
the crystal lattice. To model multiphase systems, we intro-
duce a vector-valued continuous order parameter ��x� , t�
= (�1�x� , t� , . . . ,�N�x� , t�) where each component ���x� , t� of
the vector describes the state of phase � and depends on a
three-dimensional spatial coordinate x� and on the time t. The
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formulation of the phase-field model for multiple order pa-
rameters is based on a Ginzburg-Landau energy density
functional of the form

F��� = �
�

��a��,��� +
1

�
w��� + f����dx , �1�

where � is the domain of consideration and � defines the
thickness of the diffuse interface in which the order param-

eters ���x� , t� smoothly vary between two different physical
states ���x� , t�=1 and ���x� , t�=0.

As described in �10�, the dynamical equations for the evo-
lution of �� �the phase-field equations� are derived from the
Ginzburg-Landau functional F��� in Eq. �1� as variational
derivatives with respect to the order parameters ��. In full
generality they read as follows where we additionally intro-
duce by rhs� a short notation:

���t�� = ��� · a,���
��,��� − a,��

��,���� −
1

�
w,��

���

¬rhs�

− f ,��
��� − �, � = 1, . . . ,N .

�2�

The parameter � is a constant isotropic kinetic coefficient
that may depend, in a general anisotropic system, on the
orientation of the interface. The notation a,���

�� ,���,
a,��

�� ,���, w,��
, and f ,��

��� is used to indicate the partial
derivatives � /������ and � /��� of the functions a�� ,���,
w���, and f���, respectively. The time derivative
����x� , t� /�t is indicated by �t�� and � · � � denotes the diver-
gence of a vector field a,���

�� ,���. The Lagrange multi-
plier � is defined such that the constraint ��=1

N ���x� , t�=1 is
ensured, i.e.,

� =
1

N
�
�=1

N

rhs�. �3�

In the following, we give examples for functional expres-
sions of the three types of energy density contributions. The
gradient energy density a�� ,��� can be formulated in terms
of a generalized gradient vector q��=�����−����� by

a��,��� = �
���

	��	�� � �� − �� � ��	2. �4�

For simplicity, we assume the surface energy density 	�� of
the � /� boundary to be isotropic. The gradient vector q�� is
oriented in normal direction to the interface. Anisotropy of
the surface energy can be introduced into the model by let-
ting 	�� depend on q�� �see �10� for examples of functional
expressions�. The potential part w��� of the energy density
functional is assumed to be a multiobstacle type potential
with higher order terms,

w��� =
16


2 �
���

	������ + �
�����

	���������. �5�

The higher order terms 
�����	 avoid the effect of ghost
phase occurences at interfaces between two physical states.
Further, we define free energy densities for the bulk states by

f��� = �
�=1

N

m�h���� , �6�

where m� ,�=1, . . . ,N are constant factors related to the
forces driving the phase transition. The function h���� inter-
polates the energy densities between the bulk phases. For the
simulations in Sec. IV, we chose a third order polynomial of
the form h����=��

2�3−2���.

B. Model extensions to include phases
with preserved volume fractions

In the following, the phase-field formalism is extended to
situations in which a subset of order parameters has pre-
served volume. Without loss of generality, we assume the
first A�N physical states �� , �=1, . . . ,A to be subject of
volume constraints. The states �� , �=A+1, . . . ,N remain to
be nonconserved order parameters and hence may undergo
phase transitions or grain coarsening processes.

To establish volume conservation of individual ordering
states �� , �=1, . . . ,A, we propose an additional bulk energy
density contribution g��� to the functional F��� in Eq. �1� of
the form

g��� = �
�=1

A


�h���� = �
�=1

N


�h���� , �7�

where the 
�ª0 for �=A+1, . . . ,N have only been intro-
duced in order to abbreviate the following formulas. The idea
is to choose the 
�=
��t�, �=1, . . . ,A, in such a way that
volume changes of the corresponding states �� due to the
other terms in Eq. �2� are counterbalanced. The energy den-
sity functional including the function g��� for volume pres-
ervation reads

F��� = �
�

��a��,��� +
1

�
w��� + f��� + g����dx . �8�
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With the additional energy contribution �7� the extended set
of phase-field equations with preserved volumes can be re-
written as

