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The statement of the title is shown by numerical simulation of homogeneously sheared assemblies of
frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady flows at constant shear rate
�̇ in the limit of small �̇ and static approaches, in which packings are equilibrated under growing deviator
stresses. The internal friction angle �, equal to 5.76° �0.22° in simple shear, is independent of average
pressure P in the rigid limit and stems from the ability of stable frictionless contact networks to form stress-
induced anisotropic fabrics. No enduring strain localization is observed. Dissipation at the macroscopic level
results from repeated network rearrangements, similar to the effective friction of a frictionless slider on a
bumpy surface. Solid fraction � remains equal to the random close packing value �0.64 in slowly or statically
sheared systems. Fluctuations of stresses and volume are observed to regress in the large system limit. Defining
the inertial number as I= �̇�m / �aP�, with m the grain mass and a its diameter, both internal friction coefficient
��=tan � and volume 1 /� increase as powers of I in the quasistatic limit of vanishing I, in which all
mechanical properties are determined by contact network geometry. The microstructure of the sheared material
is characterized with a suitable parametrization of the fabric tensor and measurements of coordination numbers.
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I. INTRODUCTION

Packings of particles appear in a variety of fields of con-
densed matter physics and material science, such as granular
materials �1–3�, powders �4�, or concentrated noncolloidal
suspensions �5,6�. Such systems are macroscopically disor-
dered, and share many common features in their rheological
behavior. One is a certain shear stress threshold, above which
they roughly qualify as a fluid, and below which they might
be regarded as solid. In assemblies of particles with purely
repulsive force laws, interactions often do not introduce any
stress scale, and the threshold only involves some ratio of
stress components, whence a behavior often expressed as a
friction law. Another basic property shared by many particu-
late systems is the existence of a specific value of the particle
density, above which the material cannot flow. The viscosity
of a dense suspension diverges as the solid fraction � ap-
proaches some value ��, often regarded �7� as identical to
the random close packing one �RCP ��RCP�0.64 for identi-
cal spherical balls �8��. Shearing and volumetric strains are
coupled in granular media, which, once densely packed, can-
not deform without expanding: this is the dilatancy property,
first introduced by Reynolds �9�. Once the shear strain
reaches a large enough value, granular packs can continu-
ously deform, similar to perfectly plastic materials, under
constant stresses while keeping a constant solid fraction �c:
this state of steady plastic flow does not depend on initial
conditions and is known in soil mechanics as the critical
state �10�. Friction and dilatancy are coupled in granular ma-
terials by the stress-dilatancy relations, as proposed, e.g., by
Rowe �10,11�.

It is tempting to try and identify simple, model systems
apt to explore the microscopic origin of those broadly de-
fined rheological features. To this end, discrete particle nu-

merical simulation, for granular materials �1,12,13�, or sus-
pensions �14�, has now become a widespread research tool.
Thus friction laws in model granular assemblies in steady
shear flows, with some inertial effects, were simulated
�15,16�, and stress-dilatancy relations were tested �17�. Many
results were obtained on sphere packings �18,19�, which,
long investigated in order to characterize their geometry
�8,20�, are now studied with complete mechanical models.
Thus it has been checked �21–23� that the random close
packing state of monosized spheres is apparently uniquely
defined if enduring agitation inducing traces of crystalline
order is avoided in the assembling stage. The macroscopic
�or internal� friction coefficients, and their relation to micro-
mechanical parameters, including intergranular friction, have
been evaluated from numerical simulations �18,19�.

Despite recent advances, some open gaps and unanswered
questions can be pointed out in the literature. The accurate
and detailed characterization of frictionless systems under
isotropic loads �21,22�, in which static equilibrium states are
studied and few parameters are introduced, contrast with the
more general investigations of the behavior of granular sys-
tems with intergranular friction �17–19�, which are most of-
ten carried out by dynamical methods involving inertia ef-
fects, and involve quite a few additional parameters. In those
latter studies, the limit of frictionless grains is not really
treated with the desirable accuracy. Yet, frictionless pack-
ings, albeit reported to exhibit singular properties �24–26�,
incorporate basic geometric effects that are common to sus-
pensions and dry granular systems, even though they are
supplemented by viscous flow effects in the first case, by
intergranular friction and inertia in the second case.

