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Liquid-to-hexatic phase transition in a quasi-two-dimensional colloid system
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We report an analysis of the thickness dependence of the liquid-to-hexatic phase transition in a quasi-two-
dimensional hard-sphere colloid system as the confining wall separation changes from 1 to 1.6 hard-sphere
diameters. In our theoretical evaluation, we study the bifurcation of solutions to the integral equation for the
pair correlation function. Our study predicts that at small wall separation the liquid-to-hexatic phase transition
is continuous and that it occurs at lower density than the liquid-to-crystal phase transition density, in agreement
with the predictions for a strictly two-dimensional system obtained from the Kosterlitz-Thouless-Halperin-
Nelson-Young theory. At larger wall separation (larger than about 1.4 hard-sphere diameters), the liquid-to-
hexatic phase transition density is predicted to occur at higher density than the liquid-to-crystal phase

transition.
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I. INTRODUCTION

It is known that thermal fluctuations destroy the long-
range positional order of a two-dimensional (2D) system.
However, the system can still be highly ordered locally and
form a 2D solid with quasi-long-range positional order and
long-range orientation order. One of the consequences of the
loss of the long-range positional order in the 2D solid is that
the character of the freezing transition is fundamentally dif-
ferent from that in three dimensions. The theory developed
by Kosterlitz, Thouless, Halperin, Nelson, and Young
(KTHNY) [1-5] suggests that the 2D melting transition is a
two-stage process, via an intermediate hexatic phase with
quasi-long-range orientation order and short-range positional
order. In the most widely accepted version of the theory both
of these transitions are continuous. Verification of the
KTHNY theory predictions has been difficult, as all experi-
mental realizations are at best quasi-two-dimensional (Q2D)
and the fluctuations inherent to a 2D system require the use
of a very large number of particles in a computer simulation.
Nevertheless, experimental studies of a variety of systems
[6,7] have established the most important of the KTHNY
predictions, the existence of a hexatic phase, while there re-
main some uncertainties concerning the order of the solid-to-
hexatic and hexatic-to-liquid phase transitions and the details
of the density dependences of the various lattice defect con-
centrations as a function of system density. Unlike the 3D
melting transition, the character of the 2D transition displays
a dependence on the particle-particle interaction. The best
available evidence indicates that for a very long-ranged
particle-particle potential, e.g., between magnetic dipoles, all
of the KTHNY predictions are valid [6], whereas for a very
short-range particle-particle interaction, e.g., between hard
discs, the order of the liquid-to-hexatic transition is uncer-
tain. The best available computer simulation of the 2D hard
disc system, by Mak [8], indicates that this transition is ei-
ther continuous (as predicted by KTHNY theory) or weakly
first order, and that the density domain in which the hexatic
phase is stable is very small. When the particle-particle
interaction is more complex, e.g., a combined hard-core re-
pulsion and weak very short-range attraction, the liquid-to-
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hexatic and hexatic-to-solid transitions can be first order [9].

There is another fascinating characteristic of a Q2D sys-
tem, namely, the lattice to which it freezes changes symme-
try as the thickness to which the system is confined is
changed. Experimental studies of colloid dispersions con-
fined between two glass plates [ 10-12] show that on increas-
ing the confining wall separation the following sequence of
crystalline structures is observed:

1A —20 —2A —-30 — ... .

The symbol A denotes a layer with hexagonal lattice sym-
metry and B a layer with square lattice symmetry, and the
integers in front of these symbols refer to the number of
layers of particles between the confining walls. Computer
simulations, by Schmidt and Lowen [13], generate a phase
diagram that replicates these observations. These simulations
do not address the question of whether, as a function of wall
separation, a hexatic phase intervenes between the solid and
liquid phases.

In this paper we present a theoretical analysis of the de-
pendence on wall separation and density of the liquid-to-
hexatic phase transition in a Q2D hard sphere colloid system,
based on the bifurcation of solutions of the second equation
of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy. We find that a continuous liquid-to-hexatic phase
transition barely preempts a first-order liquid to solid transi-
tion for confining wall separations from 1 particle diameter
to about 1.4 particle diameters; for larger wall separation a
first-order liquid-to-solid transition occurs before the liquid-
to-hexatic transition. The domain of stability of the hexatic
phase in the 2D limiting case is in good agreement with the
simulation data reported by Mak.