���t�� = rhs� − � − g,��
��� − �, � = 1, . . . ,N , �9�

where the term

� = −
1

N
�
�=1

N


�h,��
���� �10�

is an additional contribution to the Lagrange multiplier to
ensure the constraint ��=1

N ���x� , t�=1.
The precise choice of the 
��t�, �=1, . . . ,A will be dis-

cussed below. Let us first give an interpretation of

g,��
��� = 
�h,��

���� . �11�

Since the derivative of the interpolation function h,��
���� is

nonzero only in the diffuse interface region, the effect of the
correction term Eq. �11� is a redistribution of material along
the boundaries of phase �. To guarantee the summation con-
straint of the set of phase fields �, the new redistribution
force is accompanied by an additional Lagrange multiplier
term � given by Eq. �10�.

The terms rhs� in Eq. �9� can be considered as forces
acting on the boundary of the phase for which the order
parameter �� stands �see �9,12��. They consist of surface
forces �contributions from the potentials a�� ,��� and w����
and bulk forces �contribution from f����. In the pure gradient
flow dynamics �2� these forces may change the volume oc-
cupied by the phase �. The term �11� will avoid a volume
change and may therefore be interpreted as an antiforce.
Since 
�=
��t� is a function of time only this antiforce is
equally distributed along the phase boundary of phase �. In
particular, it is independent of the neighboring phases. The
phase boundary can move but only in such a way that a local
movement into the domain occupied by phase �, which leads
to a loss of its total volume, is counterbalanced by a local
phase boundary movement out of the domain somewhere
else. This can also be seen as some kind of redistribution,
whence Eq. �11� may also be called redistribution term and
Eq. �7� redistribution energy.

Let us now discuss the choice of the coefficients 
�, �
=1, . . . ,A. For an ordering state being a conserved quantity,
the integral of the respected order parameter �� over the
entire volume � is a constant V�. This constant is identical to
the initial volume V�

0 of the corresponding state

�
�

���x�,t�dx� = V��t� = const�=�
�

��
0�x�dx� = V�

0� .

�12�

The time derivative of the constant volume V� vanishes. Us-
ing Eqs. �9�, �3�, and �10�

0 = �
�

�t���x�,t�dx�

=
1

��
�

�
�rhs��x�,t� −

1

N
�
�=1

N

rhs��x�,t� − 
��t�

�h,��
����x�,t�� +

1

N
�
�=1

N


��t�h,��
����x�,t���dx� . �13�

Introducing the abbreviations

R��t� ª �
�

rhs��x�,t�dx� and H��t� ª �
�

h,��
����x�,t��dx� ,

�14�

we obtain the set of conditions

0 = R��t� −
1

N
�
�=1

N

R��t� − H��t�
��t�

+
1

N
�
�=1

N

H��t�
��t� for � = 1, . . . ,A �15�

to determine the 
�, �=1, . . . ,A. Recall that 
�=0 for �
=A+1, . . . ,N.

Subtracting Eq. �15� for some ��A from Eq. �15� for

another index ���, ��A gives H�
�=H�
�+ R̃�− R̃�

where R̃�ªR�− 1
N��=1

N R�. Inserting this identity for H�
�

into the last term of Eq. �15� we infer that


��t� =
1

H��t��R̃��t� +
1

N − A
�
�=1

A

R̃��t��
for � = 1, . . . ,A in the case A � N . �16�

In the other case A=N one of the constraints is redundant.
Indeed, if the volumes of N−1 phases are preserved then,
clearly, also the volume of the remaining phase is preserved.
Hence also the 
�, �=1, . . . ,N are not uniquely determined.
But instead of proceeding as in the case A=N−1 we prefer
the following computationally somewhat cheaper choice �of
which we can see directly from Eq. �15� that it does the job�:


��t� ª
R��t�
H��t�

for � = 1, . . . ,N in the case A = N .

�17�

III. NUMERICAL SOLVING ALGORITHM

A finite difference method on a uniform rectangular mesh
with an explicit time marching scheme is used to numerically
solve the set of phase-field equations �Eq. �9��. We denote
the time iteration by n with n=0, . . . ,Nt and the space coor-
dinates by i , j ,k with i=0, . . . ,Nx, j=0, . . . ,Ny, and k
=0, . . . ,Nz.

