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Unjamming due to local perturbations in granular packings with and without gravity
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We investigate the unjamming response of disordered packings of frictional hard disks with the help of
computer simulations. First, we generate jammed configurations of the disks and then force them to move
again by local perturbations. We study the spatial distribution of the stress and displacement response and find
long range effects of the perturbation in both cases. We record the penetration depth of the displacements and
the critical force that is needed to make the system yield. These quantities are tested in two types of systems:
in ideal homogeneous packings in zero gravity and in packings settled under gravity. The penetration depth and
the critical force are sensitive to the interparticle friction coefficient. Qualitatively, the same nonmonotonic
friction dependence is found both with and without gravity, however the location of the extrema are at different
friction values. We discuss the role of the connectivity of the contact network and of the pressure gradient in

the unjamming response.
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I. INTRODUCTION

Many systems including granular materials, foams, and
emulsions can flow like fluids when a high external stress is
applied but jam into a solidlike state below a certain thresh-
old of stress. In a jammed state [ 1-4] the many-body system
is trapped in a metastable configuration far from equilibrium
where the constituent particles block each other’s motion.
For a typical jammed granular packing, where the thermal
fluctuations are negligible, only a sufficiently high external
stress can lead to an unjamming transition and cause rear-
rangements of the particles.

In this paper we study the unjamming response of dense
disordered granular media based on computer simulations.
To achieve the unjamming transition we perturb the material
by generating a small local deformation. These perturbations
break the static structure of the packings and induce motion
of particles.

The response of granular media to local perturbations
have been studied widely both in experiments [4—8] and in
computer simulations [8—11]. The majority of these studies
apply small force overloads to study the stress response in-
side the bulk of material. In these cases, the displacements
originate only from elastic deformation of the particles; the
system remains in the jammed state. Unjamming induced by
local perturbation has been also investigated experimentally.
Kolb and co-workers [4,7] studied two-dimensional (2D)
packings of disks under gravity and applied localized cyclic
perturbations to achieve real plastic rearrangements. Based
on the displacement field they showed that the unjamming
response is long ranged; the magnitude of the particle dis-
placements decays as a power law of the distance from the
perturbation source. The exponent of the decay varied
between 0.6 and 1.4 depending on the preparation of the
system.
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Here we focus on the question of what role the interpar-
ticle friction and gravity play in the unjamming transition.
We study the unjamming response with the help of the con-
tact dynamics method [12—-14] which handles the particles as
perfectly rigid bodies. Therefore elastic distortion of the par-
ticles are excluded and the generated particle movements
correspond to real plastic rearrangements. We analyze the
response of the packing to local perturbations by considering
the individual particle displacements, the coarse-grained dis-
placement field, and, in addition, the resistance of the system
against the deformation. We show that the stability of thep-
acking against local perturbations depends strongly and in a

FIG. 1. Schematic picture of the two types of granular packings
confined by an external pressure bath (a) and by gravity (b). The
dashed lines mark periodic boundaries. Some typical perturbations
are illustrated with gray particles and arrows showing the direction
of perturbation.
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nontrivial way on the particle-particle friction coefficient.
Our systems are two-dimensional disordered packings of
disks. First, we test ideal homogeneous packings prepared by
an isotropic external pressure and with fully periodic bound-
ary conditions [15,16] [Fig. 1(a)]. This part is the full expo-
sition and expansion of the results presented and considered
from another point of view in [15]. Then we study more
realistic packings that are settled under gravity [Fig. 1(b)].
The packings are perturbed by moving two adjacent particles
apart in the former case and by shifting one particle verti-
cally in the latter case.

This work is organized in the following manner: Section
II contains the description of the simulation method. In Sec.
IIT we present our results for the perturbation of homoge-
neous packings. The perturbation of the packings that are
settled under gravity is investigated in Sec. IV. The role of
the different preparation and perturbation methods are dis-
cussed in Sec. V. Finally Sec. VI concludes the paper.

II. SIMULATION METHOD

We perform contact dynamics simulations on 2D granular
packings of cohesionless perfectly rigid disks. The numerical
results of the local perturbations are presented for two dis-
tinct settings: (i) homogeneous random packings confined by
an external pressure in the absence of gravity [Fig. 1(a)] and
(i) packings confined by gravity [Fig. 1(b)]. In both cases,
the numerical experiments consist of two steps. First we pre-
pare static configurations of grains; then, we probe the pack-
ings by perturbing their local structure. We apply the contact
dynamics method [13,14] for both procedures. The details of
the numerical methods are described for homogeneous and
inhomogeneous settings in Secs. Il A and II B, respectively.

In the rest of the paper we have the following conven-
tions. The unit of the length is set to the maximum grain
radius. As we examine 2D systems, the disks have polydis-
persity to avoid crystallization characteristic for two-
dimensional monodisperse ensembles. We use a uniform dis-
tribution of the disk radii over the range between 0.5 and 1.
The unit of the mass is set by assuming that the material of
the grains has unit density and the masses of the disks are
proportional to their areas.

