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A general Monte Carlo simulation method of calculating the elastic constants of a polydisperse hard-sphere
colloidal crystal is developed. Elastic constants of a size-polydisperse hard-sphere fcc crystal are calculated.
The pressure and three elastic constants �C11, C12, and C44� increase significantly with the polydispersity. It was
also found from extrapolation that there is a mechanical terminal polydispersity above which a fcc crystal will
be mechanically unstable.
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I. INTRODUCTION

Elastic constants are among the most important physical
quantities describing macroscopic mechanical behaviors of a
crystal. For hard-sphere crystals, the elastic constants have
been calculated by various groups with different methods
including density functional theory �1–5�, Monte Carlo �MC�
simulations �6–10�, and molecular dynamics simulations
�11,12� in the last two decades. The work of Jaric and Mo-
hanty �1� and Jones �2� predicted a negative Poisson ratio in
the hard-sphere crystal, which stimulated much interest in
the investigation of the elasticity of this system. However,
their predictions were proved incorrect by subsequent studies
�3,4,6,11�. The hard-sphere system is the simplest of the sys-
tems which have a pure repulsion interaction; thus, the study
of the elasticity of hard-sphere crystals is an excellent start-
ing point to the studies of more complicated and realistic
repulsive systems. Due to the simplicity of the hard-sphere
system, it often serves as a simple model system for testing
new theoretical approaches. The hard-sphere model is also
an important model for a large class of colloid systems; un-
derstandings of colloid systems have greatly benefited from
the extensive researches of the monodisperse hard-sphere
model. A more realistic model describing hard-sphere colloi-
dal systems is the size-polydisperse hard-sphere system. The
size polydispersity of colloid particles is an intrinsic property
of colloidal systems �13�. The polydispersity of colloidal
hard spheres is characterized by the ratio of the standard
deviation to the mean of the diameter. It has a remarkable
influence on the thermodynamic and dynamic behaviors of
the system �14–22�. It is natural to expect that the elastic
constants of a polydisperse hard-sphere crystal differ from
those of a monodisperse hard-sphere crystal. However, it
seems that the problem of the elastic constants of polydis-
perse hard-sphere crystals is not properly addressed in the
literature to the best of our knowledge.

In this work we propose a general Monte Carlo scheme to
investigate the elasticity of a polydisperse hard-sphere sys-
tem, by which we calculated the elastic constants of a size-
polydisperse hard-sphere crystal. We only consider face-
center-cubic �fcc� crystal structure in this study, as our
previous calculations �23� showed that fcc structure is still

the most stable one for a size-polydisperse hard-sphere crys-
tal as in the monodisperse case. When simulating a polydis-
perse crystal the semigrand ensemble is the best candidate
�15,24,25�. In the ensemble the imposed physical quantity is
the chemical potential difference �� of particles of each
kind to a reference kind. To obtain the chemical potential
difference for a prescribed size distribution ����, one has to
solve a functional inverse problem �26–28�, which can be
accomplished easily by the semigrand ensemble version of
the nonequilibrium potential refinement �NEPR� method
�SNEPR method� �23�.

Simulation approaches for calculating the elastic con-
stants of a monodisperse hard-sphere crystal are divided into
two categories. One is the “fluctuation” method �7� where
elastic constants are related to the thermal averages of the
corresponding stress components. There are some difficulties
to extend the method to the polydisperse system. In the
present paper we employ another method, the so-called
“strain” method �6,8,10–12�, where elastic constants can be
obtained from the free-energy–strain relation or its first de-
rivative, the stress-strain relation. In the simulation we used
the extended ensemble method �23,29� to determine the
Helmholtz free energy of the crystal with different strain,
which can also be obtained by the thermodynamic integra-
tion method �30�. Then the elastic constants were extracted
from the free-energy–strain data.

The paper is organized as follows. In Sec. II, we introduce
the model and explain how the semigrand ensemble can be
applied to calculate the elastic constants of polydisperse
hard-sphere crystals. Section III describes the simulation
method employed in this work. The computational details
and results are provided in Sec. IV. Finally, we present our
conclusions in Sec. V.