The numerical solving algorithm consists of two steps:
The first part contains a time evolution step of the basic
phase-field model �Eq. �2�� resulting in an intermediate state
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of the order parameters ��. The second step updates the
intermediate state, so that the volume fractions of the respec-
tive phases are preserved and the final time update of the

order parameter is obtained. We use the wide tilde ��
˜ nota-

tion to indicate an intermediate state of the order parameter
�� after a time step of the basic phase-field equations in Eq.
�2� is done and before the volume change is redistributed by
the execution of the suitable antiforcing term in Eq. �7�.

The discrete time evolution of Eq. �2� to update the inter-

mediate order parameter ��
˜̃ reads

����˜

i,j,k
n+1 = ����i,j,k

n +
�t

��
��rhs��i,j,k

n − �i,j,k
n � , �18�

where �t is an appropriate time step ensuring the stability of
the explicit method. For the spatial derivatives in �rhs��i,j,k

n ,
we apply forward and backward differences for the diver-
gence of the flux �l ·a,���

�� ,�r�� and centered differences
for the term a,��

�� ,�c��. By substituting a sum over all grid
points for the integral formulation in Eq. �12�, the initial
volume V�

0 and the volume V�
n of the physical state �� at

time n in the discrete computational domain � can be written
as

V�
0 = ��x�3�

i,j,k
����i,j,k

0 and V�
n = ��x�3�

i,j,k
����i,j,k

n .

�19�

We introduce the short notation

�R��i,j,k
n+1 = �rhs��i,j,k

n − �i,j,k
n �20�

in order to rewrite the local change of the physical state �� at
a grid point �i , j ,k� from time n to n+1,

�����˜

i,j,k
n+1 − ����i,j,k

n � =
�t

��
��R��i,j,k

n+1� . �21�

Volume preservation is achieved numerically by computing
the antiforce g,��

��� in Eq. �11� and the corresponding
Lagrange multiplier � in Eq. �10� in a discrete form and as a

function of the intermediate states ��
˜,

g,��
��̃�i,j,k

n+1 = 
�
n+1h,��

�����˜

i,j,k
n+1� �22�

and

�i,j,k
n+1 = −

1

N
�
�=1

N


�
n+1h,��

�����˜

i,j,k
n+1� .

Combining Eqs. �14� and �21� gives

R�
n+1 = ��x�3�

i,j,k
�R��i,j,k

n+1 =
����x�3

�t
�
i,j,k

�����˜

i,j,k
n+1 − ����i,j,k

n �

�23�

H�
n+1 = ��x�3�

i,j,k
h,��

�����˜

i,j,k
n+1� .

By inserting these relations into Eq. �16�, the values of the
counterbalance force 
�

n+1 can be computed. The time update

of the order parameter ����i,j,k
n+1 at time n+1 ensuring volume

preservation of the respective physical state is finalized by
adding the redistribution force and the associated Lagrange
multiplier in Eq. �22� with appropriate parameters �t

��
�
n+1 to

the intermediate state ����˜

i,j,k
n+1, i.e.,

����i,j,k
n+1 = ����˜

i,j,k
n+1 −

�t

��

�

n+1h,��
�����˜

i,j,k
n+1� −

�t

��
�i,j,k

n+1 .

�24�

Since the initial volume of the physical state is preserved,
i.e., V�

n =V�
0 , we can exploit the simplification of Eq. �23�,

�
i,j,k

�����˜

i,j,k
n+1 − ����i,j,k

n � = �
i,j,k

����˜

i,j,k
n+1 − �

i,j,k
����i,j,k

n

= �
i,j,k

����˜

i,j,k
n+1 − V�

0 , �25�

in our numerical scheme.

IV. SIMULATION APPLICATIONS

A. Bubble clusters

To demonstrate the capability of the volume preserving
multiphase-field method, we first study the evolution of
bubble clusters driven by surface energy minimization. Since
thereby no changes in volume of the individual bubbles are
possible, an incompressibility of the bubble interior is as-
sumed. This is a valid approximation, when the volume work
to change the individual bubble size is high compared to the
energy stored in its surface �14�. Also, since the curvature
driven process is slow compared to the reorganization of
fluid particles in the interior or exterior of the bubbles, we
can neglect any fluid dynamics.