A. Homogeneous random packings

We first examine the homogeneous configurations of
disks. Here, the acceleration of gravity is set to zero in order
to avoid force gradients in the samples. The number of the
grains contained by the packings ranges from 500 to 8000.
As mentioned above, we first generate static dense random
packings by compressing the initial configuration of the par-
ticles into a smaller space. The compaction starts with a
square box filled with loose granular gas. The disks are ini-
tially placed at random without overlaps. We apply periodic
boundary conditions to avoid wall effects. In order to achieve
homogeneous packings, we generalized the method proposed
by Andersen [17] to contact dynamics (for details see [16]).
The main idea in this method is that, instead of using pistons,
compaction is achieved by imposing a constant external
pressure P, and let the volume of the cell evolve in time. In
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fact, the volume of the system, which acts as an additional
degree of freedom, couples with a confining pressure bath, so
that the volume change is controlled by the difference be-
tween the external and internal pressures.

As the size of the cell shrinks due to the difference be-
tween P and the internal pressure P;,, at some point the
grains cannot avoid touching each other anymore, and start
building up an inner pressure to avoid interpenetration. Fi-
nally all motion stops because the grains block further com-
paction. The sample is considered to have converged to me-
chanical equilibrium when further time evolution leads to
negligible changes in the particle positions. At this point we
have a static jammed configuration under external pressure.
The mechanical equilibrium is achieved for each grain and
the corresponding P;, equals P.,. It is worth noting that the
packing configurations depend on the friction coefficient w.
We construct a new packing for each value of u before start-
ing the perturbation process.

The perturbation is carried out in the following way: We
choose two adjacent particles in contact and force them to
move apart [Fig. 1(a)]. As this case has been described in
[15], here only a short review is given. At the perturbation
point we enforce the contacting surfaces to open up to a
small gap and determine the force that is needed to fulfill this
constraint (critical force). This concept is suited very well to
the contact dynamics method where interparticle forces are
handled as constraint forces, i.e., they are calculated based
on constraint conditions which prescribe the relative motion
of the contact surfaces [13,14]. With enforcing the opening
of the contact, we bring the system immediately to the yield
point where the perturbation induces sliding and/or opening
of some contacts and initiates collective rearrangements of
the particles at least in the vicinity of the perturbation point.
It is beneficial to choose small gap size as we are interested
in the onset of motion, how the static structure breaks due to
the perturbation. Large deformations, e.g., creation of new
contacts, are out of the scope of the present study. We
checked that for small gap sizes the displacement field (up to
a constant factor) and the critical force become independent
of the size of the gap. Our numerical measurements are per-
formed in this gap-independent region; the size of the gap &
is set to 107 [15]. This value is far larger than the displace-
ment scale 107'* that arises from the noise level of particle
velocities.

The perturbation process can be performed under two dif-
ferent boundary conditions. One can either impose the fixed
external pressure condition in continuation of the assembling
process, or impose the fixed volume condition. In the former
method, the pressure of the system is constant and the vol-
ume is allowed to change during the perturbation while in
the latter method, the volume is fixed and the pressure
changes due to perturbation. This paper mainly contains the
results of perturbation method with fixed pressure even
though we compare some numerical results of both methods
in Sec. III C and find no significant differences.

B. Packings confined by gravity

In the inhomogeneous case, the system is settled under
gravity and no pressure bath is used. Consequently there
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FIG. 2. (a),(b) Displacement response fields in the laboratory
frame for two different locations of the perturbation. The resulting
vector field can be relatively localized (a) or more widespread (b)
depending on the perturbed contact. (c) Displacement response field
in the contact frame averaged over several thousand perturbations.
The system contained 3000 disks with friction coefficient 0.5. The
unit of the length, in which x and y are measured, is set to the
maximum grain radius. For clarity, the magnitude of the displace-
ments has been increased by a factor of 10'! in all figures.

exists a pressure gradient in the vertical direction. We present
simulations on model systems of N=1600 polydisperse
disks. The system is spatially periodic in the horizontal di-
rection, and a one-dimensional chain of disks with random
radii is fixed at the bottom of the box to provide a rough bed
[see Fig. 1(b)]. The particle-particle and particle-base friction
coefficients are the same. The starting configuration is a di-
lute granular medium which consists of randomly distributed
nonoverlapping particles with zero velocities. The average
initial packing fraction ¢ ranges from 0.32 to 0.40 for dif-
ferent packings. Next the system is allowed to settle on top
of the rough bed under the influence of the gravitational
acceleration g. We wait until the packing relaxes into equi-
librium. The average static packing height ranges from
35.2*0.1 (approximately 23 layers of grains) for samples
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with small friction coefficient u=10"% to 36.9+0.1 (~25
layers) for samples with large friction coefficient p=10. This
construction method mimics the pouring of grains through a
sieve far away from lateral walls.

To investigate the effect of friction and also to measure
the displacement response with better statistics, 20 packings
are constructed and perturbed for each value of the friction
coefficient u.

After that we turn to the perturbation part where we per-
turb the topmost or lowermost particles in two different ex-
periments in order to test the effect of local perturbation in
the inhomogeneous system [Fig. 1(b)]. In the first case, we
choose a particle at the free surface of the packing and force
it to move vertically downwards by a small displacement &.
We measure the generated displacements of the particle cen-
ters and also the force response of the system on the per-
turbed particle. This latter is the vertical component of the
sum of the contact forces acting on the perturbed particle,
which plays the role of the critical force.