II. MODEL AND THEORY

A. Semigrand canonical emsemble

The semigrand canonical ensemble �SCE� is the most
suitable ensemble for a simulation study of the elastic prop-
erties of a size-polydisperse hard-sphere crystal. In this en-
semble the total number of particles and the distribution of
particle sizes are fixed while the number of particles of each
size is permitted to fluctuate. In the simulation study, the
total number of particles in the system is usually limited to a*hrma@sjtu.edu.cn
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few hundreds to thousands, which is too small to distribute
accurately according to a prescribed distribution of particle
sizes. With the semigrand canonical ensemble, the distribu-
tion is realized through averages since the particle sizes are
allowed to fluctuate. The grand canonical ensemble can also
achieve the goal of distribution realization, but insertion and
deletion of particles often require more computational re-
sources. For a size-polydisperse system consisting of N par-
ticles with the composition distribution ���� in a constant
volume V, the Helmholtz free energy F(N ,V , ������ ,T) of
the system is given by

F = − PV + N� ��������d� , �1�

where P is the pressure, � is the diameter of the particles,
and ���� is the chemical potential of particles with diameter
�. The semigrand canonical free energy �SCFE�
Y(N ,V , ������ ,T) is obtained from the Helmholtz free en-
ergy by the Legendre transformation

Y = F − N� ����� − ���r������d� , �2�

where �r is the diameter of an arbitrarily chosen reference
component. The SCFE Y(N ,V , ������ ,T) is a functional of
����−���r�. In the semigrand canonical ensemble the ther-
modynamic variable to characterize the equilibrium system
is ����−���r� rather than the composition distribution ����.

The partition function � for this ensemble is �31�

� =
1

N!
�

�1

¯ �
�N

ZN�	
i=1

N
1

�3��i�



�exp�	�
i=1

N

����i� − ���r��
	
i=1

N

d�i; �3�

here, ���i�=h / �2
mikT�1/2 is the thermal wavelength of the
ith particle and ZN is the canonical configuration integral for
a given size configuration:

ZN = �
r1

¯ �
rN

e−	U	
i=1

N

dri. �4�

By introducing the excess chemical potential relative to the

ideal gas �ex��i�=���i�−kT ln�
N���i�3

V �, we can rewrite � in a
more symmetric form

� =
1

N!�3N��r�
�
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d�i. �5�

The partition function � is related to the thermodynamic po-
tential Y through

Y = − kT ln �„N,V,T,�ex��� − �ex��r�… . �6�

In practical simulations the diameter of particles are dis-
cretized into a series of special particle sizes or divide the

total size range of particles into many small bins �27,28�. As
a result, the semigrand canonical partition function � be-
comes

� =
1

N!�3N��r�
�

�1=�min

�max

¯ �
�N=�min

�max

ZN

�exp�	�
i=1

N

��ex��i� − �ex��r��
; �7�

here, �min and �max are, respectively, the minimum and maxi-
mum of particle sizes.

B. Elastic constants of a size-polydisperse solid

The elasticity of a solid is the property that the solid de-
forms in response to an external stress and returns to its
initial configuration when the stress is removed. Usually the
deformation is small; otherwise, the deformation may be-
come permanent. In the case of hard-sphere solids, the situ-
ation is more complicated because an external stress is nec-
essary to stabilize the solid, while the deformation of the
solid is induced by exerting an excess external stress. The
deformation of a continuous solid can be described by the
Lagrangian strain tensor

�ij =
1

2
� �ui

�xj
+

�uj

�xi
+

�uk

�xi

�uk

�xj
�; �8�

here, ui is the ith component of the displacement field and xi
is the ith component of the position of the displaced point in
the solid; repeated indices are summed from 1 to 3. The
Helmholtz free-energy density f =F /V �where V is the vol-
ume of the undeformed solid� is a functional of the strain
field. For a homogeneous deformation—namely, the La-
grangian strain tensor—�ij is independent of the position and
the free-energy density becomes a function of the constant
strain. The elastic constants can be defined in terms of the
following Taylor expansion of the free-energy density:

f��ij� = f�0� + Tij�0��ij +
1

2
Cijkl�ij�kl + ¯ , �9�

where f�0� is the Helmholtz free-energy density of the un-
strained solid and Tij�0� is the stress tensor of the unstrained
solid which is necessary to stabilize the hard-sphere crystal,
in the case of an fcc hard-sphere solid, Tij�0�=−p�ij, where p
is the hydrostatic pressure. The Cijkl are the second-order
elastic constants.

