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We conduct a numerical study of the dynamical behavior of a system of three-dimensional ‘“crosses,”
particles that consist of three mutually perpendicular line segments of length o rigidly joined at their mid-
points. In an earlier study [W. van Ketel er al., Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model
has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present
paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime
where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is
determined by the structure of its local environment. The local density around mobile particles is significantly
less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to
be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale
develops even at moderate densities. This suggests that propensity and other mobility measures are an incom-

plete measure of the dynamical length scales in this system.
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I. INTRODUCTION

There exist a bewildering variety of theories for the glass
transition (see, e.g., Refs. [1-13]). Roughly speaking, one
can distinguish between two main classes. Theories belong-
ing to the first class are based on the assumption that static
structural correlations in the fluid are ultimately responsible
for the occurrence of structural arrest. Theories that belong to
the second class assume that purely kinetic factors control
the onset of glassy behavior. It is probably fruitless to search
for the “true” theory of the glass transition, because not all
experimental glasses appear to be equivalent [14,15]. How-
ever, it is important to disentangle, as much as possible, the
roles of structural correlations and of purely kinetic effects in
the absence of such correlations.

Recently, we reported simulations that provided evidence
that it is possible to observe glassy behavior in a model
system that has the structural properties of an ideal gas [16].
As the particles in an ideal gas have no static structural cor-
relations, dynamical arrest in this system is a purely kinetic
effect. The model system we explore consists of particles
made of three mutually perpendicular line segments of
length o, rigidly joined at their midpoints. These three-
dimensional “crosses” generalize the hard-needle model de-
veloped to study topological effects on rotational and trans-
lational diffusion [17,18], as has already been implicitly [3]
or explicitly [19] suggested. A lattice-based version of the
hard-needle system has already been studied by several
groups as a model for orientational glass formers [20-23].
Renner et al. [20] simulated line segments that can rotate
around fixed lattice points. The system enters a nonergodic
glassy phase at finite segment length, but since it has an ideal
static behavior the standard mode-coupling theory (MCT) of
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the glass transition is inapplicable. However, an extension of
MCT that includes torque-torque contributions does predict a
glass transition for these lattice rotators [22,23]. Closer to the
present model is the thin line segments with fixed but ran-
dom orientations, whose dynamics was studied by Szamel
and Schweizer [24,25]. Using a mean-field approximation,
they found that the transverse motion of the line segments
decreases severely with increasing segment length, because
of entanglement (tube constraints), while the motion along
the orientation of the lines is not affected by such constraint.

Since the crosses have zero volume and thus zero ex-
cluded volume, all static thermodynamic quantities are ex-
actly known. By random insertion one can trivially generate
a representative equilibrium configuration at any density. As
our model is an ideal gas, the onset of glassy behavior takes
place within a single thermodynamically stable phase. Hence
we need not worry that the dynamics in the glassy phase be
obscured by the slow nucleation of another phase. We can
also safely ignore the “Kauzmann paradox” [26], which
states that the glass transition takes place when the entropy
of the fluid phase threatens to drop below that of the crystal
phase. The present model has no crystal phase nor for that
matter any ordered phase. Nonetheless, its dynamics is
highly nontrivial.

The rest of the paper is organized as follows. In Sec. II we
describe the model and the simulation algorithm. Collision as
well as diffusion properties are presented in Sec. III A and
the self-intermediate scattering function in Sec. III B. We
investigate in details the effect of the local environment on
the mobility of particles and clustering of the “mobile” par-
ticles in Sec. III C, while Sec. III D concerns itself with the
density and wave-vector dependence of the four-point sus-
ceptibility. Finally, we conclude in Sec. IV with a summary
of the important findings.

II. SIMULATION TECHNIQUE

We simulate a three-dimensional system at constant num-
ber of particles N, volume V, and temperature 7 under New-
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tonian dynamics. The particles consist of three mutually per-
pendicular line segments of length o rigidly joined at their
midpoints. We choose the initial center of mass positions of
the particles at random in the cubic simulation box. The box
volume V=No>/p is set by the choice of N and the number
density p. The cross orientations are also randomly distrib-
uted. For numerical convenience we reject configurations
having two crosses with almost identical orientations to
within an angle of 10~* radians. Assuming truly random ori-
entations, the probability of having such closely aligned pairs
of crosses is less than one part in 10° for the system sizes
considered. Hence, the effect of this choice should be negli-
gible. We also neglect rotational motion, which correspond
to having crosses with an infinite moment of inertia, so they
preserve their initial orientation throughout the simulation.
This allows us to analytically compute the time before the
next collision, thus leads to large computational efficiency
gains. The initial velocities are randomly drawn from a
Maxwell-Boltzmann distribution and shifted to set the center
of mass velocity to zero. We choose o as the unit of length,
the thermal energy kg7 as the unit of energy, and the particle
mass m as the unit of mass. This results in time ¢ being
expressed in units of (kzT/ma?)~'2. Simple periodic bound-
ary conditions are used in all three directions. The dynamical
rules are simple: between collisions, the particles move bal-
listically, while when two line segments collide, the compo-
nent of relative velocity perpendicular to the plane of the two
line segments is reversed.