In the case where the system is perturbed from the bottom
we choose a particle at the lowermost part of the sample and
force it to move vertically upwards by a small upwards shift
& The displacement pattern and the critical force are mea-
sured. In both cases, the magnitude of the displacement ¢ is
set to the same value as the gap for the homogeneous system.

III. PERTURBATION OF HOMOGENEOUS
PACKINGS

In this section, we will analyze the mechanical response
of the homogeneous packing to the local perturbation which
we introduced in Sec. II A and see how the response changes
with the friction coefficient. The results presented in this
section belong to the system size N=3000 unless explicitly
stated otherwise.

After opening up a contact that is selected for the pertur-
bation, we study the generated displacement field of particle
centers and the perturbation force which is needed to open
up the contacting surfaces at the perturbation point. This
critical force F,;; characterizes the strength of the system
against the local perturbation. Furthermore, the numerical
results are compared for the fixed pressure and fixed volume
perturbation methods. We close this section by reporting the
results of the generated force and stress response fields.

A. Displacement response field

Our aim here is to find out how far the rearrangements
have to penetrate into the packing as a consequence of the
prescribed local deformation. Is there a related length scale?

Our results reveal that the displacement of particle centers
due to the single contact perturbation form a disordered vec-
tor field. This response field can be relatively localized [Fig.
2(a)] or more widespread [Fig. 2(b)] depending on the loca-
tion of perturbation.

As a measure for the magnitude of the displacement re-
sponse, we define the penetration depth 6 as
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FIG. 3. The magnitude of the average displacements d in terms
of the distance from the perturbed contact r. Here ¢ stands for the
gap generated at the perturbed contact. Different slopes correspond
to different friction coefficients w. For each value of friction four
systems of different sizes are investigated. The total number of
particles is between 500 and 8000. The error bars remain below 5%
of the values d(r)/ ¢ for the whole range of r.

N N
8= |d||7i-a) | 2., (1)
i=1 i=1

where the sum runs over all particles, d; is the displacement
vector of the ith particle center, 7; is the distance vector from
the perturbed contact to the ith particle center, and 7 is the
unit contact normal of the perturbed contact.

The penetration depth & characterizes the size of the rear-
rangement zone in the direction of the contact normal. &
exhibits large fluctuations depending on the perturbed con-
tact. For the displacement fields shown in Figs. 2(a) and 2(b)
the values of & are 7.68 and 23.31, respectively. The average
penetration depth (&), which we calculated based on the per-
turbation of 1500 randomly chosen contacts of the same sys-
tem, is 19.8 £0.1.

In order to study the average properties of the displace-
ment fields, we perturb all contacts one by one, always start-
ing with the original static packing. In each case the particle
movements are recorded in the local contact frame where the
perturbed contact sits in the origin and the x axis is chosen
parallel to the contact normal, i.e., x indicates the direction of
the separation, then we calculate the average displacement
field.

Figure 2(c) shows a smooth displacement field obtained
by averaging over all perturbed contacts. The circular shape
in Fig. 2(c) is achieved because the original square shape of
the system has many different orientations when transformed
into different contact frames. Similar quadrupolar structures
as in Fig. 2(c) were found for shearing amorphous systems,
where localized quadrupolar rearrangements appear at the
onset of plastic events [18].

The magnitude of the average displacement vectors d de-
cays with the distance r from the perturbation point as shown
in Fig. 2(c). In order to investigate its decay, we calculate d
by averaging out the angle of the position. Figure 3 shows
that the magnitude of rearrangements d decays as a power
law of the distance r,
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FIG. 4. Dependence of the penetration exponent « (a) and the
mean critical force (F ;. (b) on the system size N for three different
friction coefficients .
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Different slopes in Fig. 3 correspond to different friction
coefficients. However, the exponent « is approximately in-
dependent of the system size. This can be seen more clearly
in Fig. 4(a), in which the exponent is shown in terms of the
total number of particles N for three different frictions. Our
results show that « lies in the range 0.7—1.4. The results of a
recent experiment performed by moving an intruder in a sys-
tem of disks [7] displays similar power-law behavior with
the same range of a.

The power-law decay of the average displacements indi-
cates that there is no characteristic size for the rearrangement
zone; instead, a decay exponent may be more suitable to
characterize the particle movements. Therefore the rear-
rangement region is not bounded on sides by a penetration
length and the quantity 6 may not remain finite for an infi-
nitely large system. Despite of these facts, & is still a useful
measure of the displacements for finite systems. Using &, one
can still compare two displacement fields for the same sys-
tem size. Larger 6 means a larger rearrangement zone. More-
over, J can be easily measured also for single perturbations
where the usage of a would be troublesome. The exponent «
works well for the average displacement field but it is not a
well defined quantity for single perturbations where the fluc-
tuation of d(r) is so large that it cannot be fitted with a
power-law decay.

To investigate the role of friction, we perturb several
packings constructed already with different friction coeffi-
cients w. The average penetration depth (5) has a strong
dependence on the friction coefficient w. It is a nonmono-
tonic function with a sharp minimum at = 0.1 [Fig. 5 (solid
circles)]. Equivalent behavior is found for —« as a function
of w in Ref. [15]. When the friction is increased starting from
zero, the decrease of (8) indicates that the induced rearrange-
ments become more localized. At u=0.1 the process takes a
sharp turn and further increase of the friction leads to delo-
calization.