It should be emphasized that in the case of a size-
polydisperse system, the composition distribution of the
strained system must remain the same as that of the un-
strained system; this is because �ij and ���� are two inde-
pendent variables of the Helmholtz free energy. Thus the
explicit expression of elastic constants is

Cijkl = � �2f���
��ij��kl

�
����;�=0

. �10�

Here the subscript ���� means that the distribution of particle
sizes is fixed during the application of strain. In the semi-
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grand canonical ensemble, the Helmholtz free-energy density
of the strained system with strain tensor � and composition
distribution ���� is

f��� = y��� +
N

V
� ����,�� − ���r,�������d�

= y��� +
N

V
� ��ex��,�� − �ex��r,�������d�

+
3NkT

V
� ln� ����

���r�
�����d�; �11�

here, y=Y /V. In the semigrand ensemble the composition
distribution ���� depends not only on the chemical potential
difference, but also on the strain �ij. Therefore, in order to
keep the composition distribution unchanged, the chemical
potential difference �ex�� ,��−�ex��r ,�� has to be adjusted
for each strain �ij. That means at each given strain the
chemical potential difference is recalculated. The evaluation
of the chemical potential difference for a given composition
distribution and strain can easily be performed by the
SNEPR method �23�, explained in the following subsection.

For the size-polydisperse hard-sphere fcc crystal, there are
only three independent second-order elastic constants C1111,
C1122, and C1212. In Voigt notation they can be written in a
more compact format: C11=C1111, C12=C1122, and C44
=C1212. It should be noted that the elastic constants defined
in this way is not the one that is measured directly in experi-
ments, though it is widely used in theoretical investigations
�5,6,9–12�.

For a cubic crystal �including fcc structure� under isotro-
pic pressure P the experimentally measured elastic constants
CT are related to the above-defined C by the following rela-
tions �4�:

C11
T = C11 − P, C12

T = C12 + P, C44
T = C44 − P . �12�

It is only when P=0 that the two sets of elastic constants
coincide. A detail discussion of the elastic constants under
stress can be found in �32�.

III. SIMULATION METHOD

A. SNEPR method

In order to fix the composition distribution of the polydis-
perse crystal, we extend the NEPR algorithm �28� to the
semigrand canonical ensemble. The algorithm can be used to
find the chemical potential difference for a prescribed com-
position distribution—i.e., ��ex���=��ex��������—at a
given strain. Here, we only give a brief description of the
method. A detailed presentation can be found in Refs.
�23,28�. For a given particle size distribution and strain, the
chemical potential difference can be calculated by a Monte
Carlo iteration procedure. First, an initial guess of the excess
chemical potential is assigned to the implemention of a semi-
grand canonical ensemble simulation, and then it is modified
at every few MC steps according to the instant size distribu-
tion Pins��� as follows:

��ex� ��� = ��ex��� − �i�Pins��� − P���
Pins���

� ∀ � . �13�

Here �i is a modification factor of the ith iteration. When the

difference of the average size distribution P̄��� and the given
composition is less than a specified value 
,


 � max�� P̄��� − P���
P���

�� , �14�

one loop of the iteration is finished. The modification factor
is then reduced, and the excess chemical potential of the last
iteration is used as the initial input and starts the next itera-
tion. The iteration continues until the modification factor �
reaches a very small value, typically 10−5, and the resulting
excess chemical potential is then regarded as the solution of
the problem.

