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The Poisson-Nernst-Planck equations describe the dynamics of charge transport in an electric field. Although
they are relevant in many applications, a general solution is not known and several aspects are not well
understood. In many situations nonlinear effects arise for which no analytical description is available. In this
work, we investigate charge transport in a planar device on application of a voltage step. We derive analytical
expressions for the dynamical behavior in four extreme cases. In the “geometry limited” regime, applicable at
high voltages and low charge contents, we neglect diffusion and the electric field induced by the charges. This
leads to a uniform movement of all charges until the bulk is completely depleted. In the “space charge limited”
regime, for high voltages and high charge contents, diffusion is still neglected but the electric field is almost
completely screened over transient space charge layers. Eventually, however, the bulk becomes depleted of
charges and the field becomes homogeneous again. This regime is solved under the assumption of a homoge-
neous current density, and is characterized by a typical t−3/4 behavior. In the “diffusion limited” regime, valid
for low voltages and low charge contents, diffusion is the dominant transport mechanism and prevents the
charges from separating. This results in only very small deviations from a homogeneous charge distribution
throughout the device. In the “double layer limited” regime, for low voltages and high charge contents, the
combination of dominant diffusion and screening of the electric field results in large variations occurring only
in thin double layers near the electrodes. Numerical simulations confirm the validity of the derived analytical
expressions for each of the four regimes, and allow us to investigate the parameter values for which they are
applicable. We present transient current measurements on a nonpolar liquid with surfactant and compare them
with the external current predicted by the theoretical description. The agreement of the analytical expressions
with the experiments allows us to obtain values for a number of properties of the charges in the liquid, which
are consistent with results in other works. The confirmation by simulations and measurements of the derived
theoretical expressions gives confidence about their usefulness to understand various aspects of the Poisson-
Nernst-Planck equations and the effects they represent in the dynamics of charge transport.
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I. INTRODUCTION

The movement of charges in a viscous medium under the
influence of an electric field in a plan-parallel device is a
very general problem �1,2�. It lies at the basis of the under-
standing of electrolytes �3–5�, colloidal systems �6,7�, semi-
conductors �8–11�, plasmas �12,13� and many other applica-
tions. The Poisson-Nernst-Planck equations model the effects
of thermal diffusion and drift in the electric field on the
charges and the induced change in the electric field by the
charges. In most applications other equations have to be
added to model mechanisms such as chemical reactions in
the bulk �14,15� or at the electrodes �16� or to include steri-
cal effects �17,18�, but the basic problem is always the same.
However, despite the importance of the Poisson-Nernst-
Planck equations, no general solution is known.

The behavior of charges in a planar structure can be radi-
cally different, depending on the properties of the device and
on the driving conditions �1,19�. In the case of thick devices
with a high charge content, driven at relatively small volt-
ages, which is the relevant situation in many applications, the
Poisson-Nernst-Planck equations can be linearized and
solved �1,19�. However, for larger voltages, in thin devices

or for lower charge concentrations, nonlinear effects
�1,19,20� make the solution much more difficult. These situ-
ations become increasingly important with the ongoing min-
iaturization and with the growing use of non-polar media,
such as in liquid crystal displays �21,22� and electrophoretic
ink �23,24�.

These nonlinear effects are usually treated as higher order
deviations from the linear case �1�. However, we take a dif-
ferent approach and investigate four extreme cases �one of
them being of course the linear case�. These regimes provide
an understanding of the dominant effects in cases which are
not well understood today, and provide a different perspec-
tive to investigate the Poisson-Nernst-Planck equations.

In this work we investigate the dynamical behavior on
application of a voltage on a plan-parallel device which has
been short-circuited for a long time. We derive approximate
analytical expressions for the charge distribution and electric
field in function of time and position, for each of the four
regimes. These theoretical expressions are valid for a broad
range of applications. The analytical descriptions are then
compared with numerical simulations and with current mea-
surements on a mixture of dodecane and a surfactant �14,25�.
This mixture can, depending on the conditions, exhibit the
behavior of each of the four regimes, and therefore acts as a
model system for the theoretical problem investigated in this
work. The analytical expressions for the current provide a
way to determine several properties of the mixture, such as*Filip.Beunis@ELIS.UGent.be
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the concentration, mobility, and valency of the charges. A
similar approach has been followed in another work �26� to
derive analytical expressions for the steady state distribution
of charges in an electric field, which are confirmed by mea-
surements.

II. THEORETICAL ANALYSIS

We approximate the plan-parallel device with a one-
dimensional structure, in which all quantities are only depen-
dent on the spatial coordinate x and on the time t. This struc-
ture is bound by two electrodes separated by a distance d.
The reference position x=0 is chosen in the middle of the
structure, so the left electrode is at position x=−d /2 and the
right electrode at position x=d /2. Between the two elec-
trodes, we consider a symmetric electrolyte, approximated
by a dielectric medium in which positive and negative
charges are present, which are identical except for their po-
larity. The dielectric permittivity of this medium is ��0, with
�0 the dielectric permittivity of vacuum and � the relative
dielectric constant of the medium. The charges carry a
charge �q and their distribution in the medium is described
by the concentrations n+�x , t� �m−3� and n−�x , t� �m−3� for
positive and negative charges, respectively. We will also use
the charge concentration ��x , t� �C m−3� and the total concen-
tration m�x , t� �m−3�, related to n+ and n− by �=q�n+−n−�
and m=n++n−.

For t�0, the electrodes are at the same potential, and all
charges are homogeneously distributed. At the reference time
�t=0�, a voltage VA is applied over the electrodes, so that the
left electrode is at potential VA /2 and the right electrode is at
potential −VA /2. The electric field strength E�x , t�, which we
measure in the positive x direction, is related to this voltage
through

�
−d/2

d/2

Edx = VA, �1�

and to the distribution of charges through Gauss’s equation
�which is equivalent to Poisson’s equation�:

��0
�E

�x
= � . �2�

The movement of the charges is the result of drift in the
electric field and thermal diffusion. It can be described by the
Nernst-Planck equation �1�

�� = � �n�E − D
�n�

�x
. �3�

�+�x , t� �m−2 s−1� and �−�x , t� �m−2 s−1� are the fluxes of
positive and negative charges in the positive x direction. The
mobility � and the diffusion constant D are assumed to be
the same for positive and negative charges and are related by
Einstein’s formula D /�=VT. The thermal voltage VT is de-
fined as kT /q, in which k is Boltzmann’s constant and T is
the absolute temperature of the device. We assume that no
charges can appear or disappear in the bulk, so the following
continuity equation holds