B. Critical force

We now turn our attention to the critical force F;. The
results show that F; depends also strongly on the place of
the perturbation. First we check its average properties.

The average critical force (F,;,) again shows strong de-
pendence on the friction coefficient [Fig. 5 (open circles)]
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FIG. 5. Average critical force (F.;) (open circles) scaled by the
average normal contact force (F,,,) and the average penetration
depth (&) (full circles) as functions of the friction coefficient . The
vertical dashed line emphasizes that the two extrema are located at
the same w.

and remains approximately constant under changing the sys-
tem size [Fig. 4(b)]. Here, (F_;,) is scaled by the average
normal contact force (F,q,). In (F,,), only the normal com-
ponent of the contact forces is taken into account and the
average (- --) is taken over all the contacts of the given pack-
ing.

Both the critical force and the penetration depth show the
characteristic nonmonotonic behavior (Fig. 5) in contrast to
other quantities that describe the properties of the packing.
E.g., the average coordination number z, the average contact
force (F.o» and the packing fraction exhibit smooth and
monotonic functions of the friction coefficient with plateaus
for the low and high friction regions [15]. F.; and & behave
completely differently. They exhibit sharp extrema at the
same friction: At ©=~0.1 the maximum critical force and the
most localized rearrangement zone is observed which has the
meaning that the packing constructed with friction u=0.1 is
the most stable packing against local perturbations. Moving
towards the higher or lower friction coefficients, packings
get weaker against the perturbation, the critical force be-
comes smaller, and the induced rearrangements become
more widespread.

To get more insight into the force response we examine
F.; at every contact separately. Figure 6 reveals that the
critical force is strongly correlated with the original contact
force. For small values of u a pair of contacting particles
cannot resist a force of separation larger than the force itself
that originally presses the two contact surfaces together. This
can be understood well in the case of zero friction where the
structure is isostatic [19], where the structure and the exter-
nal load p., determine uniquely what equilibrium force is
acting between a selected pair of contacting particles. If one
pushes the two particles apart with a larger force, it should be
compensated by a negative contact force. As the contact can-
not exert negative forces we lose one constraint and, conse-
quently, one floppy mode [19] appears in the system allow-
ing collective motion of the particles.

Naturally, the critical force never falls below the actual
contact force, however, for the frictional case it can get
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FIG. 6. Each data point represents one contact in the frame of
the critical force F; and the normal component of the original
contact force F,,. The four figures correspond to four packings
constructed with different frictions. (F,,,) is the average normal
contact force in each packing. The dashed lines correspond to
Feie=Fcont-

larger. This can be best seen for u=0.1 in Fig. 6. For further
increase of u the picture becomes similar to the case of zero
friction, i.e., the force response of a contact against opening
is basically given by the normal component of the original
contact force.

It is known that contact forces in random packings of
frictional rigid grains are not determined uniquely by the
mechanical equilibrium and Coulomb condition [20-22,10].
There is an ensemble of admissible force networks that sat-
isfy all of these conditions in the same configuration of
grains. The extent of the force indeterminacy as a function of
the friction coefficient u was numerically examined in [21]
for packings of rigid disks, where a nonmonotonic friction
dependence was found with a maximum value at u=0.1. A
direct connection between the critical force F; and the ex-
tent of the indeterminacy at a given contact is established in
[15] where it was found that the critical force equals the
maximum possible contact force at the same contact taken
over the ensemble of admissible force networks. For further
details on the consequence of force indeterminacy the reader
is referred to [15,21,23].

As we mentioned before, the value of the critical force
widely changes depending on the perturbed contact. The
probability distributions for F, are displayed in Fig. 7(a) for
different friction coefficients. The critical forces are scaled in
units of F, set by the external pressure and by the average
radius of the particles, Fp=2R,,,P.y. Here, we use the unit
F, because, unlike (F,,), it provides a fixed force scale for
all systems which is independent of the friction coefficient.
Figure 7(a) shows that the probability distributions depend
strongly on w. With increasing friction, probability distribu-
tions become broader and the curves are shifted. The shift is
nonmonotonic as expected from the behavior of (F.;.). The
curves move rightwards and then leftwards below and above
wm=0.1, respectively.
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FIG. 7. Probability distribution of the critical forces F; (a) and
the critical forces normalized with respect to their mean in each
packing F.;/(F. (b) for different friction coefficients. The inset
displays a semilogarithmic plot of probability distribution of the
normalized critical forces when averaged over all friction coeffi-
cients. The dashed line is an exponential fit of the tail of the curve.

When normalized with respect to their mean values, these
distributions are approximately independent of the friction
coefficient [Fig. 7(b)] and their tail can be fitted with an
exponential decay

P(F i/ (F o)) o e P el e (3)

where 8=2.3+0.1 when averaged over all friction coeffi-
cients [see the inset of Fig. 7(b)].