II. THEORETICAL BACKGROUND

As noted in the Introduction, our analysis of the depen-
dence on wall separation and density of the liquid-to-hexatic
phase transition in a Q2D hard sphere colloid system is
based on the bifurcation of solutions of the second equation
of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy. To implement that approach we use the leading
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terms of an exact representation of the triplet correlation
function (see below). At this point, it is appropriate to set
down a few words about these components of our analysis.
All modern theories of freezing start from an exact equa-
tion for the singlet density distribution, p(1), as a function of
position in space. This equation, derived independently by
Arinshtein and by Stillinger and Buff [14], has the form

p() < 1 .
===~ | Sei(l,....k+ DIT p(detfi}, (2.1)

< k=1 k! i=2
where Sy, (1,...,k+1) is the sum of all irreducible Mayer

diagrams of order k+1, z is the fugacity of the system, and
d{i} denotes integration over the coordinates of particle i.
The right-hand side of Eq. (2.1) is the generating functional
for the set of n-particle direct correlation functions. In 1947
Mayer published a remarkable paper entitled “Integral equa-
tions between distribution functions of molecules” [15]. In
this paper he reports a number of exact relationships between
distribution functions at different fugacities, say z, and zg,
and an interpretation of the solutions of the integral equa-
tions under the conditions of phase equilibrium. Among the
many relations derived in that paper is

pP_s P
z_zm'

m=0 "4

m

gup, TAmP 1 £d{m},
Jj=1

f” = eXp[— l/l”/kBT] - 1 . (22)

In Eq. (2.2) g,,(p,T,{m}) are the m-particle correlation func-
tions and u;; is the pair interaction. Equation (2.2) is a variant
of Eq. (2.1). Mayer showed that Eq. (2.2) and its generaliza-
tion to nonfluid systems possess unique solutions in the one-
phase regions supported by the system, and that the equa-
tions have solutions for all values of z except those, z,, at
which phase changes occur. The equations do not describe
the two-phase region since specification of the fugacity of a
system does not specify the amounts of the two phases in
equilibrium. The unique values of z, for which phase transi-
tions occur are obtained from the eigenvalues of an equation
involving a kernel that is related to the correlation function.
In general, the distribution functions of the system are dif-
ferent in different phases, and do not approach one another
as z,, or zg approaches z,, the fugacity at the phase transition;
when z,=z, or zz=z, the solutions to the integral equation
change character. The location of the phase transition can,
therefore, be determined by finding where the solution to the
nonlinear integral equation (2.1) for the distribution function,
or a surrogate derived from it, changes character, i.e., bifur-
cates with a discontinuity in the density. Of course, the ac-
curacy of this procedure is compromised by any approxima-
tions that reduce the accuracy of Eq. (2.1) or Eq. (2.2), but
the principle on which the procedure is based is equivalent to
the use of equality of chemical potentials and grand poten-
tials to locate the phase transition. Some examples of the use
of this procedure can be found in Refs. [16—18].

In the analysis that is presented below we find it necessary
to use the three-particle correlation function. Relatively little
is known of the detailed behavior of that function because
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the available experimental information is extremely limited
and its calculation is very difficult. We use a representation
of the triplet correlation function formalized by Meeron [19]
and Salpeter [20],

g3(r,rp,13) = g5(r,12) g5 (1, 13) g5 (1), 13)

XexP(E pn5n+3(rlsr2’r3)> s (23)

n=1

where the coefficients of the density expansion
S,43(ry,ry,13) are 3n-dimensional integrals. Specifically,
(250" 8,43(r ,rp,13)) is the sum of all simple connected
Mayer diagrams with three labeled unweighted root points,
one or more unlabeled density-weighted field points, three or
more f bonds [see Eq. (2.2) for the definition of f], no ar-
ticulation points, and no direct bonds connecting the root
points, such that the diagram does not become disconnected
if the root points are removed. Rice and co-workers have
shown that retention of the terms &(r,r,,r;) and
O5(r;,ry,13) gives a good, but not perfect, description of
g3(r;,r,,13), and an accurate description of both g,(r;,r,)
and the equation of state for several pair potential functions
[21-27]. Evaluations of the first two terms, 8;(r,,r,,r;) and
85(r;,r,,13), for a 2D hard-disk system have been reported
elsewhere.