�n�

�t
= −

���

�x
. �4�

We assume perfectly blocking electrodes, so at the bound-
aries of the structure no charges can appear or disappear, and
the fluxes there have to be zero, so ���−d /2, t�=0 and
���d /2, t�=0. As a result of these boundary conditions and
Eqs. �3� and �4�, the average concentrations of positive and
negative charges have to be constant in time. We assume
global neutrality, so both average concentrations have to be
equal, and this value is defined as n̄= 1

d�−d/2
d/2 n�dx. Equiva-

lently, the total charge in the device per unit electrode sur-
face Qtot=q�−d/2

d/2 n�dx=qn̄d is constant in time.
The charge �per unit of electrode surface� Qel�t� on the left

electrode �and −Qel on the right electrode� consists of elec-
trons or holes, so it is of a different nature than the charges in
the liquid. It is the sum of two contributions: a capacitive
charge Qcap as a result of the applied voltage, and an induced
charge Qind�t� as a result of the charge between the elec-
trodes: Qel=Qcap+Qind. The capacitive charge can be ex-
pressed as Qcap=��0VA /d and the induced charge can be cal-
culated using Ramo’s theorem �27�, which states that �with
the assumptions made in this work� the induced charge is
proportional with the first geometrical momentum of the
charge distribution: Qind= 1

d�−d/2
d/2 �xdx. The external current

�per unit of electrode surface� I�t�, flowing toward the left
electrode and away from the right electrode, is then I
=dQel /dt=Qcap��t�+dQind /dt. The Dirac impulse is a result
of the voltage step and the fact that we consider the elec-
trodes to be perfect conductors, and will be omitted in the
rest of this work. The external current can then be calculated,
using Eqs. �1� and �2� and the fact that E is symmetric
around x=0, as

I = ��0

dE�� d
2 ,t�

dt
, �5�

or, using Eq. �4�, as

I =
1

d
�

−d/2

d/2

Jdx , �6�

in which J�x , t� is the current density inside the structure J
=q��+−�−�.

At t=0 the concentrations n� are homogeneous, so the
second term in Eq. �3�, which represents diffusion, is zero.
Since the concentrations are also equal, the charge concen-
tration � is zero and, because of Eq. �2�, the electric field E is
homogeneous and, because of Eq. �1�, the field is equal to
VA /d. Using Eqs. �3� and �6� we find therefore the following
expression for the initial current I0:

I0 =
2qn̄�VA

d
. �7�

After t=0, The current will decrease because of a combina-
tion of three different reasons. The first reason is a result of
the geometry of the structure: when charges reach the elec-
trodes at x= �d /2, they cannot move any further and stop
contributing to the current. The second reason is diffusion,
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which, as can be seen in Eq. �3�, tends to displace the
charges toward the original homogeneous distribution,
thereby preventing them to separate completely. The third
reason is �partial or almost complete� screening of the elec-
tric field: when charges become separated, the electric field
in the bulk will decrease as a result of Eqs. �1� and �2�, and
this slows down the separation of charges by drift. Each of
these reasons can be more or less important, depending on
different parameters. In Sec. III of this work we discuss in
more detail the conditions which determine the relative im-
portance of the different effects, but already now it can be
understood intuitively that the effect of diffusion is lower for
higher voltages VA �compared to the thermal voltage VT� and
the effect of screening is higher for a higher total charge Qtot
�compared to the capacitive charge Qcap�. The effect of the
geometry is always present.

The Poisson-Nernst-Planck equations can be written in
the following dimensionless form

�̃� = � ñ�Ẽ −
1

ṼA

� ñ�

� x̃
, �8�

��̃�

� x̃
= −

1

ṼA

� ñ�

� t̃
, �9�

�Ẽ

� x̃
=

Q̃tot

2ṼA

�ñ+ − ñ−� , �10�

�
−1/2

1/2

Ẽdx̃ = 1, �11�

in which the dimensionless coordinates are defined as x̃
=x /d and t̃=Dt /d2, and the dimensionless variables as ñ�

=n� / n̄, Ẽ=Ed /VA, and �̃�=2q�� / I0. Equations �8�–�11�
are only dependent on two dimensionless parameters

ṼA =
VA

VT
, �12�

Q̃tot = Qtot�� ��0

2d
VT	 . �13�

These two parameters are equivalent to the two dimension-
less parameters v and � used in Ref. �1�, and are related to

them by Q̃tot=1 /�2 and ṼA=2v. It is possible to identify each

possible situation with a point in the �ṼA , Q̃tot� parameter

plane. In this work, we will focus on values for ṼA between

0.1 and 1000 and values for Q̃tot between 0.1 and 106. We
will also use the following derived dimensionless quantities:

�̃=� /qn̄, m̃=m / n̄, J̃=J / I0, and Ĩ= I / I0.
In the following paragraphs, we will discuss four limiting

cases. In the “geometry limited” regime, the effects of diffu-
sion and screening are completely neglected. In the “space
charge limited” regime, diffusion is still neglected, but the
charge content is so high that the electric field in the bulk is
almost completely screened by transient space charge re-

gions, which are formed as positive and negative charges
become separated. In the “diffusion limited” regime, the
voltage is so low that diffusion is dominant, but the total
charge is also low enough so that the electric field remains
homogeneous. Finally, in the “double layer limited” regime,
the interplay between diffusion and screening in the limit of
a very low voltage and a very high charge content results in
the formation of diffuse double layers which almost com-
pletely screen the electric field in the bulk.

A. Regimes without diffusion

In the limiting case when drift is the dominant transport
mechanism, we neglect the diffusion term in Eq. �3�:

�� = � �n�E . �14�

The combination of Eq. �14� and the blocking electrode
boundary conditions has some important consequences. A
first consequence is that a positive surface charge builds up
near the negative electrode and a negative surface charge
builds up near the positive electrode. These surface charges
have no effect on the electric field in the device since they
are infinitesimally close to the electrodes and induce an ex-
actly opposite image charge. A second consequence of ne-
glecting diffusion is that, adjacent to the electrodes, space
charge regions with thickness 	SC�t� occur where charges of
one polarity are completely absent, resulting in an unbal-
anced space charge of the other polarity.

We assume the boundaries of these space charge layers to
be discontinuities in the concentrations of positive and nega-
tive charges. We will show that this assumption does not
affect the limiting dynamics of the solution. However, even
in the limit of very high voltages, the diffusion term in Eq.
�8� will not be zero at these discontinuities. This will result in
a smoothing of the sharp boundaries, which will be obvious
in the numerical simulation results, but which is not de-
scribed in the analytical treatment.

The dynamics of the space charge regions can be divided
into two phases. In the first phase, the positive and negative
space charge regions grow because of the movement of
charges with the opposite polarity in the bulk between the
space charge regions. During this separation phase, the con-
centrations n+ and n− in the bulk are equal to their initial
value n̄, resulting in a homogeneous electric field Ebulk�t�.
The charge distribution and the electric field in the whole
device during the separation phase can therefore be described
by

n� = 0 for − d/2 � � x � − �d/2 − 	SC� ,

n� = n̄ for − �d/2 − 	SC� � � x � �d/2 − 	SC� ,

n� = nSC��x,t� for �d/2 − 	SC� � � x � d/2, �15�

and

E = ESC�− x,t� for − d/2 � x � − �d/2 − 	SC� ,

E = Ebulk�t� for − �d/2 − 	SC� � x � �d/2 − 	SC� ,
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E = ESC�x,t� for �d/2 − 	SC� � x � d/2, �16�

in which nSC�x , t� and ESC�x , t� are functions which are equal
to the concentration of positive charges and to the electric
field in the space charge layer closest to the negative elec-
trode. Since only one polarity is present in this region, Eq.
�2� results in

nSC =
��0

q

�ESC

�x
. �17�

The speed at which the space charge regions grow is equal to
the speed of the charges in the bulk