The tail of the curves in Fig. 7(b) for the critical forces is
reminiscent of the tail of the probability distributions of the
contact forces which has been studied extensively in the lit-
erature [24-28]. This similarity can be understood well,
based on the strong correlation between the critical force and
the original contact force which is described in Fig. 6.

Next we focus on the correlation between the critical
force F,; and the penetration depth &. Figure 8 (solid
circles) displays that there is a weak correlation between
these two quantities with a maximum value again around
©#=0.1 and it vanishes for large friction coefficients. The
existence of the correlation means that, on average, a slightly
larger rearrangement zone is expected for a larger critical
force. Open circles in Fig. 8 reveal smaller correlations be-
tween the normal component of the original contact force
F o and 6.
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Corr(d,F)

FIG. 8. The correlation between the critical force F.y (full
circles) or the normal component of the original contact force F
(open circles) and the penetration depth & in terms of the friction
coefficient u.

C. Fixed pressure and fixed volume perturbations

In Sec. IT A we mentioned that one can perturb the system
by imposing either the fixed external pressure condition or
the fixed volume condition. In this section we compare these
two perturbation methods by applying them in the same test
system on the same list of contacts. The penetration depth &
and the critical force F are shown for each perturbed con-
tact in Figs. 9(a) and 9(b), respectively. The results of the
two methods are very similar to each other even though the
imposed boundary conditions are basically different.

In the fixed volume method the pressure P is allowed to
change, while in the fixed pressure method the variable
quantity is the volume of the system. Let us measure the
volume change by A=AL/L, where L is the size of the sys-
tem. Figure 9(c) shows that there is a strong correlation be-
tween the variable quantities P for one method and A\ for the
other. The expansion (contraction) of the system due to the
perturbation of a contact with the fixed pressure method cor-
responds to pressure increase (decrease) when perturbing the
same contact with the fixed volume method.

D. Force and stress response fields

Finally, we investigate how other contact forces and the
corresponding stress field is changed by the local perturba-
tion. We measure the average magnitude of the change in the
normal component of the contact forces (|AF|) which is
caused by the perturbation. Figure 10 shows (JAF|) as a
function of the distance from the perturbed contact. These
curves, unlike the displacement response, do not follow a
power-law decay. Close to the perturbation point, much
larger (|AF|) is observed for w=0.1 than for the extreme
values of friction (u=1078,10). Depending on the friction,
(|AF|) can be changed even by a factor 30 in the vicinity of
the perturbation point. The values of {|AF|) become closer to
each other for different frictions far away from the perturba-
tion point since the decay of (|AF|) becomes steeper for
intermediate values of friction. Apparently |AF| goes to zero
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FIG. 9. Comparison of the results of the fixed pressure (solid
circles) and the fixed volume (open circles) perturbation methods.
(a) The penetration depth §and (b) the critical force F for several
contacts subjected to the perturbation. (c) The relative change in the
size of the system \ (solid circles) and the pressure P (open circles)
obtained during the perturbation of each contact with the fixed pres-
sure and fixed volume methods, respectively. Here, the friction co-
efficient is 0.5.

with r leading to tiny changes in the contact forces far away
from the perturbation point. Interestingly, even these tiny
forces are able to break the solid state of the packing and
induce rearrangements of the particles (Fig. 2).

We calculate the average stress field caused by the pertur-
bation, measured always in the contact frame and averaged
over several thousands of perturbations. We divide the sys-

0.1
p= 108
(1= 0.01 e
.. p=01 e
. u=1 —
. p=10  --e--
u oot b 1
x
[T
=
\Y%
0.001 ]

FIG. 10. The average magnitude of the change in the normal
component of contact forces due to the perturbation (|AF|) scaled
by F in terms of the distance from the perturbed contact r. Differ-
ent curves correspond to different friction coefficients u.
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tem into square grid boxes of size 2. This corresponds to the
maximum diameter or twice the minimum diameter of the
particles. The whole stress we achieved for each box is as-
signed to the position of the center of the box. The stress
tensor o, in each grid box is given [29] by

1
o-aﬁ= ‘_/E 61' ijr§7 (4)

i<j

where V is the area of the box, i is the @ component of the
force exerted on particle i by particle j, and the vector Fij
points from the center of particle i to the center of j (one has
to take the periodic boundary conditions into account and
involve nearest image neighbors). The sum runs over all
pairs of contacting particles. 6; is a number between 0 and 1
that gives what fraction of the line segment connecting the
centers of the two particles is located in the box. Thus if the
line segment is cut by grid lines the stress contribution of the
contact is divided among the corresponding boxes.

First we investigate the pressure which is defined as half
of the trace of the stress tensor. Originally (before perturba-
tion) the pressure is spatially constant due to the symmetry
of the compression process. To investigate the effect of per-
turbation on the local pressure, we calculate the pressure
change as

AP = %tr((r— ), (5)

where oy is the stress tensor before the perturbation.

Figure 11(a) shows a logarithmic shading of the pressure
change with black indicating a pressure increase, and white,
a pressure decrease. This figure reveals that the pressure
change decays fast with the distance from the perturbation
point. The borders between the regions of positive and nega-
tive AP are also indicated in Fig. 11(a). AP is positive (nega-
tive) along (perpendicular to) the perturbation direction. For
ease of comparison Fig. 11(b) shows AP along and perpen-
dicular to the x axis in the contact frame.