In the simulations, four phase-field parameters were used
for the bubbles and one for the surrounding matrix phase,
each of them bearing a volume constraint. As in the other
simulations presented in the following, the bubbles were first
filled into the regular simulation grid with a sharp transition
from 0 to 1. Subsequently a simple numerical diffusion al-
gorithm was applied to produce smooth profiles over a dis-
tance of the interface parameter � �all simulation parameters
are given in the figure captions�. In the first simulation run, a
quadruple bubble ensemble was chosen as the initial con-
figuration in the form of four adjacent cubes, as shown in
Fig. 1�a�. The quadruple line in the center is energetically
instable and splits up into two triple lines, as expected. Using
the same volumes as before, a different initial setting with
four adjacent spheroidal bubbles, aligned in a zig-zag man-
ner along the space diagonal of the box, was used �Fig. 1�b��.
Both initial settings lead to the same standard quadruple
bubble, which is given in Fig. 1�c� as a result of the second
run. In the images, the ��=0.5 isosurfaces of the four bubble
phase fields are visualized.

The corresponding structural dynamics is reflected in the
surface energy computed from the phase-field data according
to Eq. �1�, illustrated in Fig. 2. The plateau in the energy
evolution of the second run �dotted curve� is caused by the
preliminary formation of a triple bubble cluster with a fourth
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outer neighbor bubble on the top right, as depicted in Fig.
1�d�.

B. Double crystals

As a further application of the phase-field model with
volume constraints, we study the stability of growth mor-
phologies of faceted cubic double crystals embbeded in a
third phase in two dimensions. Various volume ratios R
=VB /VA of two crystals A and B are studied in the simula-
tions, always assuming a conserved volume for each of them.
This situation is an example of shape evolution under surface
diffusion, in the limit when surface diffusion is fast com-
pared to the diffusional mass transport between both crystals
by diffusion through the surrounding medium.

We choose anisotropies leading to square Wulff shapes for
each of the two crystals �in two dimensions� and name the
ratio between the internal crystalline boundary energy and
the outer boundary energy by �. Under this assumption, it
has been proven in �5� that three different types of double
crystals exist depending on the value of � and R: A rectan-
gular bicrystal with straight internal boundary �type I�, a big-
ger square crystal in contact with a smaller rectangular one
�type II�, and a square-shaped bicrystal with the small one
sitting at one edge �type III�. The geometric dimensions of
the equilibrium shape of each double crystal type can be
computed by minimizing its surface energy, which is a func-
tion of the dimension parameters x and y for types I and II
�see insets of Fig. 3�. The coexistence lines shown by solid
lines in Fig. 3 respectively separate two regions of identical
equilibrium morphology �I/II, I/III, and II/III�.

The morphology diagram was scanned systematically by
performing a series of phase-field simulations for different
volume ratios R and different energy ratios �. As the initial
configuration, always a starting morphology of type II was
chosen with nonequilibrium crystal dimensions. Thereby, an
identical larger crystal B was set �aspect ratio 1.75� whereas
the volume of crystal A was changed to give the desired
volume ratio R. To realize a facetted habit, a crystalline sur-
face energy density of the form

a��,��� = �
���

	��� max
1�k�4

���� � �� − �� � ��� · �� k��2

�26�

was used, where �k , k=1, . . . ,4 denote four unit edge vec-
tors of a square Wulff form. The edge vectors were chosen in
diagonal direction of the coordinate system leading to the
development of horizontal and vertical phase boundaries in
the simulation box. In Fig. 3, the resulting morphology types
for discrete values of R and � are indicated by symbols. Each
simulation was continued long enough to ensure stationarity
�
7�105 time steps�. The morphology boundaries I/II and
I/III are resolved well by the simulations, whereas the tran-
sition from type II to type III is shifted to larger volume
ratios R. We attribute this behavior to the existence of an
energy barrier �possibly related to the diffuse interface for-
mulation�, since extended simulation studies in the coexist-

0.0 0.5 1.0

3.5

3.6

3.7

3.8

3.9

4.0

time [arb. units]

su
rf

ac
e

en
er

gy
[a

rb
.u

ni
ts

] initial condition:

adjacent cubes

spheres along box diagonal

FIG. 2. Plot of the surface energy evolution for the quadruple
bubble simulations with two different starting configurations. The
step appearing in the curve for the four spherical bubble results
from the preliminiary configuration given in Fig. 1�d�.