d	SC

dt
= �Ebulk. �18�

The second phase starts when the space charge layers occupy
the whole device �2	SC=d� and positive and negative
charges are completely separated. After this separation time

sep, the space charge regions shrink because of the move-
ment of the charges inside the regions. In the bulk, n+ and n−
are now both zero, so Ebulk is still homogeneous. Therefore,
during this depletion phase, we have

n� = 0 for − d/2 � � x � − �d/2 − 	SC� ,

n� = 0 for − �d/2 − 	SC� � � x � �d/2 − 	SC� ,

n� = nSC��x,t� for �d/2 − 	SC� � � x � d/2. �19�

The electric field is still described by Eq. �16�. Because of
continuity of the electric field, during the depletion phase the
borders of the space charge layers move according to

d	SC

dt
= − �Ebulk. �20�

The depletion phase ends when the bulk is completely de-
pleted of charges, at the depletion time 
dep, and the steady
state situation is reached. Since all charges are at the elec-
trodes and compensated by an image charge on the elec-
trodes, the induced charge Qind in steady state is equal to the
total charge Qtot in the device. We find then

�
0

�

Idt = Qtot. �21�

Depending on the total charge Qtot in the device, the charge
in the space charge regions will screen the electric field in
the bulk partially or completely during the transient. In the
following paragraphs, we will discuss the two limiting cases
of an undisturbed field �the geometry limited regime� and of
an almost completely screened field �the space charge limited
regime�.

1. Geometry limited regime

In the limiting case in which the electric field is not
screened at all �28�, Eqs. �1� and �2� can be replaced by E
=VA /d. The time dependency of the thickness of the space
charge regions follows then from Eqs. �18� and �20�:

	SC = �
VA

d
t for 0 � t � 
sep = 
tr/2 �separation phase� ,

	SC = d − �
VA

d
t for 
sep � t � 
dep = 
tr �depletion phase� ,

	SC = 0 for 
dep � t �steady state� �22�

in which the transit time 
tr is the time that a charge needs to
cross the whole thickness of the device when the field is not
screened: 
tr=d2 /�VA. Since the electric field is homoge-
neous, all charges move with the same speed, so the concen-
trations during the separation phase �0� t�
sep� are de-
scribed by nSC= n̄. Using Eqs. �6� and �14�, we find that the
external current decreases linearly over time during both the
separation and the depletion phase

I = I0�1 −
t


tr
	 , �23�

until steady state is reached at t=
tr, after which the current
remains zero.

The system of �dimensionless� Eqs. �8�–�11� has been
solved numerically using a forward Euler algorithm, for dif-
ferent situations. In Fig. 1, the analytical formulas are com-
pared with these numerical results for the case with

Q̃tot=0.1 and ṼA=1000. This situation is representative for
the geometry limited regime, as will be demonstrated in Sec.
III. Figure 1 shows that the electric field is indeed homoge-
neous and constant over time. Because of this, the charges
move at a homogeneous speed, and variations of the concen-
trations and current densities only occur at the borders be-
tween the bulk layer and the space charge layers. In the
analytical formulas, these positions and the separation and
depletion times are sharply defined, because of neglecting
diffusion. In the simulation, with diffusion, the variations
occur over broader intervals. However, it can be seen that
this has no significant influence on the dynamics of the
charge transport.

The surface charge Qs can easily be calculated by taking
the difference between the total charge and the integral of
Eqs. �15� and �19�: Qs=qn̄�VAt /d. Now we introduce diffu-
sion to find a more accurate description of the distribution of
charges near the electrodes. The surface charge will then be
spread out over a thin “double layer.” We assume that the
charge that was modeled as a surface charge, has in fact the
same distribution as in steady state �26�, so

nDL =
Qs

qd

VA

VT
eVA/VT�1/2−x/d�, �24�

in which nDL�x , t� is the extra concentration close to the
negative electrode. Figure 2 shows that these expressions
agree with the simulation results.

2. Space charge limited regime

When the charge content is sufficiently large, the charge
in the space charge regions has an important screening effect
on the electric field in the bulk. Therefore, the electric field
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in the bulk will be lower than the electric field in the space
charge regions. During the separation phase, charges which
move from the bulk region to a space charge region will
accelerate in the inhomogeneous field, leading to an inhomo-
geneous concentration in the space charge regions. In Ref.
�20�, it was shown that in this situation, when drift is domi-
nant and the field in the bulk region is almost completely
screened, the electric current density J is approximately ho-
mogeneous over the whole device. In the section discussing
the double layer limited regime we will see that this is also
true when diffusion is present, making the homogeneity of
the current density a typical characteristic if screening is a
limiting mechanism. This can be understood by combining
Eqs. �2� and �4� to obtain �

�x �J+��0
�
�tE�=0. When the electric

field is almost completely screened it cannot decrease much
more. The high charge content, however, still results in a
high current density. Therefore, the second term in this equa-
tion can be neglected compared to the first term, resulting in
a homogeneous current density.

Using Eqs. �2� and �14�, the equality of the current den-
sities in the bulk and in the space charge regions leads to

�

2

�

�x
�ESC

2 � =
2�qn̄

��0
Ebulk. �25�

Using the continuity of the electric field at the boundary
between the space charge regions and the bulk, the solution
of this differential equation is

ESC =
Ebulk
2 +

4qn̄

��0
�x + 	SC −

d

2
	Ebulk. �26�

We define the field in the space charge region near the right
interface as Eint�t�=ESC�d /2, t�, so

Eint
2 − Ebulk

2

Ebulk
=

4qn̄

��0
	SC. �27�

Note that Eint is not the same as the field at the electrode,
used in Eq. �5�, because there is a positive surface charge
between the space charge region and the negative electrode.

We assume now that the voltage drop over the bulk region
can be neglected compared to the voltage drop over the space
charge regions. Using Eqs. �26� and �27�, the integration of
Eq. �1� results in

VA =
��0

3qn̄

Eint
3 − Ebulk

3

Ebulk
. �28�

Using Eqs. �27� and �28�, in which we assume Eint
Ebulk,
and Eq. �18�, we find the following differential equation for
	SC: d

dt �	SC
4 �= 9

16���0VA
2q−1n̄−1. With 	SC�0�=0 as initial con-

dition, the solution of this differential equation is

	SC =
d

2
� t


sep
	1/4

, �29�

in which the separation time is given by

FIG. 1. Comparison between theory �black curves� and simula-

tion �gray curves� for Q̃tot=0.1 and ṼA=1000 �representative for the
geometry limited regime�. Where the gray curves are not visible,
they are coinciding with the black curves. On the left, the electric
field, the concentration of positive charges and the total concentra-
tion in the middle of the device, as well as the external current, are
shown in function of time. On the right, the electric field, the con-
centration of positive charges, the total concentration and the cur-
rent density are shown in function of place at times 
̃1=0.000 33,

̃2=0.0005, and 
̃3=0.000 67. The dots on the left indicate these
three times, the dots on the right indicate the position from the
corresponding curves on the left.