In order to check the validity of the SNEPR method, we
apply it to both unstrained and strained polydisperse hard-
sphere crystals. Figure 1�a� shows the calculated excess
chemical potential for the truncated Schultz distribution as a
function of the diameter of particles. The lower dotted and
upper solid lines correspond to the unstrained crystal and the

(b)

(a)

FIG. 1. �a� The solved excess chemical potential as function of
the diameter of particles. The dotted line corresponds to the un-
strained crystal and the solid line to the crystal with a contraction
strain. �b� The solid line is the plot of the truncated Schultz func-
tion. The dotted and dashed lines are, respectively, the composition
distribution for the unstrained and strained crystals, which are ob-
tained from simulation by using the ��ex��� plotted in �a�. It is
difficult to distinguish the three distributions.
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crystal with a contraction strain 0.004, respectively. In the
contracted crystal it is more difficult to increase the particle
size, so a higher excess chemical potential is necessary to fix
the composition distribution. Figure 1�b� shows the compari-
son of the given Schultz distribution and the distribution gen-
erated with the calculated excess chemical potential. In Fig.
1�b� we plot three lines of the distribution: the solid line is
the given distribution, the dotted line is the distribution gen-
erated from the chemical potential difference for the un-
strained crystal, and the dashed line is the one for the
strained crystal. The agreement among the three distributions
is excellent and nearly undistinguishable in the figure.

B. Free-energy difference calculation

To determine the elastic constants one only needs to know
the Helmholtz free-energy difference between the unstrained
and strained systems with the same composition distribution.
The Helmholtz free-energy difference can be decomposed
into two parts according to Eq. �11�:

�f��� = �y��� + ��N

V
� ��ex��,�� − �ex��r,�������d�
 ,

�15�

where � denotes the excess quantities relative to the un-
strained system. Correspondingly, the elastic constants be-
comes

Cijkl = � �2��f����
��ij��kl

�
����;�=0

. �16�

The second term on the right-hand side of �15� can be
calculated when the �ex��i ,��−�ex��r ,�� for the fixed com-
position is determined. Our main task is thus to compute the
difference of the semigrand free energy �y���. To this end
an extended ensemble �33� is introduced. The Lagrangian
strain tensor � is regarded as an additional ensemble variable
and a different � corresponds to a different macroscopic
state. The partition function of the extended ensemble is de-
fined as

�„N,T,����… = �
�=0

�max

�„N,�,T,�ex��,�� − �ex��r,��… ,

�17�

where �max denotes the state with maximum strain and all
macroscopic states � possess the same composition distribu-
tion ����. From Eqs. �6� and �17� the �y��� becomes

�y��� = ln� �„N,0,T,�ex��,0� − �ex��r,0�…
�„N,�,T,�ex��,�� − �ex��r,��…


= ln� ��0�/�
����/�
 = ln� Pr�0�

Pr���
 , �18�

where Pr��� is the probability that the system is in the mac-
roscopic state �. Therefore, knowledge of the macroscopic
state probability distribution is sufficient to evaluate the elas-
tic constants. The probability can be calculated from the
simulation by flat histogram methods �34–36�. Here we dem-
onstrate the implementation in the Wang-Landau scheme;
other schemes can also be implemented.

The extended ensemble Monte Carlo simulation involves
three kind of moves: the first is the particle displacement, the
second is the particle resizing, and the third is the deforma-
tion of the simulation box which corresponding to the walk
in the stain � space. The first two moves are accepted or
rejected in the usual Metropolis way; i.e., if no overlap be-
tween particles happens, the trial move �r ,��→ �r� ,��� is
accepted with probability

Pacc�r,� → r�,��� = min�1,exp�	��ex���,��

− 	��ex��,���� �19�

where ��ex�� ,��=�ex�� ,��−�ex��r ,��. The trial move in
the � space is treated with the Wang-Landau sampling in
order to obtain the macroscopic state probability distribution
Pr���. With a initial guess of Pr���, the acceptance and re-
jection criteria for the simulation box deformation, �→��,
are

Pacc�� → ��� = �min�1,
Pr���
Pr����

�V�

V
�N

exp�	�
�

���ex��,��� − ��ex��,���

 if no overlap of spheres

0 otherwise
� �20�

where � only takes some discrete values �1 ,�2 , . . . ,�n. The
chemical potential difference for each strain � was calcu-
lated with the SNEPR method and stored before the simula-
tion with extended ensemble. During the extended ensemble
simulation the �unnormalized� Pr��� is updated by multiply-
ing a modification factor f �1 when a state of � is visited; a
histogram of the distribution in � of the visited states is
recorded to monitor the convergence of Pr���. The relative

probability distribution of � is obtained at the end of the
simulation, which is then used to determine �y��� from Eq.
�18�. Because the composition distribution ���� is prescribed
in advance, substituting ����, ��ex�� ,��, and �y��� into
�15� the Helmholtz free-energy density difference �f��� can
then be determined. Finally, the elastic constants can be
obtained from a polynomial fit to the free-energy–strain
data.
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IV. SIMULATION DETAILS AND RESULTS