In order to clarify issues that have not been settled, the
present paper is devoted to a numerical study of frictionless
bead packings, subjected to homogeneous shear, and ad-
dresses the following questions. Can frictionless packs sus-
tain shear stresses in static equilibrium states as well as in
slow, steady flow, and do static and dynamic friction coeffi-
cients coincide? Do fluctuations on measured stresses or*pierre-emmanuel.peyneau@lcpc.fr
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strain rates regress in the large system limit? What can be
said about characteristic densities �RCP, ��, �c? How do
classical approaches of dilatancy �9,27�, and the way it
couples to friction �17�, apply in such a simple case?

The paper is organized in four main parts. Section II de-
scribes the model material and the numerical simulation
setup, specifying the boundary condition and initial states
used in static and dynamic approaches. Section III reports
on the main results about the macroscopic behavior—
macroscopic friction and dilatancy—and their dependence
on the dimensionless control parameters identified in Sec. II.
Section IV investigates the packing microstructure and the
force networks, in connection with macroscopic mechanical
properties, with, in particular, a detailed characterization of
anisotropy. Section V is a discussion.

II. MODEL MATERIAL AND NUMERICAL EXPERIMENTS

A. System and interactions

We consider packings of equal-sized spherical beads of
diameter a and mass m, enclosed in a cuboidal simulation
cell. Beads interact in their contacts where only normal
forces FN are transmitted, which are modeled as a sum of an
elastic term and a viscous one, as in many numerical studies
of granular systems �see, e.g., Refs. �18,23,28,29��. The elas-
tic force FN

e is related to the normal deflection h of the con-
tact by the Hertz law �30�

FN
e =

Ẽ

3
�ah3/2, �1�

where Ẽ is a notation for E / �1−�2�, E is the Young modulus
of the solid material the spherical grains are made of, and �
its Poisson ratio. Equation �1� attributes to contacts a vari-
able spring constant KN=dFN

e /dh= Ẽ�ah1/2 /2.
The viscous normal force opposes the relative normal ve-

locity �VN= ḣ of contacting beads, and is chosen as

FN
v = 	�2mKN�VN = 	�mẼ�1/2�ah�1/4�VN, �2�

with a constant coefficient 	. The same form of the viscous
force was used in �23,31�. Although Eq. �2� is devoid of a
physical justification, some kind of dissipation is required �a
granular material is not a conservative system�, and conse-
quently, the influence of 	 on the simulation results has to be
carefully assessed. One attractive feature of the force law �1�
and �2� is the resulting velocity-independent coefficient of
restitution eN in binary collisions. Most simulations reported
here were done with 	 values such that eN is close to zero.

Particle rotations play no role and are ignored, as friction-
less spherical objects behave similar to point particles inter-
acting with central forces.

The equations of motion for the particles, given by New-
ton’s law, as in all molecular dynamics �MD� methods, are to
be numerically solved with standard time discretization
schemes �32�. The time step used in the computations is a
small fraction of the characteristic period of oscillations for
the stiffest contact.

B. Boundary conditions, stress, and strain control

We use different simulation procedures in which some
strain, or strain rate, and stress components are externally
imposed to the system. In order to avoid wall effects and to
determine easily the intrinsic constitutive laws that apply in
the large system limit, the simulation cell has periodic
boundary conditions. The edges of the cell have lengths
�L
�1�
�3 along the three orthogonal axes of coordinates.
Unlike the cell, the material may undergo some shear strain,
imposed with the Lees-Edwards procedure �32�. Adding this
possibility to the possible shrinking deformations along the
three axes of coordinates, four independent strain compo-
nents are considered in the different simulation steps and
methods we are using in this work. The procedures defined
below consist in choosing to fix some of them to zero or to a
constant value while prescribing the values of stresses con-
jugate to the others. Table I recapitulates those choices for
the three different simulation procedures.

1. Initial assembling process: Procedure O

In a preliminary step, the system is first prepared by iso-
tropic compression of a loose “gas” of particles. The corre-
sponding procedure, denoted as O for origin is the one ap-
plied in Ref. �23� to prepare isotropic packings. Global shear
strain � is kept equal to zero, while the system shrinks along
all three directions, until a mechanical equilibrium state is
reached for which all three diagonal components �

 of the
Cauchy stress tensor �33,34� are equal to a set pressure value
P. The system is deemed equilibrated when all forces com-
pensate to zero, with a tolerance set to 10−4 a2P on each
particle, and each diagonal stress component is equal to P
with a relative error smaller than 10−4, while the kinetic en-
ergy per particle does not exceed 10−8 a3P. Those isotropic
equilibrated configurations are the “random close packing
states,” as studied in Refs. �21–23�.