We are now ready to examine freezing in a Q2D system.
We consider a one-component system of particles interacting
through pair forces. The second equation of the BBGKY
hierarchy [26], relating the pair correlation function to the
triplet correlation function in a homogeneous system, is

Vig2(ry.ry) == BV, u(r,1r))g,(r 1))

—ﬂpfVlu(rl,r3)g3(r1,r2,r3)dr3.
(2.4)

As applied to our system we take the diameter of the hard
disks to be o=1, and use the customary notation S
=(kgT)!. The hexatic phase, as suggested by the KTHNY
theory, can be described as homogeneous (liquid) but aniso-
tropic. Equation (2.4) supports solutions with isotropic pair
correlation function when the system density is less than the
transition density, py,,; for densities greater than pg,, but
less than the liquid density at the freezing point, p;, the pair
correlation function is anisotropic. In the hexatic phase, the
anisotropic pair correlation function is conveniently repre-
sented in the form (see Fig. 1 for definition of the angles)

gz(rl,r2)=g(r12)+fdk¢(k)cos(60)exp(ik-rlz).

(2.5)

Very little is known about the detailed form of ¢(k). From
earlier studies [28], we assume that ¢(k) is a function cen-
tered at k0=4r—:]T that decays to O at about ky/2 away from ki,

2
212

where ro=(\3 is the separation between nearest neigh-

bors. Then Jdke(k)cos(60)exp(ik-r,) is peaked around
r1,=ry and decays quickly to O as the separation r;, increases
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FIG. 1. Definition of angles used in this paper: 6 is the angle
between the reference axis (dashed line) and the vector k. 015, 63,
and 6,5 are the angles between the reference axis and 7y, 73, 723,
respectively. @ is the angle between 7|, and 73. ' is the angle
between k and 7y,.

or decreases. We have found that the results described later
in this paper are little changed (less than 10%) if it is as-
sumed that ¢(k) of the form cos[ m(k—k)/ky], or a Gaussian
function centered at k, with standard deviation ky/4, or a
cos® function centered at k,. Substitution of Egs. (2.3) and
(2.5) into Eq. (2.4) yields

Jdkg(k)cos(66)exp(ik - 1‘12)]
g(r1)

Vl ln|:1 +

=- Bpf dr3V1u(rl,r3)g(rl3)exp<2 Pn5n+3)

n=1
X f dk ¢(k)cos(660)exp(iK - ry3). (2.6)

where we have assumed that [dk¢p(k)cos(66)exp(ik-r,)=0
at ri,=1. For hard disks, Eq. (2.6) takes the form

f dk ¢(k)cos(66")exp(ikri, cos 6')

1 +cos(66,,)
g(ryn)

=constexp(pg(1)cos(6012)fdkkd)(k)cos(60’)

Xexp(— ikri, cos 0')f(k,0',r5)), (2.7)
where
Sk, 0 ,ryp) = f dr; exp(E pn5n+3(r123r]3’a)>
n=1
Xexp(ik - r3)0(1 —rp3),
@( ) 1, X = O, (2 8)
Y=o, x<o, '

and « is the angle between vectors ry, and r3. To find the
bifurcation point of Eq. (2.7) we first write ¢(k)=pyh(k),
where h(k) is a scaled function that has unit value at k=k,,.

Then Eq. (2.7) is of the form
1 + agy cos(66,,) = const exp[by, cos(66,,)], (2.9)

where a and b are parameters and ¢, serves as the order
parameter for the liquid-to-hexatic phase transition. If we
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FIG. 2. (Color online) Location of the bifurcation point. The
left-hand side of Eq. (2.12) is shown by the straight line, and the
right-hand side of the same equation is shown by the curved line.
As indicated by the graph, when a/2b, the slope of the straight line,
is larger than 1/2, these two curves only intersect at the origin. And
when a/2b<<1/2, there will be a nontrivial solution that corre-
sponds to the a hexatic phase.

integrate both sides of Eq. (2.9) over 6, from 0 to 2, we
find

2
24 = const f explb ey cos(66,,)]d6;,.  (2.10)

0

We now multiply both sides with cos(66,,) and then inte-
grate over 6, from 0 to 27 to find
2

Ta gy = const J cos(66,,)exp[begy cos(66,,)1d6,,.