Most of the simulations are performed with a system of
256 size-polydisperse hard spheres in a parallelepiped box;
periodic boundary conditions are used in all three directions.
The initial configuration is an ideal fcc crystal �zero strain�.
The density of the undeformed crystal taken in this simula-
tion is �=0.576. This value is chosen because there are some
known results of the terminal polydispersity �15� and the
elastic constants in the monodisperse case �12� in the litera-
ture. As with the previous computations �6,9–11� the elastic
constants of fcc crystals can be determined completely from
three independent deformations. They are the contraction,
contraction-expansion, and shear deformation. The composi-
tion distribution of particles used in the simulation is the
truncated Schultz function

P��� =
1

z!
� z + 1

�̄
�z+1

�z exp�− � z + 1

�̄
��
 �min � � � �max,

�21�

where �min and �max are, respectively, the minimum and
maximum diameters of hard-sphere particles. �̄ is the aver-
age diameter and z=�−2−1 controls the width of the distri-
bution. The criterion of the truncation is that the probability
densities at both ends of the distribution are almost equal.
They are several times less than the maximum probability
density, as shown in Fig. 1�b�. Here the probability density at
�min and �max is 1 /3 of the peak value. In the present paper
the effect of the cutoff is not studied; the emphasis is on the
effect of polydispersity to the elastic properties. The size-

polydisperse degree is defined by �=
���−�̄�2

�̄
. In the simula-

tion we consider a uniform discrete set of diameters of par-
ticles. When the number of discrete diameters is large
enough, the diameter of particles tends to a continuous vari-
able which can resemble the real polydisperse system. In this
study 101 different sizes of diameters were used.

As mentioned above, the composition depends not only
on the chemical potential difference, but also on the strain
tensor. Therefore, the chemical potential differences are cal-
culated before the extended ensemble simulation is per-
formed. The results indicate that the chemical potential dif-
ference increases with the magnitude of the strain, as plotted
in Fig. 1�a�. In the case of a contraction deformation, the
increase of the chemical potential difference is more signifi-
cant than the case of shear deformation. This is reasonable
because the contraction deformation consumes more con-
figuration space so that the turn to larger sizes is more diffi-
cult and requires a larger chemical potential.

We performed simulations for four different size polydis-
persity, simulation parameters, and results are given in Table
I. The maximum polydispersity taken in our simulation is
5%, because at higher � the crystal may be unstable
�14,15,38�. In order to check the system size dependence we
performed simulations for a larger system with particle num-
ber N=2048. The difference between the two systems is
clearly less than or on the same order of the statistical errors,
which indicates that a system of 256 particles is already large
enough to get reasonable results, similar to the monodisperse

hard-sphere system �10,12�. We also calculated the elastic
constants of a monodisperse hard-sphere crystal using the
present method, which are in full agreement with the results
of Pronk and Frenkel �12�. From Table I we see that the
pressure increases with increase of the size polydispersity
and the pressure with �=0.05 is about 20% higher than the
monodisperse system, which is consistent with previous re-
ports �17,18� that the size polydispersity can induce a higher
osmotic pressure in the hard-sphere colloidal crystal. A new
phenomenon which has not been reported previously is that
as the size polydispersity increases, all elastic constants �C11,
C12, and C44� of a fcc hard-sphere crystal increase signifi-
cantly. At �=0.05, C12 is 1.3 times larger than that of the
monodisperse system. Figure 2 shows the ratios of C11 to C12
and C44 to C12 as a function of the polydispersity �. It is
interesting to note that for the polydispersity used in the
simulation these ratios nicely follow a linear relation with the
polydispersity. Experimentally, Phan et al. have measured
the high-frequency shear modulus for hard-sphere colloidal
crystals �37�. Their results are comparable to the static shear
moduli of the fcc crystal obtained in this study. Furthermore,

TABLE I. Elastic constants of fcc hard-sphere crystals and
simulation parameters. All undeformed systems have the same den-
sity �=0.576. Here, � is the size polydispersity, N the number of
particles, and P the pressure of the hard-sphere crystal. The first two
rows are the elastic constants of monodisperse hard-sphere crystals
obtained from Ref. �12�.