FIG. 2. Comparison between theory �black curves� and simula-

tion �gray curves� for Q̃tot=0.1 and ṼA=1000 �representative for the
geometry limited regime�. Where the gray curves are not visible,
they are coinciding with the black curves. On the left, the concen-
tration of positive charges at the electrode is shown in function of
time. On the right, the concentration of positive charges in the
double layer is shown in function of place at times 
̃1=0.000 33,

̃2=0.0005, and 
̃3=0.000 67. The dots on the left indicate these
three times, the dots on the right indicate the position from the
corresponding curve on the left.
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sep =
1

8�

tr, �30�

with the dimensionless factor � defined as

� =
9

8

Qcap

Qtot
. �31�

Using the fact that the electric current density is homoge-
neous over the whole device, the external current during the
separation phase can be calculated as

I = �I0� t


sep
	−3/4

. �32�

At 
sep, the space charge regions occupy the whole device,
and cannot be supplied with charges from the bulk region
anymore. During the depletion phase, the remaining charge
in the space charge regions moves to the electrodes, 	SC
decreases to zero, the current drops to zero and the electric
field becomes homogeneous. This happens fast compared to
the decrease of the current during the separation phase, be-
cause the electric field in the space charge regions during the
depletion phase is large compared to the electric field in the
bulk during the separation phase. Therefore, we neglect the
duration 
dep−
sep of the depletion phase compared to the
duration of the separation phase 
sep, so we assume

dep�
sep. With this assumption we find that, integrating the
current as in Eqs. �32� and �21� holds: �0

�Idt=�0

depIdt

=�0

sepIdt=Qtot.
At t=0, the expression for the current in Eq. �32� becomes

infinitely high. The reason for this is that the assumption that
the field is screened does not hold at very short times �at t
=0, the field is homogeneous and the current should be I0�.
Therefore, we define the screening time 
scr as the time at
which the current in Eq. �32� becomes equal to I0, after
which we assume that the screening assumption is justified.

scr can be calculated as


scr =
�1/3

8

tr. �33�

Before this screening time we assume that the current re-
mains approximately equal to I0. However, with this assump-
tion the integral of the current is not equal to Qtot anymore.
Therefore, we renormalize the current during the separation
phase by introducing ��, defined by the condition

scrI0+ ��

� �
scr


sepIdt=Qtot. The new factor �� can then be calcu-
lated to be

�� =
1 − 1

4�1/3

1 − �1/3 � . �34�

The current is then

I = I0 for 0 � t � 
scr �screening phase� ,

I = ��I0� t


sep
	−3/4

for 
scr � t � 
sep �separation phase� ,

I = ��I0 for 
sep = t = 
dep �depletion phase� ,

I = 0 for 
dep � t �steady state� . �35�

In Eq. �25�, both sides are equal to the current density J.
Since J is homogeneous, they are also equal to the external
current I, which allows us to calculate Ebulk:

Ebulk = ��
VA

d
� t


sep
	−3/4

. �36�

The first order approximation of 	SC in Eq. �29� can be im-
proved by substituting Eq. �18� in Eq. �36�. Using the con-
dition 	SC�
sep�=d /2, the solution is

	SC =
d

2
�1 −

��

�

1 − � t


sep
	1/4�� . �37�

The electric field can then be calculated using Eq. �26�, re-
sulting in

ESC =
 d
2 − x

	SC
Ebulk

2 +
x + 	SC − d

2

	SC
Eint

2 , �38�

in which Eint�t� is the electric field at the interface between
the space charge region and the surface charge

Eint =
VA

d

�Ebulk

VA/d	
2

+
9

2�

Ebulk

VA/	SC
. �39�

Using Eqs. �17� and �39�, and using the assumption of a
homogeneous current density, we find the following expres-
sion for nSC:

nSC =
1


 d
2 − x

	SC

1

�2n̄�2 +
x + 	SC − d

2

	SC

1

nint
2

, �40�

in which nint�t� is the concentration at the interface between
the space charge region and the surface charge

nint = 2n̄
Ebulk

Eint
. �41�

In Fig. 3, this analytical description is compared with simu-

lation results for Q̃tot=106 and ṼA=103, a representative situ-
ation for the space charge limited regime. As with the geom-
etry limited regime, we see that the dynamics are described
well by the theory, although diffusion smears out the sharp
variations. Figure 3 also justifies the assumption of a homo-
geneous current density.

The surface charge Qs during the depletion phase can be
calculated by taking the difference between the total charge
and the integral of the concentration in Eq. �15�, using Eq.
�40�: Qs=2qn̄	SC�1−2nint / �nint+2n̄��. As in Sec. II A 2, we
introduce diffusion to find a more detailed description of the
concentration and the electric field close to the electrodes.
The charge near the electrode is then not described by a
surface charge anymore, but forms a very narrow double
layer. Using the approximation that is close to the electrodes
only one polarity of charges is present, we can write Eq. �3�
as J=��E−D�� /�x. We assume that the charges in the
double layer are already in the steady state distribution, so
the integral of this equation over any interval within this
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double layer is zero. Using Eq. �2� and neglecting diffusion
outside the double layer, this results in EDL

2 −2VT�EDL /�x
=Eint

2 , in which EDL�x , t� is the electric field in the double
layer near the negative electrode. A similar differential equa-
tion arises in the solution of the steady state situation of this
regime, and is solved in �26�. Using the same method, the
solution is

EDL = Eint coth
 Eint

2VT
�d

2
− x	 + arc tanh�Eint

Eel
	� , �42�

in which Eel�t� is the electric field at the electrode:

Eel = Eint +
Qs

��0
. �43�

The concentration in the double layer can be found using
Gauss’s equation, resulting in

nDL =
��0Eint

2

2qVT
csch2
 Eint

2VT
�d

2
− x	 + arc tanh�Eint

Eel
	� .

�44�

Equations �42� and �44� agree very well with numerical re-
sults �Fig. 4�.

B. Regimes with diffusion

When the applied voltage is low, diffusion is the dominant
transport mechanism. However, even for very low voltages,
drift cannot be completely neglected, otherwise the distribu-
tion of charges in the device would always remain homoge-
neous. Therefore, we have to use the full Nernst-Planck
equation in Eq. �3�, which can be combined with the conti-
nuity Eq. �4� to give

1

D

�n�

�t
= �

1

VT

�

�x
�n�E� +

�2n�

�x2 . �45�

The boundary conditions can be written as �VT�n� /�x�−d/2
= �E�−d /2, t�n��−d /2, t� and �VT /�x�d/2= �E�d /2, t�
�n��d /2, t�. In the regimes with diffusion, discrete surface
charge does not appear. We will, as in Sec. II A, discuss two
limiting cases in which the electric field is either almost ho-
mogeneous �in the diffusion limited regime� or almost com-
pletely screened �in the double layer limited regime�.

1. Diffusion limited regime

As in Sec. II A 1, we will replace Eq. �1� and �2� by E
=VA /d, so Eq. �45� becomes

FIG. 3. Comparison between theory �black curves� and simula-

tion �gray curves� for Q̃tot=106 and ṼA=1000 �representative for the
space charge limited regime�. Where the gray curves are not visible,
they are coinciding with the black curves. On the left, the electric
field, the concentration of positive charges and the total concentra-
tion in the middle of the device, as well as the external current, are
shown in function of time. On the right, the electric field, the con-
centration of positive charges, the total concentration and the cur-
rent density are shown in function of place at times 
̃1=0.000 35,

̃2=0.0025, and 
̃3=0.009 35. The dots on the left indicate these
three times, the dots on the right indicate the position from the
corresponding curves on the left.