0
(2.11)

Then, dividing Eq. (2.11) by Eq. (2.10), we find

2
f cos(66),)exp[b e, cos(66,,)]d6;,

a 0

5¢o=

2T
f exp[b ¢y cos(66,,)]d 6,
0

(2.12)

In Fig. 2, we display the dependences of the left-hand side
(straight line) and the right-hand side (curved line) of Eq.
(2.12) on x=bd,. It is clear that Eq. (2.12) has only one
trivial solution (x=0) when ;—b>%, and has multiple solu-
tions when 5, < % As the derivative of the right-hand side of
Eq. (2.12) with respect to x decreases as x increases, we
argue that the liquid-to-hexatic phase transition associated
with this bifurcation point is continuous, and at the transition

a 1

density pg,, the bifurcation condition 5, =7 is satisfied.

III. THE 2D HARD-DISK LIQUID-TO-HEXATIC
PHASE TRANSITION

In a two-dimensional hard-disk system, for rj,=r, we
have

a(p)=- waw kJ¢(kro)h(k)dk, (3.1)

0
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% 2m
b(p) = Pg(l)g(ro)f kh(k)dkf do' cos(66)
0 0

Xexp(— ikrycos 0')f(k, 6" ,ry), (3.2)

where J,(x) is the Bessel function of the first kind of order n.
The bifurcation condition is then just

—2m J ’ kJo(kro)h(k)dk
0

o 2
= pHexg(l)g(ro)f kh(k)dkf d@' cos(66')
0 0

Xexp(— ikrycos 0')f(k, 0 ,ry). (3.3)

where f(k, 6’ ,r) is the sum of terms in powers of the density
of which only the first few terms has been evaluated. To zero
order in p, Eq. (2.3) reads

g3(r,r),13) = g5(r,1,)g,(r,13)g,(r,,13), (3.4)

which is just the superposition approximation. And at this
order we have

2
f(k, 0’,7‘0) = J dl'3 eXp(lk . r13)®(1 - r13) = - 7]1(]()
(3.5)
Substitution of Eq. (3.5) into Eq. (3.3) gives
f kJo(kro)h(k)dk = — 2mpy,.g(1)g(ro)
0
XJ J (k)J(kro)h(k)dk. (3.6)
0

Information about the pair correlation function of a 2D hard-
disk liquid at different densities is available in the literature
[29,30].

As described before, h(k) is a function centered at k&, that
drops to O at about ky/2 distant from its center. With no
further information concerning its shape, we adopt the
simple ansatz

cos| m(k —ko)lkyl, if |k—ky| < ky/2,
h(k):{ [77'( o) 0] | 0| 0

. (3.7)
0, otherwise.

After substitution of Eq. (3.7) into Eq. (3.6) we find the
phase transition at

Prrec=0.723. (3.8)

Of course, the superposition approximation is known to
be inaccurate for densities close to the freezing point, and the
calculations by Rice and co-workers, using the approxima-
tion to g;(r;,r,,r3) that includes the terms 8,(r,,r,,r3) and
85(ry,r,,13), have been shown to yield much more accurate
pair correlation functions and equations of state. Accord-
ingly, we have also calculated the phase transition densities
using the values of &(r;,r,,r;3) and &(r;,r,,r;) obtained in
earlier studies, and a Pade approximation to the term
2 | p"8,43(r12, 113, ). The predicted 2D hard-disk liquid-to-
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TABLE 1. The density of the 2D liquid-to-hexatic transition pre-
dicted at different levels of approximation for the triplet correlation
function using the theory described in Sec. III.