� N P C11 C12 C44

0 256 115.5�10� 32.0�4� 72.4�3.2�
0 13292 117.4�4.4� 31.54�15� 71.96�11�
0 256 14.54�2.5� 115.1�46� 32.7�16� 72.0�35�
0.03 256 15.49�2� 125.1�47� 43.7�14� 77.1�45�
0.03 2048 15.528�6� 129.7�34� 47.3�12� 76.5�21�
0.039 256 16.24�2� 135.5�33� 55.9�10� 78.5�45�
0.05 256 17.34�1� 150.0�28� 73.6�8� 83.5�29�

FIG. 2. The ratio of two elastic constants as a function of the
size polydispersity �. The triangles and squares indicate C11 /C12

and C44 /C12, respectively. The solid symbols denote the data ob-
tained from a 256-particle system, open symbols from a 2048-
particle system. The semi-solid symbols are from a 13292-particle
system given by Ref. �12�. The lines are linear fits to the data.
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our results indicate that the static shear modulus also in-
creases with the polydispersity. We think that the effect can
be detected experimentally from a precise measurement.

The monodisperse hard-sphere system was regarded as a
representative model in the description of many different as-
pects of hard-sphere colloids. We expected that the polydis-
persity may give only a small correction to the monodisperse
case. The large increase of the elastic constants with polydis-
persity indicates that the monodisperse model has its limita-
tions in describing real hard-sphere colloids, especially in the
elastic properties. The physics behind this large increase is
still not clear; one general explanation is that the elastic con-
stants are the second derivatives of the free energy, which
should be more sensitive to the polydispersity than the free
energy itself. A comprehensive understanding of this en-
hancement of elastic constants from polydispersity requires
more extensive research which is beyond the scope of this
paper.

As is well known, the necessary requirements for the sta-
bility of a cubic crystal �including fcc structure� are

C11
T � 0, C44

T � 0, C11
T + 2C12

T � 0, �C11
T �2 − �C12

T �2 � 0.

�22�

For the polydisperse hard-sphere crystal under consideration,
the first three conditions are obviously satisfied; the last one
may be violated with increasing the polydispersity. Figure 3
depicts the change of C11

T −C12
T with polydispersity. The value

of C11
T −C12

T decreases with increasing polydispersity and
tends to zero at �=0.0807. To get this terminal polydisper-
sity, we note that the simulation data follow a relation

C11
T − C12

T = A − e��+B,

which means that ln�A−C11
T +C12

T � depends linearly on the
polydispersity �, as shown in Fig. 3. Using the fitted value of
ln A we can obtain the terminal polydispersity from extrapo-
lation. This defines a mechanical terminal polydispersity
�MTP� where the fcc crystal becomes unstable. The strain

related to the coefficient C11
T −C12

T is the following
contraction-expansion deformation:

x� = �1 + ��x, y� =
1

1 + �
y, z� = z . �23�

That is to say, for ��0.0807 the fcc crystal is no longer
stable under the deformation. The instability can also be de-
scribed from the point of view of a soft mode. By solving the
dispersion equation, one easily finds that there exists a trans-
verse wave, which propagates along the diagonal of the
�001� crystal plane, is polarized in the xy plane, and has the
dispersion relation �m�2= 1

2 �C11
T −C12

T �k2 �39�; here, �m is the
mass density, � is the circular frequency, and k the wave
vector. Therefore, its frequency decreases substantially as the
MTP is approached and this branch of the wave corresponds
to a soft acoustical mode.