Next we investigate the angle of shearing, which is usu-
ally used to describe how close the material is to plastic
deformation. The angle of shearing 6 is provided by the local
stress tensor [30]:

= rp—
0= arcsin<@> = arcsin(w> . (6)
P P

When the shear stress is measured in an imaginary plane at
some point of the material, its value depends on the orienta-
tion of the plane. For a given stress state, 7,,,, denotes the
maximum shear stress among all orientations. Dry granular
media are often characterized by a critical angle of shearing
resistance 6.4 [30]. The material is expected to behave as
solid until the angle of shearing remains below the critical
angle and plastic deformation occurs when the critical angle
is reached.

Since the local stress is symmetric before the perturba-
tion, the initial value of the local angle of shearing 6, is
approximately zero. € induced by the perturbation exhibits
also a fast decay away from the perturbed contact. Figure
11(c) shows that € is very small throughout the system. In-

011308-7



SHAEBANI, UNGER, AND KERTESZ

along x-axis —e—
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FIG. 11. (a) The profile of the pressure change AP. Shading is
logarithmic in the amplitude of the pressure change, with black
indicating a pressure increase, and white, a pressure decrease. Dots
show where the sign of AP is changed. (b) AP along the x and y
axes. (c) The maximum angle of friction mobilization a,,,,. The x
axis indicates the direction of separation at the perturbed contact.
The friction coefficient is 0.5.

terestingly, even the largest value 6= 1.5° is far below the
critical angle (the typical value of 6 is around 20°-30°),
still the perturbation is able to break the solid structure of the
packing.

IV. PERTURBATION OF PACKINGS CONFINED
BY GRAVITY

In this section we present the numerical results of the
local perturbations of packings confined by gravity. It is im-
portant to note that both preparation and perturbation steps
are performed in the presence of gravity. In Sec. II B we
explained how such static configurations are prepared. We
also described how we perturb the topmost and lowermost
particles in two different measurements. Actually, these sys-
tems are more realistic in the preparation and perturbation
methods than those investigated in Sec. III.

Our main aim is to study whether the nonmonotonic fric-
tion dependence of the mechanical response found for the
ideal homogeneous packings is reproduced in these realistic
systems. Here, by shifting a particle downwards at the free
surface or upwards at the bottom of the packing, we study
the generated rearrangements of the particle centers and also
the critical force on the perturbed particle.

We start our investigation with the results of the displace-
ment response field. We find that particle movements are not
bounded to a small vicinity of the perturbation point but we
observe displacements even in regions of the system that are
far from the perturbed particle. This indicates a long range
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effect similar to those found for homogeneous packings (Sec.
III) and in experiments [4,7].

Here again, we characterize the size of the rearrangement
zone in our finite systems with the penetration depth &. Simi-
larly to Sec. III, §is defined by the same expression [Eq. (1)]
also in the present case, only 7; now denotes the distance
vector from the center of the perturbed particle to the center
of the ith particle and 7 is pointing vertically downwards
(upwards) for top perturbations (bottom perturbations). Thus
6 has the meaning of the vertical size of the rearrangement
zone. Similar to the homogeneous case, 6 depends strongly
on the perturbed particle; therefore we repeat the perturba-
tion for many particles to obtain the average value (5).

(6) is recorded separately for top and bottom perturba-
tions and for each value of friction. In each case, the average
value (&) is calculated over approximately 1000 perturbed
particles. These particles are selected as follows. We divide
the width of the system into several bins of size roughly
equal to the average diameter of the particles. Among the
particle centers located at the same bin, we find the highest
and lowest centers and the corresponding two particles are
selected for the top and bottom perturbations, respectively.
We repeat this procedure for each bin.

It has to be noted that not all the selected particles for
bottom perturbation are taken into account in the calculation
of (). We exclude rattler particles that do not take part in the
force transmission because they are screened by a local arch.
Of course, there are no true rattlers in the presence of gravity,
because every particle inevitably has force carrying contacts
due to its own weight. In the case of gravity we regard a
particle as a rattler if its upward perturbation generates no
force on the particle, i.e., if its critical force is zero.

To investigate the friction dependence of (&) we perturb
several packings constructed with different friction coeffi-
cients u. Figure 12 (solid circles) shows the average penetra-
tion depth as a function of u for both top and bottom pertur-
bations. It turns out that the qualitative behavior in both
measurements is similar to the homogeneous case: nonmono-
tonic friction dependence with a minimum at intermediate
friction is found. However, the places of the minima are
shifted compared to the homogeneous case and also com-
pared to each other. The possible explanations will be dis-
cussed in the next section.

In fact, the bottom perturbation with gravity resembles
much more the homogeneous case than the top perturbation.
For penetration depths in Figs. 5 and 12(b) the minima are
quite sharp and the actual values of § are almost the same
concerning the minimum & and the values for small and large
. For the top perturbation the situation is different. The
penetration depth is much smaller over the whole range of
friction, 6 has a much broader minimum, and the ratio be-
tween the maximum and minimum values (=2) is much
larger than in the other two cases.