We use an event-driven algorithm [27], wherein future
collision events are stored in a binary tree structure and the
particle positions are updated asynchronously to the time of
the next collision event. Because of the extreme anisotropy
of the crosses, both spherical neighbor lists and cell struc-
tures are inefficient at high densities. Instead we consider
spherocylinders around each line segment and create neigh-
bor lists from the spherocylinder overlaps. “Events” in our
algorithm are not only collisions, but also neighbor list up-
dates. These occur whenever the center of mass of a particu-
lar cross has moved by more than half the spherocylinder
radius since that cross’s neighbor list was last created. To
limit the search for spherocylinder overlaps while creating
the neighbor lists, we consider a cubic cell structure based on
the center of mass of the crosses. We limit the size of the
event tree by setting a time (typically five times what it
would take a particle with the average speed to ballistically
cross the neighbor list cutoff length) beyond which events
are not entered in the tree structure, which also sets the long-
est survival time of a neighbor list. This ensures that if a
particular cross does not undergo any collision within this
interval we still correctly identify future events that involves
it.

For the very rare case of quasisimultaneous collisions, the
behavior of the program is unpredictable. Depending on the
exact sequence of instructions, a future event can behave
similar to a past event and vice versa. We avoid this problem
by discarding events that are separated by less than 1074
time units from a previous event. Since this time is much
smaller than the average time between collisions even at the
highest density considered in this study, this artificial exclu-
sion does not affect the statistical analysis of our data.
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After a collision, all events involving the colliding pairs
are removed from the event tree and new future events are
generated from their respective neighbor lists. When the
event is a neighbor list update, all events involving this par-
ticle are removed and the list is recreated anew. When the
next event is later than the time at which we are required to
calculate any property of the system, we update the positions
and velocities of all the particles to that time without chang-
ing the event list, since by definition the next event is later
than this time.

For the highest densities and largest system sizes consid-
ered in this work, the number of collision events in a single
run often exceeds 10'°. On a 2 GHz AMD Opteron Linux
desktop using an Intel FORTRAN compiler, the CPU time re-
quired for 10! collisions to take place in a system of 4096
crosses at p=20 is about 25 hours. The two most costly op-
erations are finding the future collisions and filling the
spherocylindrical neighbor list. The optimum performance is
observed when the (density dependent) spherocylinder radius
is chosen such that the average number of neighbors is about
30. For a smaller radius the neighbor list is updated more
often, while for a larger radius future collisions are found
among a larger set of possible interactions.

A random insertion procedure gives an equilibrated con-
figuration for the ideal gas, since the radial distribution func-
tion g(r) is flat. But the dynamics retains a long memory and
the structural relaxation slows down exponentially with den-
sity. For this reason it is more efficient to perform the aver-
aging by choosing statically independent starting configura-
tions and running them on different cores. For most of our
simulations we use 512, 1728, and 4096 particles with p
varying from 1 to 30. All the simulations up to p=20 and
N=4096 are run for at least 10° collision times or until the
smallest nonzero wave vector g=27V~!"3 component of the
dynamic structure factor S(g,7)/S(q,0) has decayed to 1/e,
whichever is smaller. The runs with p>20 and N>4096 are
not sufficiently long to satisfy the second condition, so they
are only used to determine quantities measured on shorter
time or length scales. The averaging procedure employed
still guarantees the validity of these results. Finite-size ef-
fects are found to be negligible for all static and two-point
quantities in the density regime under study, but four-point
correlations exhibit sizable size dependence. This will be dis-
cussed further in Sec. III D.

III. RESULTS
A. Collisions and diffusion

By construction the static properties of the system are
those of an ideal gas. Moreover, for the density range con-
sidered the short-time dynamics agrees within errors with a
mean-field kinetic theory. Figure 1 shows in fact that the
average time between rod collisions is indistinguishable from
the analytical prediction 7,,,=4/(9p7"?) (see the Appendix).
After only a few collisions the particle velocities become
nearly completely uncorrelated, as gathered from the veloc-
ity autocorrelation function Z(t)=(v,()-v;(0))/(Jv|*) (Fig. 1
inset). The nearly perfect collapse of Z(r) after rescaling time
by 7., in Fig. 1 shows this process to be rather general. The
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FIG. 1. (Color online) Average collision time 7., from simula-
tion (points) compared to the kinetic theory prediction (dashed
line). Inset: Collapse of the velocity autocorrelation function Z(z)
after rescaling time by 7.

small negative dip of Z(7) that follows at high density is the
caging signature and corresponds to the bouncing back of a
particle after colliding with a neighbor. As far as structure
and short-time dynamics are concerned the system thus be-
haves rather ideally.