PHex
Superposition approximation 0.723
First-order approximation 0.889
Second-order approximation 0.884
Pade approximation 0.876

hexatic phase transition densities corresponding to each of
these approximations are summarized in Table 1. All of the
predictions imply that the liquid-to-hexatic phase transition
just barely preempts the liquid-to-crystal phase transition at
about py,, =~ 0.88 (the multiorder parameter theory described
in [31] predicts a first-order liquid-to-crystal phase transition
with p;=0.902 and pg=0.907). The predicted liquid-to-
hexatic phase transition density agrees with the result ob-
tained from the computer simulation study by Mak.

IV. THICKNESS DEPENDENCE OF THE Q2D LIQUID-TO-
HEXATIC PHASE TRANSITION

We now examine the thickness dependence of the liquid-
to-hexatic transition for hard spheres confined between two
parallel walls with separation slightly larger than the particle
diameter o. We define the direction perpendicular to the
plates to be z, and use x and y for coordinates in any plane
parallel to the walls. In our previous study [32], we mapped
the Q2D system onto the more familiar 2D system via a
scaled-particle ansatz. Specifically, the pair correlation func-
tion at contact for the Q2D system with density p confined
by two parallel walls with separation H=(1+h)o, namely
g9%°(r;,=0.71,2,,p), was taken to be independent of z; and
25, with its value being that of the pair correlation function at
contact for the 2D system of particles with diameter o*,
g?P(rj,=0",po*?), where o*?>=c>(1 —hgz). This mapping,
when used with the bifurcation analysis of the thickness de-
pendence of the liquid-to-hexagonal solid phase boundary,
yields good agreement with the computer simulation data of
Schmidt and Lowen.

In this paper we use a slightly more sophisticated map-
ping of the Q2D system onto a 2D system. Consideration of
the geometry of a pair of particles in the Q2D system sug-
gests that the effective diameter for particles with different
displacements from the midplane should approach the true
particle diameter as r, increases. To implement this obser-
vation we again assume that g%?(r|,,z,,2,,p) is independent
of z; and z,. We define the effective pair separation by

hal2 hol2
2
f lef dzy(z1 = 22)
*2_ 2 —hal2 —hal2
R12 =rp -

(ha)?

oh’
=rp - 6

(4.1)

Then the effective diameter for particles with separation r,
will be
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°2h2> (4.2)

a*(rp) = 02(1 -— .

2
67,

With these assumptions, for a Q2D system Eq. (3.6) becomes

J ’ kJo(kRo)h(k)dk
0

=-2mpo*(1)g(a*(1),pa**(1))g(Ry, pa**(Ry))

X f i Ty (k)T (kRo)h(K)dk. (4.3)

0

In the 2D limit pg,,=~0.9 at the transition, so that R
=(é 2~1.1, and it is a fairly good approximation to set
0*(Ry) = c*(1). Then the liquid-to-hexatic phase transition
density, pg,.(h), satisfies the condition

pHex(O) _1_ h_z
pHex(h) 6 .

The adoption of Eq. (4.2) for the effective particle diam-
eter slightly changes the thickness dependence of the liquid-
to-crystal phase transition from that predicted using the defi-
nition o/ =1-(h?/6).

In the direct correlation function representation, the key
functions we need to evaluate to determine the bifurcation
point are

(4.4)

ap=pLdo f cy(r)dr, (4.5)

oG = psf ¢ (r)exp(—=iG - r)dr. (4.6)

The Ornstein-Zernike equation, in Fourier space, reads

1 - pc(k) = (4.7)

1+ ph(k)’
where ¢(r) is the direct correlation function and A(r)=g(r)
—1. We note that o) and o contain information about both
the short-range and long-range order of the system. While it
is difficult to evaluate the thickness dependence of oy, and
o, we argue that because the effective diameter o*(r) de-
cays very quickly to o as r increases, it is reasonable to make
the approximation that o¥”=0g’, 0§*’=03”. Thus we have
pr(h)=p.(0) and pg(h)=ps(0).