FIG. 4. Comparison between theory �black curves� and simula-

tion �gray curves� for Q̃tot=106 and ṼA=1000 �representative for the
space charge limited regime�. Where the gray curves are not visible,
they are coinciding with the black curves. On the left, the electric
field and total concentration at the electrode are shown in function
of time. On the right, the electric field and total concentration in the
double layer are shown in function of place at times 
̃1=0.000 35,

̃2=0.0025, and 
̃3=0.009 35. The dots on the left indicate these
three times, the dots on the right indicate the position from the
corresponding curves on the left.
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1

D

�n�

�t
= �

ṼA

d

�n�

�x
+

�2n�

�x2 . �46�

The steady state distributions n�,SS�x� can then be found by
setting the time derivative in Eq. �46� zero, resulting in

n�,SS = n̄
ṼA

2
csch� ṼA

2
	e�ṼAx/d. �47�

The dynamic solution for this regime can be derived using
standard separation of variables techniques �29� and yields

n� = n�,SS�1 +
1

ṼA

eṼA/2�1/2�x/d�

��
i=1

�

CiX�,ie
−ṼA

2 /4�1+4i2�2/ṼA
2 �D/d2t	 , �48�

with

X�,i =
2i�

ṼA

cos�i
�

2
�

i�x

d
	 + sin�i

�

2
�

i�x

d
	 , �49�

Ci = 8

2i�

ṼA

�1 +
4i2�2

ṼA
2 	2 ��− 1�ie−ṼA/2 − 1� . �50�

For low ṼA, n� can be approximated as

n� = n̄�1 � ṼA
x

d
	 �

4ṼAn̄

�2 �
i=1

�
1

i2sin�i
�

2
	sin� x

d
i�	e−i2�2D/d2t,

�51�

from which it is clear that the steady state solution is reached
for t→�. Using the expansion of the steady state solution

n̄�1 � ṼA
x

d
	 = n̄
1 �

4ṼA

�2 �
i=1

�
1

i2sin�i
�

2
	sin� x

d
i�	� .

�52�

Equation �51� can also be written as

n� = n̄ �
4ṼAn̄

�2 �
i=1

�
1

i2sin�i
�

2
	sin� x

d
i�	�1 − e−i2�2D/d2t� ,

�53�

in which it is clear that n�= n̄ at t=0, as we expect. Using
Eq. �6�, the external current can be calculated as

I = I0
8

�2 �
i=1,3,5,. . .

1

i2e−i2�2D/d2t. �54�

With the identity �2 /8=�i=1,3,5,. . .i
−2 it becomes clear that,

for t=0, I= I0, as expected.
As time progresses, the term for i=1 becomes very

quickly dominant in Eqs. �51� and �54�, and in this case we
can write

n� = n̄�1 � ṼA
x

d
	 �

4ṼAn̄

�2 sin� x

d
�	e−�2D/d2t, �55�

I = I0
8

�2e−�2D/d2t. �56�

From Eq. �55�, we can conclude that m=2n̄. The fact that the
total concentration is homogeneous is typical for the regimes
in which diffusion is a limiting factor, as we will see in the
next paragraph.

Figure 5 shows a comparison between the theoretical de-
scription of the diffusion limited regime and simulation re-

sults for Q̃tot= ṼA=0.1, which are representative values for
this regime. Except at very small times, when neglect of the
higher order harmonics leads to small differences, the theo-
retical description agrees very well with the numerical re-
sults. It is clear that the electric field and the total concentra-
tion are indeed homogeneous and constant.

FIG. 5. Comparison between theory �black curves� and simula-

tion �gray curves� for Q̃tot=0.1 and ṼA=0.1 �representative for the
diffusion limited regime�. Where the gray curves are not visible,
they are coinciding with the black curves. On the left, the electric
field in the middle of the device, the concentration of positive
charges at the electrode and the total concentration in the middle of
the device, as well as the external current, are shown in function of
time. On the right, the electric field, the concentration of positive
charges, the total concentration and the current density are shown in
function of place at times 
̃1=0.01, 
̃2=0.1, and 
̃3=1. The dots on
the left indicate these three times, the dots on the right indicate the
position from the corresponding curves on the left.
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2. Double layer limited regime

When the applied voltage is low and the charge content is
high, both diffusion and screening are important. The limit-
ing regime under these circumstances has been solved in
Refs. �19� and �1�. Our aim in this paper is to show that,
using a similar approach as for the other regimes discussed in
this paper, we can arrive at the same conclusions. In the
space charge limited regime, the fact that screening is a lim-
iting mechanism leads to the assumption of a homogeneous
current density J. In the diffusion limited regime, it was
found that the total concentration m is homogeneous. In the
regime of low voltage and high concentration, both screening
and diffusion are limiting mechanisms, and we can combine
the two assumptions �J /�x=0 and m=2n̄. Using Eqs. �2� and
�3�, we find then

J = 2qn̄��E − 	DL
2 �2E

�x2 	 , �57�

in which the double layer length �or the Debye length� 	DL is
defined as

	DL =
��0VT

2qn̄
. �58�

The steady state solution Ess�x� of the electric field can be
found by setting the current density in Eq. �57� zero, and
using Eq. �1� and the fact that the electric field is symmetric
around x=0:

Ess =
VA

d

d

2	DL
csch� d

2	DL
	cosh� x

	DL
	 . �59�

Using Eq. �2�, we find �ss�x�, the steady state solution of the
charge density

�ss = qn̄ṼAcsch� d

2	DL
	sinh� x

	DL
	 . �60�

Taking the derivative of Eq. �57� with respect to x, and using
Eq. �2� and the assumption of a homogeneous current den-
sity, we obtain �=	DL

2 �2� /�x2. Using Eq. �60�, we can see
that the transient part �tr�x , t� of the charge density, defined
as �tr=�−�ss, is also a solution of this differential equation
�tr=	DL

2 �2�tr /�x2. Using the fact that � has to be antisymmet-
ric around x=0, the solution of this differential equation is

�tr = C sinh� x

	DL
	 , �61�

in which C�t� is an integration constant that can be found by
calculating the external current using two different methods.