On longer time scales the physics is quite different. Figure
2 shows that the mean-square displacement (MSD)
[(Ar*(1))={|r/(1)—r;(0)|*)] between the initial ballistic re-
gime [(Ar’(1))~7*] and the diffusive regime [(Ar2(z))
~6Dt], where D is the diffusion coefficient, develops a pla-
teau for increasing densities as in supercooled fluids. But
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FIG. 2. (Color online) Time evolution of the MSD for p=1, 2, 5,
7,10, 12, 15, 17, and 20, from left to right. Superimposed to the
long time part of p=20 is a linear fit whose slope is used to calcu-
late the diffusion coefficient. The error is smaller than the symbol
size. Inset: The diffusion coefficient decreases with density expo-
nentially. The dashed line is a fit D ~exp[—AV*p] with AV*=0.42
for p>>5.
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contrary to structural liquids there is no upper limit to pack-
ing, so the transition away from the ballistic regime takes
place at ever shrinking length and time scales with increasing
density. Instead of converging at a single length scale set by
the repulsive core, as is the case in structural glass formers,
the crossover plateau thus keep lowering with the slowdown.
With the end of the plateau region, the system enters the
diffusive regime on a time scale that grows exponentially
with density. This suggests that the rate-limiting step for dif-
fusion is the creation of “free volume” around a particle,
such that the topological constraints inhibiting its motion are
relieved. For an ideal gas the probability to open up a vol-
ume AV* by a spontaneous fluctuation is ~exp(—pAV*). The
exponential density dependence of D thus indicates that a
cavity with volume AV*=0.420" is needed to enable diffu-
sion. This behavior is very different from the algebraic den-
sity dependence observed for the rotational diffusion in sys-
tems of tethered rotating needles [20]. It is also unlike that of
structural athermal systems such as hard spheres, where a
power law is observed at modest undercooling [28]. Expo-
nential slowing down is more akin to what is obtained in
strong glass formers.

B. Self-intermediate scattering function

The decay of density fluctuation on different length scales
is best studied by the incoherent self-intermediate scattering
function F(q,1) E(ﬁﬁj expliq-[rj(1)-r;(0)]}), where ¢
=|q|, as reported in Fig. 3. In standard glass formers this
correlation function bears the signature of two different dy-
namical regimes in the microscopic relaxation. On times of
the order of 7, ballistic motion gives way to the S plateau
associated with caging; on longer times scales, « structural
rearrangements allow a particle to escape the cage formed by
its neighbors. The typical time scale 7,(g) over which this
last process takes place is defined as the time when F(q,?)
has decayed to 1/e. Here, 7, increases exponentially with
density [Fig. 4(a)]. This supports the assumption that an in-
finite cross density is necessary to obtain complete dynami-
cal arrest. The length scale at which caging and structural
relaxation are best separated is the caging diameter. In struc-
tural glass formers it also corresponds to the first peak of the
structure factor, but since the crosses do not exhibit any static
structure, we approximate it instead by the average spacing
between particles g,y =27p'". The growing separation be-
tween the two time scales with density can be observed in
Fig. 3(a). However, in spite of there being a difference of
over three orders of magnitude between 7. and 7, at p
=20, the apparition of a plateau is still incomplete. Higher
densities are necessary to observe a better delineated struc-
ture.

An analysis of the structural relaxation process shows that
when time is rescaled by 7,(g) for a fixed g, F(q,t) collapse
onto a single master curve with increasing accuracy as the
system becomes denser [Figs. 3(b) and 3(c)]. This time-
density scaling of the long-time decay is highly nontrivial. It
has been argued that the collapse of the a-relaxation curves
is one of the outstanding characteristics of the structural
glass transition that is reproduced by MCT [4,5]. Standard
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FIG. 3. (Color online) F(q,t) decay at (a) the microscopic wave
VeCtor geqge as well as its 7, collapse at (b) g=0.87 and (c) ¢
=21 for p=5, 7, 10, 12, 15, 17, and 20. The solid line is a stretched
exponential fit to A exp[—(t/7,)?] for F,(g,t) between 0.025 and
0.975 with (b) A=0.975, f=0.917 and (c) A=0.963, B=0.662. In-
sets: Short time decay of F(q,) with additional p=22, 25, and 30.
High-density (p>20) estimates for 7, are obtained by forcing the
early a decay onto the master curve from the low-density data. The
solid line is the free-particle decay form with 2.47, as described in
the text.
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FIG. 4. (Color online) (a) Structural relaxation time 7, extracted
from F(q,t) for various wave vectors. The dashed line is an expo-
nential fit to ¢= 1 with exponent 0.43. (b) Exponents extracted from
F(q.,7) and x/(g,t) at p=20, as described in the text of Sec. Il A
and Sec. III D. (c) Rescaling of 7,(g) by the diffusive limit Dg? to
evaluate the transport coefficient decoupling. The solid line empha-
sizes the Fickian limit Dg*7,(g)=1, while the dashed lines show the
small wave-vector limit V2Dg for the two lowest densities.
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MCT being here inapplicable for lack of static correlations
the phenomenon is clearly more generic. Long-time relax-
ation in glassy systems are often described by a stretched
exponential ~ Kohlrausch-Williams-Watts (KWW)  form