Figure 3 shows the results we have obtained for the thick-
ness dependence of the liquid-to-hexatic and liquid-to-crystal
phase transitions. As expected, the results for the liquid-to-
crystal transition differ slightly from our earlier results
(Table II), both because of use of a different effective diam-
eter mapping and the use of a seven-order parameter bifur-
cation analysis for the two-dimensional hard-disk freezing.
The new liquid-solid phase boundary remains in good agree-
ment with the simulation data of Schmidt and Lowen for
small . At larger / the deviation of the predicted phase
boundary from that observed is a consequence of the dete-
rioration of the accuracy of the effective diameter approxi-
mation.
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Thickness dependence
—p, (theory)

Av - - - - Pg (theory)
Py (theory)
4 P, (simulation)

v g (simulation)

FIG. 3. (Color online) The thickness dependence of the liquid-
to-crystal phase transition (black solid line and red dashed line) and
the liquid-to-hexatic phase transition (blue dotted line). Earlier
simulation results for the liquid-to-crystal phase transition, by
Schmidt and Lowen [13], are shown as points.

V. CONCLUSIONS

Our analysis of the 2D liquid-to-hexatic transition differs
considerably from that in the KTHNY theory. The latter is
based on the use of a phenomenological Hamiltonian that
represents the free energy of the system as that of an elastic
continuum with additional contributions from the lowest en-
ergy lattice imperfections, namely dislocations and disclina-
tions, and their interactions. Our approach, based on deter-
mining the density at which the pair correlation function of
the system changes analytic form, makes no direct reference
to either the elastic constants of the system or the concentra-
tions and interactions between particular lattice imperfec-
tions. It does borrow from the KTHNY theory the concept
that a hexatic phase might exist, as well as a characterization
of the structure function of that phase. In our view, the ap-

TABLE II. Thickness dependence of the liquid-to-crystal phase
transition. In this table, number density is defined as sz/ﬁ. PHL
and pyg are the liquid density and the crystal density at the transi-
tion as calculated in our earlier study [32]; py,; and pjg are the
densities obtained in this paper. The difference, as pointed out in the
text, has two sources: the use of a multiorder parameter theory and
a new effective diameter approximation.

h PHL PHs PhL Phis

0 0.931 0.934 0.902 0.907
0.1 0.848 0.851 0.820 0.825
0.2 0.781 0.784 0.752 0.756
0.3 0.727 0.729 0.694 0.698
0.4 0.683 0.685 0.644 0.648
0.5 0.648 0.650 0.601 0.605
0.6 0.619 0.621 0.564 0.567
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proach presented in this paper has the advantage, albeit with
the use of approximations, of simple extension to the treat-
ment of Q2D systems, thereby addressing in a straightfor-
ward fashion the competition between the liquid-to-hexatic
and liquid-to-solid transitions as a function of system thick-
ness.

A previous analysis of the 2D liquid-to-hexatic transition
based on determining the density at which the pair correla-
tion function of the system changes analytic form, reported
by Ryzhov and Tareyeva [33], differs from our analysis in
several respects. First, they employ a somewhat different
characterization of the hexatic phase. Whereas we describe
the hexatic phase via the form of ¢(k) in Eq. (2.5), they
employ a real space description that sets g,(ry,ry)=g,(|r;
—ro|)[1+£(r;/rp)], with g,(|r;—ry|) the isotropic (liquid)
part and f(r;/ry) the anisotropic (bond orientation) part of
the pair correlation function, and ry, rj are the locations of
near neighbor particles. Second, they exploit a microscopic
representation of the elastic constants of the medium to cal-
culate the solid-to-hexatic transition density, whereas we use
the location of the bifurcation point at which the character of
the pair distribution function changes from isotropic to an-
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isotropic to identify the density of the liquid-to-hexatic tran-
sition. Both analyses involve approximations to the distribu-
tion functions that are plausible but not systematic. And, for
the case under study, the 2D hard-disc system, Rhyzov and
Tareyeva conclude that the solid-to-liquid transition is first
order and that it preempts the liquid-to-hexatic transition;
indeed, they assert that the hard-disc hexatic phase is abso-
lutely unstable. In contrast, we predict that the liquid-to-
hexatic transition in this system is continuous and just pre-
empts the liquid-to-solid transition, in agreement with the
simulation data reported by Mak. We suggest that the con-
clusion reached by Rhyzov and Tareyeva is compromised by
the use of a hypernetted chain approximation for a key func-
tion, since the hypernetted chain approximation is known to
be less accurate than the Percus-Yevick approximation for
hard particle systems.
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