For the hard-sphere crystal, it is known that there is an-
other terminal size polydispersity �14–16,38� above which
the crystal will not be the most stable structure and a disorder
solid phase �38� or solid-solid coexistence phase �16� may
become the most stable equilibrium state. We refer to the
terminal polydispersity as thermodynamical terminal poly-
dispersity �TTP�. The MTP has to be not lower than the TTP,
since above TTP the fcc crystal exists in a metastable state
and has good mechanical behaviors. Therefore, the MTP ob-
tained in this study gives an upper limit of the TTP.

One important point of the semigrand canonical ensemble
simulation of polydisperse hard-sphere crystal is the swap-
ping of particles. In this ensemble the particle sizes are al-
lowed to fluctuate to get the required size distribution; with
the fluctuation, particles of different sizes effectively ex-
change their spatial positions constantly, and with a suffi-
ciently long simulation, the equilibrium state is realized dur-
ing the simulation. The calculated elastic constants in this
simulation are the equilibrium elastic constants; we refer to
them as ideal elastic constants. On the other hand, in real
colloid crystals the particles cannot exchange their positions
simply because the free-energy barrier is too high to be over-
come in any reasonable time period. The particle arrange-
ments are basically fixed by the process of crystal growth,
which is not necessarily the equilibrium arrangement. It also
noted that during the strain in the measurement of elastic
constants the particles can only undergo small displacements,
and it is not possible for particles to swap their positions.
Based on this observation, a natural question is whether the
simulated elastic constant is the same one in a measurement.
The answer to this question is probably yes. The reason is
that measurements are always performed with a crystal of
macroscopic size, which contains much more colloid par-
ticles than the number of particles in the simulation study. If
the sample is well relaxed, the self-averaging effect of the
macroscopic number of particles may compensate the effect
of particle nonswap. We expect that the ideal elastic constant
can be experimentally measured after sufficient equilibration.
To test the possible deviation from the ideal elastic constants,
we also performed simulations in the canonical ensemble.
We randomly picked up several configurations from the par-
ticle sizes distribution, and for each configuration the particle

FIG. 3. The change of C11
T −C12

T with the size polydispersity �.
The solid line is a linear fit to the data. The horizontal dotted line
represents the function y=ln�A� and A is a fitted constant �see text�.
At �=0.0807 the solid line intersects with the dotted line.
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size was then fixed in the subsequent simulations of applying
strains and extracting elastic constants. For a system of 2048
particles we find that elastic constants with different configu-
ration realizations of the same distribution give elastic con-
stants within 10% of difference. The average of the results
from different realization of the configuration is listed in
Table II.

V. CONCLUSION

To conclude, the elastic constants of a fcc polydisperse
hard-sphere crystal are simulated by the Monte Carlo method

with a semigrand ensemble; the composition distribution is
fixed in the simulation by the SNEPR method. The results
show that both the pressure of the hard-sphere solid and the
three elastic constants increase with the size polydispersity �.
The method can be extended to the soft-sphere system and
the system with other polydisperse attributes in a straightfor-
ward manner. Our results also indicate that there is a MTP
where the fcc crystal is unstable, which provides us an upper
limit of TTP. Above TTP we do not know which of the two
structures �disorder solid and solid-solid coexistence phases�
is the most stable one. Determining the stable state from
computer simulations requires more effort to accomplish.

ACKNOWLEDGMENTS

The work was supported by the National Natural Science
Foundation of China under Grant No. 10334020 and in part
by the National Minister of Education Program for
Changjiang Scholars and Innovative Research Team in
University. We thank the anonymous referees for helpful
suggestions.

�1� M. V. Jaric and U. Mohanty, Phys. Rev. Lett. 58, 230 �1987�;
59, 1170 �1987�.

�2� G. L. Jones, Mol. Phys. 61, 455 �1987�.
�3� E. Velasco and P. Tarazona, Phys. Rev. A 36, 979 �1987�.
�4� H. Xu and M. Baus, Phys. Rev. A 38, 4348 �1988�.
�5� B. B. Laird, J. Chem. Phys. 97, 2699 �1992�.
�6� K. J. Runge and G. V. Chester, Phys. Rev. A 36, 4852 �1987�.
�7� O. Farago and Y. Kantor, Phys. Rev. E 61, 2478 �2000�.
�8� S. Sengupta, P. Nielaba, M. Rao, and K. Binder, Phys. Rev. E

61, 1072 �2000�.
�9� S. K. Kwak and D. A. Kofke, Phys. Rev. B 70, 214113 �2004�.