Fygq,n~e 7 where the stretching exponent 8 is not to
be confounded with the S-relaxation regime. The long length
scale limit is properly captured at low wave vectors, as seen
in Fig. 4(b). The stretching exponent B then approaches
unity. This corresponds to an exponential decay of F(q,?)
and is consistent with the diffusive dynamics of simple flu-
ids. At microscopic length scales the KWW fit is also rather
successful, as shown in Figs. 3(b) and 3(c), though no single
parametrization of the functional form is suitable for the en-
tire decay range [16]. In particular, the fitting form does not
capture the long-time tail, which falls off faster than ex-
pected from a fit to the body of the decay. For the bulk of the
decay, however, a singular behavior is observed. In other
model glass formers such as silica [29] and binary Lennard-
Jones (LJ) [30], 8=0.75 for wave vectors around ¢,e. For
the crosses the decay is further stretched with 8~0.5. This
suggests that the structural relaxation arises from a broader
characteristic-time distribution of relaxation processes.

MCT further predicts that the end of the g plateau bends
down following a von Schweidler form [4,5]

Fs(q’t) = fc(q) - Bh(q)(t/Ta)h’ (1)

where f,(q) is the plateau height and both B and h(g) are
independent of time. Equation (1) approaches a stretched ex-
ponential form in the large-g limit [31]. For densities consid-
ered here this form is not obviously appropriate, since no
convincing plateau has yet developed. This leaves f.(¢) as a
free fitting parameter to extract the exponent b from the de-
cay shoulder at p=20, as reported in Fig. 2(b). Though
coarse, this treatment will be useful when we return to this
issue in Sec. III D.

A feature not part of the canonical glass analysis is the
short-time collapse of F(g,7), as presented in Ref. [16] and
depicted in the insets of Figs. 3(b) and 3(c). At short times
the particles’ ballistic movement leads to an initial Gaussian
decay of F,(q,t). This regime ends when the “free” crosses
collide with the “cage” formed by their neighbors at time 7,
on average. Using

Fﬁree(q, 7'col) = eXP(— kBquTgol/zm) (2)

and the scaling of 7, with density, one can parametrically
plot where the change of regime from ballistic to collisional
should take place for various densities. Since this does not
correspond directly to a particular feature of F(q,?), let us
consider a larger value than 7., to describe the observed
change in regime. Mobile particles have more free space
around them (see Sec. III C) and contribute longer to the free
decay of F(q,t), so this is not unreasonable. Equation (2)
with 2.47., indeed captures the regime change at early times,
as seen the insets of Figs. 3(b) and 3(c). This time parameter
is close to the first zero of Z(¢), another metric for the onset
of caging. This explanation is rather system specific, so this
collapse is not expected to be observed in other glass-
forming systems.
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C. Dynamical heterogeneity

Various transport properties correspond to different mo-
ments of the distribution of microscopic times, so their de-
coupling at a particular wave vector is associated with the
growth of dynamical heterogeneity on the corresponding
length scale [32,33]. We first probe this effect using the
wave-vector dependence of 7,(g) rescaled by Dg” and then
looking for the onset of decoupling Dg*7,(q) > 1. As seen in
Fig. 4(c), for small wave vectors the Fickian limit
Dq’1,(q)=1 is recovered, while at very high wave vectors
the Gaussian decay of F,(q,?) leads to a trivial y2Dg growth.
The transition from one regime to the other takes place over
MICroSCOPIC SiZE€S g = age- In denser systems decoupling is
more pronounced and takes place at increasing length scales.
For the highest densities the onset of decoupling suggests
that particles have a coherent dynamics over distances as
large as 4—50. This is similar to what is observed in binary
LJ under similarly sluggish relaxation [32,34], but here the
number of particles involved is an order of magnitude larger.
We will come back to this issue in Sec. III D, but note for
now that since this size scale corresponds to the box dimen-
sion at these densities, it sets a computational upper bound to
the range of densities reasonably accessible through simula-
tions.