FIG. 1. �a�, �b� Two different initial configurations of four bubbles in a matrix phase, both leading to the final standard quadruple bubble
�c�. An intermediate state of the cluster starting from condition �b� is given in �d�. For the simulations, a box of 75�75�75 grid points was
used with a regular grid spacing of �x=�y=�z=0.02, an interface width �=0.1, and time constant of �t=3�10−5. The parameter of the
higher order terms in Eq. �5� was set 	���=6.0 and the surface energies of the bubble boundaries are 	��=1.0.
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ence region have shown a dependence of the final structure
type on the initial condition. A detailed discussion of the best
choice of initial simulation configuration and an extension to
a three-dimensional �3D� morphology selection of double
crystals is in preparation �15�.

C. Grain growth with second-phase contributions

Grain growth, a surface curvature driven process leading
to a gradual coarsening of a polycrystalline structure, in-
volves the dissolution and growth of individual grains by
grain boundary movement. Many alloys contain inert pre-
cipitates of a second phase which may decisively reduce the
coarsening process by pinning of the grain boundaries, an
effect known as Zener pinning and first described in �16�. As
a simplified example of this problem, we investigated grain
coarsening in the presence of second phase particles, repre-
sented by phase-field variables with constrained volumes. To
create an initial situation, a random tesellation of the 2D

computational domain into 250 cells was carried out.
Thereby, Voronoi partitioning was applied, an algorithm
comparably used in the construction of the Wigner-Seitz cell
in solid-state physics. The result is shown in Fig. 4�a�, where
the quantity �������� is plotted to indicate the diffuse in-
terfaces. Volume conservation was applied to 13% of the
grains, marked in gray in Figs. 4�a� and 4�b�. In Fig. 4�b�, a
snapshot of the grain boundaries after 16 000 time steps is
displayed when the coarsening of the structure is evident.
The second-phase grains tend to form linear clusters and
adapt their shape according to minimize curvature �to model
the influence of a predominant particle shape, a surface en-
ergy anisotropy as given in Eq. �26� can be used for the
boundaries between normal and inert phase grains�.

If, on the other hand, the volume of all phase fields is
preserved, the system behaves like an incompressible poly-
hedral foam. The result is given in Fig. 4�c�. As can be seen
from the comparison with the initial situation �Fig. 4�a��,

FIG. 3. Morphology diagram
of the double crystal system with
coexistence lines �solid� between
different crystal types �insets�.
The final morphologies found in
the phase-field simulations are in-
dicated as symbols referring to the
different types. The computational
parameters were 200�200 grid
points, �t=2.0�10−5, 	��=1.0
for the outer boundary of both
crystals, and �� �0.4,1� for the
double crystal interface.

(a) (b) (c)

FIG. 4. �a� Initial configuration of a polycrystal produced by a Voronoi tesselation of the domain. The simulation results after 16 000 time
steps for �b� a structure with 13% of the grains with preserved volumes �marked in gray� is compared with a foamlike structure in �c�, where
cell volumes are preserved. The computational parameters were 400�400 grid points, �x=�y=�z=1.0, �t=0.8, �=3.0, 	��=0.25 for all
grain boundaries and 	���=3.0.
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only minor rearragements of the bubbles take place, which
are accompanied by a collective movement of their sur-
roundings.

V. CONCLUSION

In conclusion, we have introduced a different phase-field
model that allows one to treat pattern formations and micro-
structure evolutions in multiphase systems in which a subset
of phases obeys volume constraints. Bubble clusters develop

into an equilibrium configuration of minimal surface energy
and the computational analysis of double crystal structures is
consistent with theoretical predictions. The application to
foam structures demonstrates the ability of the method to
consider grain growth in the presence of phases with pre-
served volume fractions. It is expected that the presented
phase-field model opens a broad range of new applications
such as, i.e., the study of inert particles in phase transforma-
tion processes, the inclusion of partial melts or bubbles in
textures, and the role of nucleation sides.
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