2. Controlled shear rate: Procedure D

Initial configurations produced with method O may then
be subjected to a simple shear deformation, in which a mac-
roscopic motion along direction 1 is set up, with velocity
gradient, on average, along direction 2 �by the Lees-Edwards
procedure�, while L3 and L1 are fixed. L2 is allowed to fluc-
tuate in order to maintain �22 equal to P on average �with
very small fluctuations�. The macroscopic shear rate is
denoted as �̇. This defines procedure “D” �for dynamically
sheared�. It was implemented in a very similar way in Ref.
�35�. One then records the time-averaged shear stress

TABLE I. Choice of imposed stresses or strain rates in the three
simulation procedures O, D, and S.

Stress/strain control Procedure O Procedure D Procedure S

�11 /L1 �11= P constant L1 �11= P

�22 /L2 �22= P �22= P �22= P

�33 /L3 �33= P constant L3 �33= P

�12 / �̇ �̇=0 constant �̇ �12=
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= ��12�, as well as the sample volume. It is important to
note that Lees-Edwards boundary conditions are fully com-
patible with either a linear velocity profile or very heteroge-
neous strain fields. With this procedure, shear strain � is set
equal to the ratio of the offset along axis x1 of the neighbor
copy of the simulation cell in the x2 direction, to the length
L2. Consequently, due to fluctuations in L2, the time deriva-
tive of � is not strictly equal to �̇ at all times.

3. Static approach, controlled shear stress: Procedure S

In the limit of small �̇, results of procedure D simulations
should be comparable to static computations, in which the
system equilibrates under an externally imposed shear stress.
To compare static and dynamic measurements �possible dif-
ferences between “static” and “dynamic” friction coefficients
or threshold shear stresses in similar systems are mentioned
in Ref. �16�, and discussed in Refs. �29,36��, we also imple-
mented a completely stress-controlled, quasistatic procedure,
denoted as “S” �for static�. In procedure S, increasing values
of shear stress 
 are stepwise applied, by increments �

=0.005� P, to the initially isotropic configurations obtained
with procedure O, while the prescribed value of all three
diagonal components �

 is the initial pressure P. �̇, unlike
in procedure D, is not constant. It satisfies a dynamical equa-
tion designed to impose a prescribed value 
 to �12. For each
value of 
, one waits until a satisfactory equilibrium state is
reached �with the same tolerance levels as in procedure O�.
The calculation is stopped when the packing does not equili-
brate with the current value of 
 after 5�107 MD time steps.
The largest 
 value for which an equilibrium state was ob-
tained is kept as an estimate of the shear stress threshold for
onset of flow.

C. Dimensional analysis, state parameters, and geometric limit

Assuming homogeneous steady states are observed in
large enough samples, with shear rate �̇ and normal stress P,
then, by dimensional analysis �13,15,23� all dimensionless
state variables, such as solid fraction � or average stress
ratio ��12 /�22� only depend on three dimensionless param-
eters. The first one, the inertial number I= �̇� m

aP , character-
izes the importance of inertial effects in dense granular flows
�15,16,37� and plays a central role for these systems �38,39�.
The quasistatic limit is the limit of I→0, which we will
systematically explore.

The importance of contact deformation is characterized
by the second dimensionless parameter, a stiffness number
which we define, as in Ref. �23�, as �= �E / P�2/3. � is such
that the typical contact deflection h under pressure P is pro-
portional to �−1a with a prefactor close to 1 �23�. In order
to enable comparison of macroscopic elastic properties with
experimental results, we set E=70 GPa and �=0.3 �glass
elastic constants�. The pressure levels chosen, P=10 kPa
and P=100 kPa, then correspond to �=�1�3.9�104 and
�=�2�8.4�103, respectively. These two values of � were
reported to be large enough for the limit of rigid grains, i.e.,
of �→ +�, to be approached with good accuracy in the case
of static packings �23�.

Finally, the third dimensionless parameter is the level of
viscous damping 	, which appears in a viscous force and
should not play a major role in the quasistatic limit.

Table II sums up the values of dimensionless control pa-
rameters used in the present numerical study.