A number of simulation [35-39] and experimental [40,41]
studies of glass-forming systems also show a close relation-
ship between the non-Gaussian behavior of particle displace-
ments and dynamical heterogeneity. At high densities the dy-
namics of the crosses is indeed heterogeneous: only a small
fraction of all particles is responsible for a significant frac-
tion of the total MSD between the ballistic and the diffusive
regimes, where the MSD plateaus. The probability distribu-
tion of particle displacements in Fig. 5(a) shows a tail at high
displacements for intermediate times, while at short and long
times the distribution tends towards a Gaussian one. Devia-
tions can be quantified using higher-order cumulants, the
simplest of which is the fourth-order az(t)Esﬂ%-lt’))é—l. It
vanishes when a distribution is truly a Gaussian éistribution,
but for the crosses and for structural glass formers it peaks
more prominently and at longer times with increasing den-
sity. At p=20 and time Tay when the non-Gaussian param-
eter a,(f) reaches its maximum value, only 5% of the par-
ticles are responsible for nearly 30% of the MSD [16].

To look further in the microscopic features of this phe-
nomenon, mobile and slow particles have to be identified.
The distinction between the two types is not a sharp one and
depends on the time interval under consideration. For both
short and long time intervals all particles have a similar
MSD and the labels lose their meaning altogether. Kob et al.
define a critical value of the displacement at a given time
beyond which the self part of the van Hove function deviates
significantly from the corresponding Gaussian approximation
[35]. Particles that have a displacement larger than this criti-
cal value are termed mobile. This distinction between the
two regimes can be observed near 7, in the inset of Fig.
5(a), where the short-range Gaussian and long-range expo-
nential separation suggested in Ref. [42] captures the data
reasonably well. From a different point of view, Shell et al.
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FIG. 5. (Color online) For a system at p=20. (a) Displacement
probability distribution with superimposed Gaussian fits P(r(r))
=472 (O[22 (1)) /31732 exp[-3r2(1) /1 2(2(£))] for t=5.4X1073,
0.059, 0.39, 15, 580, and 3.6 X 103, from left to right. Arrows point
to the excess probability for particles with large displacements. In-
set: One-dimensional component of the displacement probability at
t=32= 7,, with a Gaussian and an exponential fit of small and large
amplitudes, respectively. (b) Propensity probability distribution
P((Ar?)lléz) for the same first five times. Inset: distribution of dis-
placements for the 0.07% particles with the largest (open symbols)
and smallest (closed symbols) propensities at 7=33. (c) Propensities
at t=33 shown as spheres centered around the initial particle posi-
tions. The spheres have a radius 2.5 times the magnitude of the
individual particle propensities.
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showed that the joint probability distribution of initial veloc-
ity component and displacement along the same direction
can be fitted by the sum of two Gaussian functions at inter-
mediate times [43]. These authors use the relative weights of
the Gaussian components to estimate the fraction of particles
that are, respectively, mobile and immobile on that time
scale. For the crosses we find that different measures of het-
erogeneity yield essentially the same results near Ta,- FOI this
reason we use a simpler prescription: the 5% of particles
with maximum displacement at 7, are termed mobile [38].