�10� K. V. Tretiakova and K. W. Wojciechowskib, J. Chem. Phys.
123, 074509 �2005�.

�11� D. Frenkel and A. J. C. Ladd, Phys. Rev. Lett. 59, 1169
�1987�.

�12� S. Pronk and D. Frenkel, Phys. Rev. Lett. 90, 255501 �2003�.
�13� A. v. Blaaderen and A. Vrij, Langmuir 8, 2921 �1992�.
�14� P. N. Pusey and W. van Megen, Nature �London� 320, 340

�1986�.
�15� P. G. Bolhuis and D. A. Kofke, Phys. Rev. E 54, 634 �1996�;

D. A. Kofke and P. G. Bolhuis, ibid. 59, 618 �1999�.
�16� M. Fasolo and P. Sollich, Phys. Rev. Lett. 91, 068301 �2003�.
�17� S. Phan, W. B. Russel, Z. Cheng, J. Zhu, P. M. Chaikin, J. H.

Dunsmuir, and R. H. Ottewill, Phys. Rev. E 54, 6633 �1996�.
�18� S. Phan, W. B. Russel, J. Zhu, and P. M. Chaikin, J. Chem.

Phys. 108, 9789 �1998�.
�19� S. Martin, G. Bryant, and W. van Megen, Phys. Rev. E 67,

061405 �2003�.
�20� R. P. A. Dullens and W. K. Kegel, Phys. Rev. Lett. 92, 195702

�2004�.
�21� V. Villeneuve, R. Dullens, D. Aarts, E. Groeneveld, J. Scherff,

W. Kegel, and H. Lekkerkerker, Science 309, 5738 �2005�.
�22� H. J. Schope, G. Bryant, and W. van Megen, Phys. Rev. Lett.

96, 175701 �2006�.
�23� M. C. Yang and H. R. Ma, J. Chem. Phys. 128, 134510 �2008�.
�24� D. A. Kofke and E. D. Glandt, J. Chem. Phys. 87, 4881

�1987�.
�25� M. A. Bates and D. Frenkel, J. Chem. Phys. 109, 6193 �1998�.
�26� F. Escobedo, J. Chem. Phys. 115, 5642 �2001�; 115, 5653

�2001�.
�27� N. B. Wilding and P. Sollich, J. Chem. Phys. 116, 7116 �2002�.
�28� N. B. Wilding, J. Chem. Phys. 119, 12163 �2003�.
�29� M. C. Yang and H. R. Ma �unpublished�.
�30� D. Frenkel and B. Smit, Understanding Molecular Simulation

�Academic, San Diego, 1996�.
�31� J. G. Briano and E. D. Glandt, J. Chem. Phys. 80, 3336

�1984�.
�32� T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. London 85,

523 �1965�.
�33� A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P.

N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 �1992�.
�34� B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 �1992�.
�35� F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 �2001�;

Phys. Rev. E 64, 056101 �2001�.
�36� J. S. Wang and R. H. Swendsen, J. Stat. Phys. 106, 245

�2002�.
�37� S. Phan, M. Li, W. Russel, J. Zhu, P. Chaikin, and C. T. Lant,

Phys. Rev. E 60, 1988 �1999�.
�38� P. Chaudhuri, S. Karmakar, C. Dasgupta, H. R. Krishnamur-

thy, and A. K. Sood, Phys. Rev. Lett. 95, 248301 �2005�.
�39� L. D. Landau and E. M. Lifshitz, Theory of Elasticity �Beijing

World Publishing, Beijing, 1999�.

TABLE II. Comparison of the pressure and elastic constants
obtained from the semigrand canonical ensemble simulation �upper
row� and the canonical ensemble simulation �lower row�.

P C11 C12 C44

Semigrand 15.528 129.7 47.3 76.5

Canonical 15.591 137.4 49.9 75.7

ELASTICITY OF A POLYDISPERSE HARD-SPHERE CRYSTAL PHYSICAL REVIEW E 78, 011404 �2008�

011404-7