For the first method, we use Eqs. �1� and �2� to find the
electric field

E = Ess +
	DL

��0
C
cosh� x

	DL
	 −

2	DL

d
sinh� d

2	DL
	� ,

�62�

which we can use in Eq. �5� to find an expression for the
external current

I = 	DL
dC

dt

cosh� d

2	DL
	 −

2	DL

d
sinh� d

2	DL
	� . �63�

For the second method, we calculate the current density J
using Eqs. �57� and �62�:

J = − C
2D

d
sinh� d

2	DL
	 . �64�

Since the current density is homogeneous, Eq. �6� shows that
it has to be equal to the external current, so the right-hand
sides in Eqs. �63� and �64� have to be equal:


coth� d

2	DL
	 −

2	DL

d
�dC

dt
= −

2D

	DLd
C . �65�

Since at t=0, the transient part of the charge density has to
compensate the steady state part, we can write C�0�
=−qn̄ṼAcsch� 1

2d /	DL�. The solution of Eq. �65�, using this
initial condition, is

C = − qn̄ṼA csch� d

2	DL
	e−t/
DL. �66�

in which 
DL �s� is the time constant of the double layer
regime


DL = 
coth� d

2	DL
	 −

2	DL

d
�	DLd

2D
, �67�

which reduces, for 	DL�d, to 
DL= 1
2	DLd /D. The charge

concentration and electric field are then

� = �ss�1 − e−t/
DL� , �68�

E =
VA

d
e−t/
DL + Ess�1 − e−t/
DL� . �69�

The external current can be calculated using Eqs. �64� and
�66�:

I = I0e−t/
DL. �70�

The comparison, in Fig. 6, between the theoretical descrip-
tion of the double layer limited regime and numerical results

for the representative situation Q̃tot=106 and ṼA=0.1, justi-
fies the assumption that the total concentration is constant
and homogeneous. The other quantities are only non-
homogeneous in the double layer close to the electrodes. The
assumption of a homogeneous current density does not hold
near the electrodes, but the variation occurs over such a
small layer that the external current is still described very
well by Eq. �70�.

III. APPLICABILITY OF THE REGIMES

A. Comparison between theory and simulation

To investigate in which regions of the �ṼA , Q̃tot�
parameter-plane the respective regimes are applicable, we
have performed over 20000 simulations covering the plane.
For each simulation, we calculate one value for each regime,
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which is a measure for the difference between the simulation
and the theory. Representing the time and place dependent
dynamics by one value is arbitrary, and for different aspects

of the dynamics different regions in the �ṼA , Q̃tot� parameter
plane will be described well by the theory. Therefore, the aim
of this paragraph is to obtain a general idea of the applica-
bility of the theoretical descriptions of the four regimes.

As a place-independent quantity which represents the dy-

namics of the device for a particular point in the �ṼA , Q̃tot�
parameter plane, we choose the external current I. For each

regime, we calculate ��ṼA , Q̃tot�, the normalized root mean
square error between the simulated and the theoretical cur-
rent, with the following formula:

� =
1

Isim�0�

�

t90%

t10%

�Isim − Ith�2dt

t10% − t90%
. �71�

In this formula, t90% and t10% are the times for which the
simulated current Isim reaches 90% and 10% of its initial

value Isim�0�. Ith is the theoretical current which can be cal-
culated for the four regimes, using Eqs. �23�, �35�, �56�, and
�70�. Depending on which equation we choose, we obtain the
values �GL for the geometry limited regime, �SCL for the
space charge limited regime, �DL for the diffusion limited
regime or �DLL for the double layer limited regime.

Figure 7 shows the smallest of these four values for all of

the performed simulations on the �ṼA , Q̃tot� parameter plane.
We can clearly see the four regions which correspond to the
four regimes. As expected, the geometry limited regime is

applicable for small Q̃tot and large ṼA, the space charge lim-

ited regime for large Q̃tot and ṼA, the diffusion limited regime

for small Q̃tot and ṼA, and the double layer limited regime for

large Q̃tot and small ṼA.

B. Borders between the regimes

It is useful to have a “rule of thumb” to determine quickly
which regime describes best the situation for a particular

combination of values for Q̃tot and ṼA. In order to find such
rules we will compare the different time constants which are
typical for the different regimes.

The time constants 
dep=d2 / ��VA� in the geometry lim-
ited regime, 
̃DL=d	DL / �2D� in the double layer limited re-
gime, and d2 / ��2D� in the diffusion limited regime all rep-
resent the initial slope of the external current. 
dep becomes

equal to d2 / ��2D� for ṼA=�2�10, which is plotted in Fig. 7
and can be seen to be a useful rule to distinguish between the
geometry limited and the diffusion limited regime. Similarly,


DL is equal to d2 / ��2D� for Q̃tot=�4 /4�25, which turns out
to be a useful border between the diffusion limited and the
double layer limited regime. To obtain a border between the
geometry limited regime and the space charge limited re-
gime, we compare the separation times 
sep, which are given
by d2 / �2�VA� and Eq. �30�, respectively. They are equal for

Q̃tot=9ṼA, which is also plotted in Fig. 7.

FIG. 6. Comparison between theory �black curves� and simula-

tion �gray curves� for Q̃tot=106 and ṼA=0.1 �representative for the
double layer limited regime�. Where the gray curves are not visible,
they are coinciding with the black curves. On the left, the electric
field, the concentration of positive charges and the total concentra-
tion in the middle of the device and at the electrode, as well as the
external current, are shown in function of time. On the right, the
electric field, the concentration of positive charges, the total con-
centration and the current density are shown in function of place
near the electrode at times 
̃1=0.0003, 
̃2=0.001, and 
̃3=0.003.
The dots on the left indicate these three times, the dots on the right
indicate the position from the corresponding curves on the left.

FIG. 7. The relative error between theory and simulation in the

�ṼA , Q̃tot� parameter plane. A darker shade corresponds to a better
agreement. The four different regimes and the borders between
them are indicated.
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A rule for the border between the space charge limited
and the double layer limited regimes is not so easy to obtain
because there are no time constants that have a similar mean-
ing in both regimes. In Ref. �1�, two intermediate regimes
between the double layer limited regime �which is referred to
as the ‘linear’ regime� and the space charge limited regime
are discussed. The “weakly nonlinear” regime describes the
situation in which the total concentration can still be consid-
ered constant in the bulk �as in the double layer limited re-
gime�, but not near the electrodes. The “strongly nonlinear”
regime describes the situation in which space charge layers
are formed �as in the space charge limited regime�, but the
electric field is still mostly screened by the double layers.
The criterium used in Ref. �1� to distinguish between these

two intermediary regimes is Q̃tot= �210 /�2�sinh8�ṼA /8�. In
Fig. 7, we can see that this criterion is also useful as a border
between the double layer limited and the space charge lim-
ited regimes.

IV. CURRENT MEASUREMENTS

We illustrate and validate the general analytical descrip-
tion, which is relevant for a broad range of applications, by
experiments on one particular material system. Mixtures of
nonpolar liquids and surfactants allow a good control of the
charge content over several decades. The low reactivity, both
in the bulk and at the electrodes, allows an almost complete
depletion of charges, and prevents generation currents to
dominate the electrical behavior. For these reasons, these
mixtures act as a model system for the problem discussed in
this work.

The devices used for the transient current measurements
consist of two glass plates, both coated with a transparent
ITO electrode of 1 cm2. Spacer balls hold these two elec-
trodes separated at a distance d. The space between the elec-
trodes is filled with a mixture of high purity �99.9%�
n-dodecane ��=2� �Aldrich� and OLOA 1200, a 50% mineral
oil containing surfactant polyisobutylene succinimide �Chev-
ron� �30�. The surfactant molecules form inverse micelles,
which can disproportionate resulting in a symmetric 1:1 elec-
trolyte �14,15�. The concentration of charged inverse mi-
celles n̄ is proportional with the weight percentage of surfac-
tant in the mixture, with a proportionality constant of
roughly 5�1019 m−3 per wt % �14�.