In order to understand the physical origin of dynamical
heterogeneities, it is important to gain insight in the factors
that make a particular particle mobile. One possibility is that
the distance over which a particle moves is sensitive to the
initial velocity of that particle, but Z(z) decays so rapidly that
this could hardly be the whole story. Alternatively, the future
mobility of a particle can be related to the detailed geometry
of its initial local environment [44—-48]. To distinguish be-
tween the two we consider an “ensemble” of trajectories that
initiate from the same starting configuration, but with differ-
ent initial velocities. Simulations of such an “isoconfigura-
tional ensemble” (IC) allow to determine whether the pro-
pensity for high mobility is related to the initial velocity or to
the initial structure. If the former holds different particles are
mobile from one trajectory to another, while if the latter
holds the identity of mobile particles is correlated over dif-
ferent trajectories [44-46,48]. For this we define the parti-
cle’s propensity to diffuse at time ¢ as the IC average of the
square of its displacement (Ar7(f))c=(|r,(t)-r,0)]*);c. At
both short and long times the distribution is expected to tend
towards a & function, because all starting positions are
equivalent. Before a collision takes place all heterogeneities
are kinetic, while for > Ta, all possible environments are
sampled. If there is a structural contribution to dynamical
heterogeneity it should thus appear at intermediate times. We
run replicates of identical starting configurations at p=20 to
look at the distribution of propensities. Figure 5(b) shows
that removing the spread due to kinetic effects indeed gives a
thinner propensity distribution than the full displacement dis-
tribution of Fig. 5(a). But the relative width of the displace-
ment distribution still grows until £~ Ta, and decreases after-
wards. There is thus a structural component to dynamical
heterogeneity in the cross system. However, though some
particles have a propensity much higher than others, no fea-
ture of the distribution allows for a separation between pro-
pensity regimes, contrary to structural glass formers [44]. To
see if there is nonetheless speciation, we look at the displace-
ment distribution for the extremes of propensity. Yet in spite
of having an average propensity an order of magnitude apart,
their displacement distributions at 7~ Ta, still overlap [Fig.
5(b) inset]. Thus only a probabilistic propensity categoriza-
tion is possible at the particle level. But as for structural
glass formers, it could still indicate that certain regions of
space are structurally more mobile than others [49]. We con-
sider this option in Fig. 5(c), where the spatial distribution of
particle propensities at 7, is depicted as spheres centered
around the initial particle position. It is hard to properly as-
sess the regions of higher mobility directly from this repre-
sentation. Though there appears to be some mobile “do-
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mains,” where the most highly mobile particles can be found,
these are not very large and for the rest the mobile particles
appear more or less uniformly distributed over the system.
This is significantly different from the large regions of simi-
lar propensity that are observed in structural glass formers
[44-46,48]. Either dynamically heterogeneous regions are
here much smaller or propensity is an insufficient micro-
scopic observable to capture their essence in crosses.

We nonetheless examine quantitatively possible spatial
correlations among mobile particles with eight instances of a
system of 20 000 crosses at p=20. The radial distribution
function distinguishing the mobile particles from the rest is
compared to the featureless systemwide g(r) in Fig. 6(a). The
conditional probability of finding any particle at a distance r
given that a mobile particle is located at the origin g,,,(r)
shows a depression near r=0. This indicates that mobile par-
ticles tend to be found in local low-density regions, as sug-
gested by the relaxation mechanism presented in Sec. IIT A.
The radial distribution function of mobile particles alone
&mm(r) shows that they are also spatially correlated. It ap-
pears from this that mobile particles do organize in clusters
over extended volumes. A different measure of correlations
in the mobile particle distribution considers the displacement
directions of mobile particles. For this we define a correla-
tion function

<Arm(0) i Arm(r)>
(Ar,)

where Ar,,(0) is the displacement over the time interval Ta,
of a mobile particle considered to be at the origin and Ar,,(r)
is the displacement of mobile particles in a spherical shell of
radius r. Without correlations among the displacement direc-
tion of mobile particles O,,(r) would be zero, while a non-
zero value indicates some degree of assistance between mo-
bile particles. Figure 6(b) shows a positive O,, at small r, so
mobile particles’ movements are only correlated when they
are sufficiently close together to be “entangled.” The nega-
tive dip that follows might be due to poor statistics, but this
cannot be resolved here.

In structural glass formers mobile particles are sometimes
found in clusters with a ramified morphology [36]. The
analysis done so far leaves open the possibility of chainlike
movements for the cross model, which incites us to look
directly at the spatial distribution of mobile particle clusters.
Here, two mobile particles belong to a same “cluster” if their
separation is less than ¢/2 in all directions at both initial and
final times. This threshold is similar to the decay length scale
of g,,..(r). It ensures that members of a cluster share collision
history over the entire time interval during which displace-
ment is considered. Most mobile particles do not belong to
such a cluster and only 10% of them belong to clusters of
size six or more; the largest cluster identified contains 14
particles. Figure 6(c) shows clusters of six or more mobile
particles as cones with a base centered around the particles’
initial position and oriented along their displacement. We
find no indication of noncompact or linear chains of mobile
particles contrary to what was observed in simulations of the
binary LJ glass former [36,38]. This allows to conclude that

0,(r) = 3)
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FIG. 6. (Color online) Mobility analysis for a system of 20 000
crosses at p=20. (a) The radial distribution function g(r) is com-
pared with the conditional distributions g,,,(r) and g,,,,(r). (b) Cor-
relation of the mobile particle displacement directions, as described
in the text. (c) Displacements of clustered mobile particles over Tay
The cone’s base is at a mobile particle’s initial position and the
cone’s height is twice its squared displacement over 7,,. Different
shadings code for independent clusters.
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high-mobility clusters do indeed exist and that they are not
only small, but also compact. At such high density, though
the system has undergone a significant dynamical slowdown,
collectively relaxing regions remain of limited spatial extent.