For the investigation of the critical force F; we first have
to find a proper unit in which the average critical force is
measured in order to make the results comparable. This is
needed because originally the perturbed particles experience
different average load depending on whether they are located
in the top or in the bottom layer and also on magnitude of the
friction. If the original load on a particle is larger then the
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FIG. 12. The average penetration depth (&) (solid circles), and
the average critical force (F;) (open circles) with respect to the
average effective weight (F,) as functions of the friction coefficient
., for the perturbation of topmost (a) and lowermost (b) particles.
The vertical dashed lines are reminiscent of the position of the
extrema in the homogeneous case.

critical force is expected to be larger as well.
We will use the quantity (F,) as the force unit, where F|
is defined for a single particle as follows:

Fy= 2 F. (7)
{c|F§>0}

Here FY is the y (vertical) component of the contact force
exerted on the particle at contact ¢, and the sum runs over
contacts of the particle with positive Fcy, i.e., over the sup-
porting contacts that carry the particle against gravity. Simi-
larly to (&), the average (- - -) here is taken over the perturbed
particles and rattlers again are excluded for bottom perturba-
tions.

Fy has the meaning of an effective weight of the particle
that is loaded on the supporting contacts below. It is consti-
tuted by the own weight of the particle plus the weight of
other particles that is transmitted from above. Here we deal
only with vertical components of the contact forces because
the perturbation is performed in the vertical direction. This is
in analogy with Sec. III where the direction of the perturba-
tion was parallel to the contact normal therefore we used the
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normal component of the original contact forces as the force
unit.

The average effective weight (Fy) is clearly different for
the top and bottom perturbation due to the pressure gradient.
(Fy) depends also on friction; it is an increasing function of
w for both cases. For the lowermost particles, (Fy) ranges
from 28.4 0.9 for packings with small friction coefficient
u=1078 to 40 + 1 for packings with large friction coefficient
wm=10. Corresponding values for the topmost particles are
1.25%0.03 and 1.44£0.04.

We record the critical force for each perturbed particle,
where the values of F; show large fluctuations. We deter-
mine the average (F.,) separately for top and bottom pertur-
bations (rattlers are not taken into account in the latter case).
The average critical force is displayed in Fig. 12 (open
circles) scaled by the average effective weight (F,), where
the data show the dependence on friction for both types of
perturbation. We find that the nonmonotonic behavior with
quite sharp maximum, which was observed in Sec. III, is
reproduced here.

It is a common feature of Figs. 12(a) and 12(b) that (F.,)
is close to the average effective weight (F,) in the small
friction limit and the decreasing branches of the curves at
large frictions do not reach the same level but, in contrast to
the homogeneous case, (F_;) remains considerably larger.
Another difference compared to Fig. 5 is that the maxima of
(F ) are shifted rightwards.

Figure 12 reveals also some differences between the two
types of perturbation we applied in the presence of gravity.
The scaled critical force, e.g., is much larger in Fig. 12(a)
than in Fig. 12(b). Interestingly, the variation range of the
scaled critical force for the bottom perturbation is very simi-
lar to the homogeneous case. It is also shown in Fig. 12 that
the extrema of (F;) and (&) are located at different values
of friction for top perturbation, while for bottom perturbation
the extrema are aligned similarly to Fig. 5.

V. DISCUSSION

In the previous two sections we applied localized pertur-
bations in a few different ways; we separated contacting par-
ticles and shifted single particles at the free surface or at the
bottom of the system. We tested the critical force and the
penetration depth of the perturbations both in the presence
and in the absence of gravity. The observed behavior of these
parameters was basically the same in all cases: They show an
interesting nonmonotonic dependence on the coefficient of
friction (see Figs. 5 and 12). Of course, there are also some
differences between the curves presented in Figs. 5 and 12.
These differences may have various origins; here we discuss
some possible causes.

A. Connectivity

We have used two different methods of preparation: “ho-
mogeneous compaction” in which the grains are compressed
by a confining external pressure, and “compaction by grav-
ity” where the grains are piled due to gravitational accelera-
tion. These different preparation methods lead to different
connectivity of the packings. To verify this, we determine the
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FIG. 13. Influence of the friction on the average coordination
number z for homogeneously confined packings (open circles) and
packings settled under gravity (full circles). The middle curve
(stars) corresponds to the gravity case, when the contribution of the
rattler particles, that transmit no load except their own weight, is
subtracted.

average coordination number z=2N_./N', where N, is the to-
tal number of contacts and N’ is the number of particles that
have force carrying contacts. It can be seen in Fig. 13 that the
preparation with gravity provides a larger coordination num-
ber than the homogeneous compaction. The deviation is sig-
nificant for large friction coefficients. In the region u>1, z
approximately equals the critical value 3 for homogeneous
compaction (open circles in Fig. 13). This reveals that the
structure of the packing is very close to isostatic [19,21,31]
where the contact forces are uniquely determined by the
equations of mechanical equilibrium of the particles. The
packings constructed by gravity are far from being isostatic
in the frictional case (full circles in Fig. 13) therefore large
indeterminacy of the forces is expected [21].

Larger force indeterminacy makes the packings more
stable against local perturbations and leads to larger critical
forces [15]. This explains why the critical force is consider-
ably larger for the right than the left side for both Figs. 12(a)
and 12(b), while for the homogeneous case approximately
the same critical forces are found in the small and large
friction limits. This effect may also cause the rightward shift
of the maxima of (F_;,;) for the top and bottom perturbations
in the presence of gravity.