Five devices with different thicknesses and concentrations
of surfactant have been made. The exact thickness of each

device was obtained by measuring the capacitance of the
device before filling. Table I gives an overview of the prop-
erties of the different devices. They are chosen in such a way

that the resulting values for Q̃tot cover a large interval in
Figs. 7 and 8.

Before every measurement, the devices are short circuited
for a sufficient amount of time to ensure a homogeneous
distribution of charges. Then the voltage is abruptly changed
to VA and the resulting external transient current is measured.
These measurements were performed for voltages of 25 mV,
100 mV, 250 mV, 1 V, and 2.5 V. Figure 8 shows the location

in the �ṼA , Q̃tot� parameter-plane of all the measurements
shown in this section.

A. Low voltages

The currents, measured when a voltage of 25 mV is ap-
plied on each of the five devices, are shown in Fig. 9. The
concentration n̄ and the mobility � of the charges have been
estimated by fitting simulations to these measurements. The
best fits are included in Fig. 9, and are found for the values
listed in the first columns of Tables II and III. The values for
the concentration are consistent with the expected values.

TABLE I. Properties of the five devices used for the measure-
ments shown in this work.

Device
number

Surfactant
concentration

�wt %�
Expected
n̄ �m−3�

Measured
d ��m�

Estimated

Q̃tot �no unit�

1 0.01 5.0�1017 2.2 1.75

2 0.03 1.5�1018 4.5 22

3 0.10 5.0�1018 9.4 320

4 0.30 1.5�1019 14.8 2380

5 1.00 5.0�1019 26.8 26000

FIG. 8. Location of the �ṼA , Q̃tot� parameters of the measure-

ments shown in this work, in the �ṼA , Q̃tot� parameter plane.

FIG. 9. Current measurements and numerical fit for the five
devices in Table I, when a voltage step from 0 V to 25 mV is
applied.
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Also the values for the mobility agree well with the results in
other works �14,19,20�.

The good agreement between the measurements and the
simulations in Fig. 9 and in the following paragraphs, indi-
cates that the dynamics of the devices during the transient
phase can be modeled well by drift, diffusion and screening,
as described by the Poisson-Nernst-Planck equations. The
deviations at very short times are a result of the charging
time of the measurement setup. At large times, other effects,
such as the generations of new charged inverse micelles �14�
and reactions at the electrodes, become important, resulting
in a current even when the transient phase is finished.

B. High voltages

The currents, measured when a voltage of 2.5 V is applied
on each of the five devices, are shown in Fig. 10, together
with the corresponding simulations for the parameters found
in the previous paragraph. At high voltages, we can, how-
ever, estimate the concentration and the mobility more easily
by using the fact that positive and negative charges become
completely separated �19,20,28�. We can then use Eqs. �7�
and �21� to find

ˆ
n̂̄ =

1

qdS
�

0

�dep

Idt ,
�72�

ˆ

�̂ =
d2

2VA
Î0��

0

�dep

Idt�−1

. �73�

The hats denote estimations of the corresponding quantities.
The integrals in these equations are only calculated until the
end of the transient at the depletion time, which can be easily
estimated from the measurements, to avoid including the cur-
rent as a result from reactions in the bulk or at the electrodes.
In estimating the initial current, an extrapolation has to be
made to take into account the charging time of the measure-
ment setup.

Applying this estimation to the measurements of Fig. 10
results in the values shown in the second column of Tables II
and III. The good agreement with the values obtained from
the fit with simulations demonstrates that the assumption of a
complete separation of charges is justified.

C. Low charge content

Figure 11 shows the measured currents, together with the

fitted simulation, for the device with the lowest Q̃tot �device

TABLE II. Average concentration of charges, estimated by nu-
merical fitting �for the five devices�, by applying Eq. �72� at 2.5 V
�for the five devices�, and by fitting with the analytical expressions
in each of the four regimes �only for devices 1 and 5�.

n̂̄ �m−3�

Device
Numerical fit

with simulation
Using

Eq. �72�

Theoretical
fit for high

voltage

Theoretical fit
for low
voltage

1 4.3�1017 3.5�1017 4.2�1017 4.1�1017

2 1.3�1018 1.3�1018

3 6.6�1018 6.6�1018

4 1.4�1019 1.5�1019

5 7.2�1019 6.2�1019 8.5�1019 7.8�1019

TABLE III. Mobility of the charges, estimated by numerical
fitting �for the five devices�, by applying Eq. �73� at 2.5 V �for the
five devices�, and by fitting with the analytical expressions in each
of the four regimes �only for devices 1 and 5�.

�̂ �m2 V−1 s−1�

Device
Numerical fit

with simulation
Using

Eq. �73�

Theoretical
fit for high

voltage

Theoretical fit
for low
voltage

1 8.8�10−10 7.1�10−10 8.5�10−10 8.6�10−10

2 9.8�10−10 8.7�10−10

3 8.0�10−10 7.0�10−10

4 9.0�10−10 8.1�10−10

5 7.0�10−10 8.1�10−10 5.9�10−10 6.4�10−10

FIG. 10. Current measurements and numerical fit for the five
devices in Table I, when a voltage step from 0 V to 2.5 V is applied.

FIG. 11. Current measurements and numerical fit for device 1
�with the lowest charge content�, when a voltage step from 0 V to
five different voltages is applied.
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1�, and for five different voltages. On Fig. 8 we can see that
for the lowest voltage the diffusion limited regime should
apply, while for the highest voltage the geometry limited
regime should apply. Therefore we can fit the derived expres-
sions for the current with the measurements to find the con-
centration and the mobility.

For the measurement at 2.5 V we find the best linear fit of

the form −Ât+ B̂, shown in Fig. 12�a�. Using Eq. �23�, the
concentration and the mobility can then be calculated as

n̂̄ =
1

2qdS

B̂2

Â
, �74�

�̂ =
d2

VA

Â

B̂
. �75�

The results for device 1 are also listed in Tables II and III.
For the measurement at 25 mV we find the best exponen-

tial fit of the form I= Ĉ exp�−D̂t�, shown in Fig. 12�b�. Using
Eq. �56�, the concentration and the mobility can then be cal-
culated as

n̂̄ =
�4kT

16q2dVAS

Ĉ

D̂
, �76�

�̂ =
qd2

�2kT
D̂ . �77�

The results for device 1 are listed in Tables II and III. The
good agreement between all estimations for the mobility and
the concentration indicates the validity of the theoretical ap-
proximations.

It should be noted that for the above estimations we have
to know the charge q of the charged inverse micelles. How-
ever, by combining the measurements at high and at low
voltages, we can also estimate this charge. Using Eqs. �75�
and �77�, we find

q̂ =
�2kT

VA

Â

B̂D̂
. �78�

For our measurements, this results in a charge of 1.58
�10−19 C, which confirms the results in other works �14,26�

that the valency of the charges in the mixture used in this
work is 1.

D. High charge content

The measured currents at five different voltages for the

device with the highest Q̃tot �device 5�, are shown, together
with the simulations, in Fig. 13. Figure 8 shows that in this
case for the lowest voltage the double layer limited regime
should apply and for the highest voltage the space charge
limited regime.