D. Dynamical susceptibility

A particularly useful quantity to discriminate between dif-
ferent models of dynamical arrest and to provide further in-
formation about the relaxation mechanism is the four-point
density correlator [50-56]

Gy(r,1) =(Ap(0,0)Ap(0.0)Ap(r,0)Ap(r,1))
- <AP(0aO)AP(O’t)><AP(r’0)AP(rJ)>, (4)

where Ap(r,t) denotes a density fluctuation at position r and
time t. G4 probes the spatial correlation in the decay of den-
sity fluctuations at different times. The volume integral of
G,(r,1) is its associated susceptibility x,4(¢), which is also a
measure of the variance of the -correlation function
(Ap(0,0)Ap(0,)). Numerical simulations show that the in-
formation contained in this reduced dynamic susceptibility is
very similar to the full four-point density correlator [52]. In
practice it is convenient to compute a phase-space correlator
in terms of the self-intermediate scattering function

N

lw .
filg.) = 3 el 0, (5)
j=1

From this definition we recognize that F(q,1)={f,(q,?)). In
athermal systems, the corresponding dynamic susceptibility
is then

X3(q.0) = NI(f,(@,0%), = (f(a.0));] (6)

at constant density. We use the p label, because unlike for the
two or the full four-point correlators the susceptibility de-
pends on the choice of simulation ensemble [54,55,57]. The
“true” susceptibility is obtained by keeping the chemical po-
tential u fixed instead. This can be done directly or using the
derivative of the two-point function

IF(q,1) \?
X4(q.1) = x4(g.0) + pkBTKT<S— ; (7)
dlnp /p
where k7 is the isothermal compressibility and u refers to the
constant chemical potential. For crosses with kzT=1 it re-
duces to

IF (q.1) )2

dlnp ®

X4(q.t) = xi(q.1) + ( :

T
This result is tested for (N)=8192 at p=5 in Fig. 7(a). We
use the scheme described in the Appendix of Ref. [55] on the
one hand and numerical differentiation of the two-point func-
tion added to x4(g,?) on the other. The two approaches agree
with each other within numerical uncertainty. We can esti-
mate the difference between the two ensembles from the in-
set of Fig. 7(b). At small ¢ around 7, the two-point correc-
tion is similar in magnitude to x4, but the density fluctuation
term becomes negligible for wave vectors larger than g,
This is consistent with the results from facilitated models

[55].
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FIG. 7. (Color online) (a) Determination of x4(g.t) with (N)
=8192 at p=35 by two different approaches: direct simulation (full
symbols) and through Eq. (8) (empty symbols). (b) System-size
dependence of A/;* at p=5. Inset: )(j for (N)=8192 at constant p
(squares) and constant u (circles). (¢) Dynamic susceptibility
Xi(q,1) for p=20. Tnset: The solid line * follows the ballistic be-
havior at <7, and the dashed one the intermediate power-law
regime.
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The main panel of Fig. 7(b) shows a prime feature of the
dynamic susceptibility: its peak height XZ*(q). It corresponds
to the maximum in dynamical heterogeneity on a given
length scale and thus takes place on times of the order of
7,(q). Surprisingly we find ,\/4’* to have appreciable system-
size dependence even for a density as low as p=5. At higher
densities these effects are also pronounced, but their study
becomes rapidly computationally intractable. The transport
coefficient analysis in Sec. III B did suggest that a dynamical
length scale might be as large as the box size for p=20. But
even for a system 16 times larger than the typical size con-
sidered so far and at much lower density, x;(q,?) has not yet
converged to its bulk value. Considering )(f * does not
change this observation. Also, not only does A{:* keeps in-
creasing with system size, but it keeps shifting to smaller
wave vectors. Thus, there exists a dynamical length scale in
this system that is much larger than the system size, even at
densities where caging barely interferes with the diffusive
regime. Moreover this takes place as the peak height, which
scales with the dynamical heterogeneity volume, remains
modest. Such large scale dynamical heterogeneity could re-
sult from low-amplitude long-range fluctuations of the two-
point correlation, since their integration over a large volume
would give them a prominent contribution. This could then
blur the details of local dynamical heterogeneity normally
associated with a dynamical slowdown. Whatever its origin,
this effect prevents us to quantify completely the wave-
vector dependence of A/Z*(q,t) or the scaling of its peak
height, as was done in Refs. [55,58]. A comment remains
nonetheless in order. The broad distribution of wave vectors
over which the peak of XZ* develops indicates that relaxation
processes leading to structural relaxation take place over a
range of length scales. Because no single microscopic scale
dominates, the mean-field cage opening picture for diffusion
might be more caricatural than in structural glass formers.
Many different microscopic mechanisms are probably at
play, as the small value of the stretching exponent had al-
ready suggested in Sec. III B.