We note that the definition of z applied here excludes
rattlers in zero gravity but in the presence of gravity all the
particles are taken into account, even those that effectively
behave as rattlers. It is important to point out that the differ-
ence in the connectivity we found here cannot be traced back
entirely to the handling of rattlers. Even if we exclude rat-
tlers (particles with zero critical force in the upward pertur-
bation) in the calculation of z we cannot achieve the isostatic
limit 3 for packings settled under gravity. This is shown in
Fig. 13 (stars) where the average coordination number is
determined only for the force carrying structure, without rat-
tlers.

The above discussed difference in the connectivity and its
consequences are observed only for the frictional particles.
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In the zero friction limit we obtain the same coordination
number z=4 for both perturbation methods. This is the criti-
cal coordination number for frictionless disks showing that
inner structure of these packings is isostatic [31].

B. Pressure gradient

The presence of pressure gradient in the case of gravity
(Sec. TV) makes an important difference compared to the
homogeneous pressure (Sec. III). The perturbation causes
displacements of the particles in a relatively large region.
The different parts of this rearrangement zone can experience
different local pressure. This effect is significant especially
for top perturbations where the pressure grows proportion-
ally with vertical distance from the place of the perturbation.
The large relative change in the local pressure suppresses
rearrangements in deeper layers which leads to considerably
smaller penetration depths and also to larger critical forces
with respect to the related force scale of the perturbed par-
ticles.

One can see this overall shift of (5) and (F,,,) for top
perturbation in the entire region of u [Fig. 12(a)] when com-
pared to the homogeneous case (Fig. 5). For bottom pertur-
bations this effect is less important as the relative change in
the local pressure remains small in the vicinity of the per-
turbed particle. This explains the smaller differences in (&)
and (F;,) between Figs. 5 and 12(b).

C. Connection to force indeterminacy

As mentioned in Sec. III B, contact forces are not deter-
mined statically in packings of frictional disks. There exists
an ensemble of force networks that solve the original prob-
lem, i.e., they provide mechanical equilibrium under the
given external load and satisfy the Coulomb condition at
every contact. We can refer to this ensemble as the original
solution set. Due to the contact perturbation we applied in
Sec. III the packing finally chooses the force network which
contains the maximum possible contact force at the per-
turbed contact [15]. In other words, the perturbation drives
the system into the border of the original solution set. There-
fore the critical force is directly connected to the extent of
indeterminacy of the contact forces.

It is important to point out that the relation to the original
force ensemble is different in the case of Sec. IV, where we
perturbed particles instead of contacts. Here the force net-
work generated by the perturbation corresponds to a different
external load and, consequently, it is located outside of the
original solution set. Therefore the critical force is not related
directly to the indeterminacy of the contact forces in case of
top and bottom perturbations. This seems to be a significant
difference between contact and particle perturbations which
could be one reason for the deviation observed for (F_.)
between Secs. III and IV.

D. Other effects

The systems constructed with homogeneous compaction
are close to isotropic [16] in contrast to the packings settled
under gravity, where local stress and fabric are anisotropic
due to the special (vertical) direction of the compaction. In
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the presence of gravity we perturbed the packings in this
special direction which may lead to different response prop-
erties compared to the homogeneous case.

Moreover, for the vertical perturbations the up and down
directions may behave differently. The direction of gravity
has even a structural signature in the packing. E.g., the num-
ber of contacts of a particle that have a vertical position
higher than the particle center exhibits larger fluctuations
than the number of contacts that are located below the center.
One can mention also the particles that are acting as rattlers
when perturbed upwards (zero critical force) but there is no
rattler behavior for downward perturbations where the criti-
cal force is always positive. Therefore perturbations in the up
and down directions may lead to a different response even if
the perturbations are performed for the same configuration of
particles inside the bulk.

Another aspect that makes a difference between top and
bottom perturbations is the boundary condition. The top of
the system is not bounded, thus the displacement field gen-
erated by the perturbation is allowed to pass through the
original boundary. This is not possible for the bottom pertur-
bation, where the motion of the surrounding particles is
bounded by a rigid rough bed at the bottom.

VI. CONCLUSION

In this work we presented the numerical results of the
measurement of mechanical response to localized perturba-
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tions. Based on contact dynamics simulations we prepared
2D static granular assemblies with and without gravity, then
we perturbed the systems with different methods to achieve
the unjamming transition. Despite all the effects that are ex-
pected to influence the response of the packings depending
on the preparation and perturbation methods, the qualitative
behavior seems to be very robust. We found that both the
resistance of the packings against the perturbations and the
penetration depth of the generated displacement field are
sensitive to the interparticle friction coefficient: the surpris-
ing nonmonotonic dependence on friction is reproduced in
all cases that were studied in the present work.

The nonmonotonic behavior of the critical force in the
case of contact perturbation can be understood based on the
nonmonotonic indeterminacy of contact forces. However, the
indeterminacy of forces seems to influence the critical force
and the penetration depth generally. Further studies are
needed to clarify this relationship.
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