Similarly as in the previous paragraph, we can compare
the measurements with the theoretical expressions for the
current to estimate the mobility and the concentration. For
the space charge limited regime however, this results in im-
practical expressions. In this case, it is much easier to find
the best fit between the measurement at 2.5 V and Eq. �35�
graphically or numerically. This fit is found for the values
listed in Tables II and III, and is shown in Fig. 14�a�.

For the measurement at the lowest voltage, we find the

best exponential fit of the form I= Ĉ exp�−D̂t�, shown in Fig.
14�b�. Using Eq. �70�, we can estimate the concentration and
the mobility as

n̂̄ =
2kT

��0q2VA
2S2

Ĉ2

D̂2
, �79�

FIG. 12. Fit between theory and measurement for device 1 �with
the lowest charge content�, when �a� a voltage step from 0 V to 2.5
V is applied �the geometry limited regime� and �b� a voltage step
from 0 V to 25 mV is applied �the diffusion limited regime�.

FIG. 13. Current measurements and numerical fit for device 5
�with the highest charge content�, when a voltage step from 0 V to
five different voltages is applied.

FIG. 14. Fit between theory and measurement for device 5 �with
the highest charge content�, when �a� a voltage step from 0 V to 2.5
V is applied �the space charge limited regime� and �b� a voltage step
from 0 V to 25 mV is applied �the double layer limited regime�.
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�̂ =
qVAS��0d

4kT

D̂2

Ĉ
. �80�

The resulting values for device 5 are listed in Tables II and
III.

Also for this device with high Q̃tot we can estimate the
charge q. Now we combine Eq. �73� �for the measurement at
the highest voltage� and Eq. �80� �for the measurement at the
lowest voltage�, to find

q̂ =
2kTd

��0SVA,lowVA,high

Ĉ

D̂2
Î0��

0

�dep

Idt�−1
.

ˆ

�81�

For our measurements, this results in a charge of 2.03
�10−19 C. Again this confirms the assumption of univalent
charges.

V. BEYOND THE MODEL PROBLEM

The theoretical and numerical results presented in this
work are all based on a simple and idealized problem: the
movement of inert point-charges in a one-dimensional geom-
etry with perfectly blocking electrodes, when a voltage is
suddenly applied. We showed that the one-dimensional de-
vices containing a nonpolar liquid with surfactant that we
used to obtain the experimental results, are well described by
this model problem for a wide variety of parameters. This is,
however, an exceptional case: in most practical systems ad-
ditional effects will play a role, at least for some parameter
regions. Also the geometry, the boundary conditions and the
initial condition will be less than ideal in most practical ap-
plications.

We found approximate analytical solutions in a one-
dimensional geometry, but much more complicated dynam-
ics arise in two- or three-dimensional problems. Effects such
as tangential conduction in the double layers and recirculat-
ing bulk diffusive flow have been shown to arise in even the
simplest more-dimensional geometries �31�.

Even for one-dimensional problems, the dynamics are
much more complicated when the charges are initially not in
a homogeneous distribution �for instance, when the polarity
of an applied voltage is reversed�. In this case, the electric
field does not always have to point in the same direction in
the whole device. The external electric current has been
shown not to decrease monotonically because of this �19�.

When charges are forced out of their equilibrium distribu-
tion, the �dissociation or disproportionation� reactions that
are responsible for their origin will play a role. The continu-
ous generation of new charges prevents the bulk to become
completely depleted, and the fluxes of new charges can be in
some cases more important than the transient flux of initially
existing charges �14�.

When the electrodes are not perfectly blocking, a DC cur-
rent can pass through the cell �32�. Faradaic reactions can
result in a diffusion limited current, but also in a reaction
limited current leading to space charge at the opposite elec-
trode �33�. Studies which are analogous to the present work,
but for nonblocking electrodes, have been carried out �34�. In

semiconductors, the Mott-Gurney law for space charge lim-
ited current of injected charges is derived on very similar
assumptions as the ones made in this work �35�.

At large voltages, the concentration of charges near the
electrodes can become very high. In these circumstances,
charge crowding leads to the necessity to consider steric ef-
fects �17,18�, correlation effects and solvent interactions.
This will be most important in the space charge limited re-
gime, and may in some systems pose a restriction on the
formation of space charge layers.

In this work, the liquid in which the charges move is
considered to be static. However, in reality the friction force
exerted by the medium on the charges �which results in the
transport being described by a mobility� leads to a reaction
force on the liquid, and electrohydrodynamics have to be
included. This results in effects such as induced charge
electro-osmosis �36,37� and bulk electroconvection �38,39�.
Electrohydrodynamical effects will be most important in
more-dimensional geometries, but can even in the one-
dimensional problem lead to symmetry-breaking and insta-
bility �40�.

It is obvious that, for most realistic situations, the
Poisson-Nernst-Planck equations have to be extended or
even modified to provide a good description. However, the
solutions, presented in this work, of the simple model prob-
lem in a simple situation provide insights that are useful in
more complicated situations.

VI. CONCLUSIONS

We have derived approximate analytical expressions
which are solutions of the Poisson-Nernst-Planck equation,
and describe charge transport under the influence of an elec-
tric field, in four limiting cases. In the geometry limited re-
gime, applicable at low charge contents and high voltages,
diffusion, and the effect of the charges on the electric field
are neglected. The only restriction on the external current is
then the condition that charges cannot move out of the de-
vice. This results in a uniform movement of the charges to-
ward the electrodes until the bulk is completely depleted.
During this transient, the external current decreases linearly.

In the space charge limited regime, which occurs at high
charge contents and high voltages, only diffusion is ne-
glected. Because of the high charge content, we can assume
the current density in the device to be homogeneous. This
results in transient space charge layers, which screen the field
in the bulk almost completely, resulting in a −3 /4 power law
decrease of the current. When the bulk is completely de-
pleted of charges, the space charge layers disappear, the elec-
tric field becomes homogeneous again and the current drops
quickly to zero.

In the diffusion limited regime, which is valid for low
charge contents and low voltages, we neglect the influence of
charges on the electric field. Diffusion prevents the charges
from separating, which allows us to assume that the total
concentration is homogeneous at all times. The resulting ex-
ternal current decreases exponentially.

In the double layer limited regime, applicable at high
charge contents and low voltages, the combination of diffu-
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sion and screening of the electric field results in thin double
layers in which all variations occur. In the bulk all quantities
are homogeneous. We solve this regime by assuming that
both the current density and the total concentration are ho-
mogeneous over the whole device. Charging the double lay-
ers results in an exponentially decreasing current.

The analytical results are tested with detailed numerical
simulations. The distribution of charges, the electric field and
the external current all correspond very well, both in func-
tion of time as in function of position. These results provide
a better understanding of various nonlinear effects, which are

becoming increasingly important in many practical applica-
tions in which the Poisson-Nernst-Planck equations are rel-
evant.

The expressions for the external current are also tested
against experiments on a mixture of dodecane and a surfac-
tant, providing us a way to determine various important
properties of the devices. The good agreement between the
results from the different regimes with each other, with nu-
merical fitting and with results from other works are a strong
indication of the existence of each of the four regimes.
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