For microscopic ¢ finite-size effects are less important, so
we will only consider these smaller length scales to test the-
oretical predictions on the other properties of the dynamical
susceptibility. The full time and wave-vector dependence of
X4(g.t) shows a rich structure [53,55,58]. At short times the
motion is ballistic )(f{(q,t)~t4, it exhibits a maximum at
*(g) close to the structural relaxation time 7,(g), and at long
times goes to unity. Between the ballistic regime and the
peak the function is often fitted to a power-law x4(q,?)
~ "9 since theoretical predictions for y(¢) differ depending
on the dynamical relaxation mechanism involved. For in-
stance, if short-lived events are responsible for the loss of
correlations y=1, while for independently diffusing defects
v=2. MCT predicts that y be the same as the exponent b
from the von Schweidler form of Eq. (1). This last scenario
is observed in the binary LJ glass former [53], though nu-
merical results for kinetically constrained models are consis-
tent with the assumption of diffusive pointlike defects with
an anomalous diffusion exponent [55].

Well-separated power-law regimes and the peak of
X4i(g.t) can be seen in Fig. 7(c). The exponent 7y, obtained
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for wave vectors where the power-law growth lasts at least
one time decade at p=20, depends strongly on ¢ [Fig. 4(b)].
To check the MCT prediction we compare y to exponent b
extracted from the fit to Eq. (1). The two exponents are sig-
nificantly different from each other for all wave vectors.
However, since the von Schweidler functional form does not
satisfyingly describe the late 8 regime even at the highest
density considered, this is not a conclusive assessment. In-
stead, because of the improperly defined plateau y probably
corresponds to exponent S of the stretched-exponential de-
cay, as field-theoretic arguments suggest [59]. Figure 3(b)
presents a remarkable agreement between y and S, which
support this interpretation. A clear separation between the
von Schweidler and the KWW regimes develops only at den-
sities higher than what is accessible through simulations, so
it cannot be excluded that an additional power-law regime
corresponding to the von Schweidler regime then be ob-
served.

IV. CONCLUDING REMARKS

We have considered a system of particles formed by fix-
ing three orthogonal line segments rigidly at their midpoints.
Absence of excluded volume implies an absence of static
correlations, so all the static and thermodynamic properties
are that of an ideal gas. However, the noncrossing condition
for the line segments gives rise to highly nontrivial dynamics
and exhibits “glassy” features as the number density is in-
creased. A volume needs to open up for a particle to diffuse
away from its neighbor cage, and this activated dynamics
makes the model a “strong” glass former. In spite of the
inapplicability of standard MCT for this system we observe
properties that are traditionally considered to be a success of
MCT, such as the rescaling of the stretched exponential re-
laxation in F(g,7). It remains unclear why such predictions
should hold here and if some of them break down at densities
beyond what is computationally reasonable. Note also that a
model with a similarly trivial static, but fragile glass-forming
behavior, would also be of great interest to test the assump-
tions that underlie the categorization.

With increasing density particle displacements acquire
strong non-Gaussian features on the structural relaxation
time scale. During this time a small fraction of the particles
show a much larger MSD than the rest. We find these “mo-
bile” particles to be associated with local low density regions
and to cluster. These mobile clusters tend to be small and
highly localized. Yet both the transport coefficient decou-
pling and the system-size dependence of the dynamical sus-
ceptibility indicate that a sizable dynamical length scale is
present in the system. In light of the mobility study and the
magnitude of the dynamical susceptibility this comes as a
surprise, because these are usually taken as indirect probes of
the dynamical heterogeneity volume. The task to reconcile
the large dynamical length scale with the small size of the
mobile regions could require identifying a different micro-
scopic metric for dynamical heterogeneity. But a more plau-
sible scenario is that the signature of dynamical heterogene-
ity is hidden by a second larger dynamical length scale. The
large length scale indeed shows features that are reminiscent
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of the elastic relaxation of a solid after a local volume
change. Though this effect has not been observed in other
glass-forming systems so far, it might have been obscured by
a stronger local dynamical heterogeneity. In any case, a bet-
ter understanding of this phenomenon would benefit the
study of all glass formers.
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APPENDIX: COLLISION FREQUENCY

We take two needles of length ¢ In an interval of time At,
the number of collisions for these two needles is

I, =2pv"'Atlsin 6|02, (A1)

where v’f[ is the relative perpendicular velocity and € is the

angle between the two line segments. The factor of 2 appears
because two lozenges of size o” sin 6 are formed. The per-
pendicular relative velocity averages to

rel kBT 12 1
<v J_ = - = _/_ 9

(A2)
8mm, 2N

where m, is the reduced mass and the last equality follows
from using reduced units. Using {|sin 6|)=m/4 we obtain

V
Lo=p T . (A3)
Since each cross is made up of three needles, an additional
factor of 9 has to be included to obtain the cross collision

frequency that is used in the text

-

9p\m

(Ad)
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