We should investigate the relations between global inten-
sive variables, such as stresses, density, strain rate, in the
limit of large samples, i.e., of N→ +�. It is expected that for
large enough samples the material state in shear flow will not
depend on the specificities of boundary conditions, or on
whether shear stress or strain rate is controlled. This requires
the investigation of possible size effects and the study of the
regression of fluctuations for global variables. Measured
state variables should also be uniform in space—and thus
one needs to check for possible shear localization. If dimen-
sionless variables such as stress ratios or density are well
behaved in the triple limit of N→� �thermodynamic limit�,
I→0 �quasistatic limit�, and �→ +� �rigid limit�, then the
observed inner states and mechanical behavior of the pack-
ings only depend on their geometric properties—hence the
name “macroscopic geometric limit” we adopted for such a
situation. One of the major goals of the present study is the
investigation of material properties in this limit. Finally, as
a practical application of the dimensional analysis of simu-
lation parameters, let us note that the computational cost,
expressed as a number of MD integration steps needed to
reach a given shear strain �, is proportional to ��� / I.

III. GLOBAL VARIABLES AND
MACROSCOPIC BEHAVIOR

Our global observations and measurements are reported in
this section. Conditions for proper observations of the intrin-
sic behavior of the material subjected to procedure D �shear-
rate-controlled numerical experiments� are checked for in
Sec. III A, in which various qualitative aspects of the mate-
rial state in shear flow are discussed. Attention is then fo-
cused on macroscopic friction �Sec. III B� and dilatancy
�Sec. III C� properties of the material, which are more thor-
oughly and quantitatively investigated. Finally, the results
obtained with procedure D at low inertial numbers are com-
pared to those of the static approach, procedure S, in Sec.
III D. Section III E discusses the essential results and their
connections with the literature on granular materials.

A. Material state in slow shear flow: qualitative aspects

With procedure D, we investigate steady states, and time
series are collected for averaging. We are interested in intrin-
sic constitutive laws, as measured on averaging over the
whole sample. It is therefore necessary to check for both
invariance in time and homogeneity, in the statistical sense.

TABLE II. Range of dimensionless parameters used in this
study.

I � 	

1�10−5−0.56 �1=3.9�104; �2=8.4�103 0.05–0.98
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We should also assess the control of constant stress �22, and
discuss the values of other stress components.

1. Steady state flows and stress measurements

Figure 1 displays the evolution of two components of the
stress tensor �22 and �12 with strain �. It shows that �22
is well controlled since it was requested to stay equal to
�22=0.1P in this numerical experiment. The evolution of
stress �12, from the initial, isotropically confined state, wit-
nesses the existence of an initial transient, which has virtu-
ally ended at �=0.1 in that case. The steady state part of the
time series starts for values of strain � that depend on the
inertial parameter, of order 10−1 for the smallest I values
�	10−5�, increasing typically to about 0.5 for I=10−2 and to
several units for I	10−1. Unlike in dense systems with in-
tergranular friction �17–19�, for which deviator stresses,
starting from isotropically compressed initial states, go
through a peak before approaching a plateau value at large
strain, the shear stress in frictionless bead packs appears to
grow monotonically, as a function of strain, toward its steady
state value. Another notable feature of the shear stress as a
function of time is the importance of fluctuations, which of-
ten exceed 30% of the mean value on the example of Fig. 1,
in a sample of 4000 beads. A proper evaluation of average
shear stresses thus requires careful statistical approaches and
error estimates.

As a practical criterion to detect the end of the initial
transient regime, we request that a small set of basic mea-
sured quantities do not exhibit any visible trend. Specifically,
shear stress �12, volume fraction � and coordination number
z should all fluctuate about their mean value in a stationary
manner, as well as the kinetic energy per particle �ec associ-
ated with velocity fluctuations. The latter is defined as

�ec =
1

2N


i=1

N

m��v1 − �̇x2�2 + v2
2 + v3

2� . �3�

�ec measures the instantaneous discrepancy between the ac-
tual flow generated by the Lees-Edwards boundary condition

in the granular material and the affine velocity field in a
homogeneous continuum in shear flow.

Unlike L2, lengths L1 and L3 are constrained to remain
constant in procedure D, so that �11 and �33 may vary during
the simulation. For I�0.01, we observed that time averages
of �11 and �33 differed from the initial hydrostatic pressure P
by less than 3%. This difference becomes even smaller for
smaller inertial numbers: for I=10−3, relative differences
���11� / P�−1 and ���33� / P�−1, respectively, reduce to 1.0%
and 2.2%. Those values decrease down to 0.9% and 1.7% for
I=10−4, and to 0.6% and 1.6% for I=10−5. Although appar-
ently not equal to zero, even in the quasistatic limit, those
stress components are very small, and, consequently, will not
be studied in the sequel. Section III B, instead, focuses on
accurate determinations of shear stress �12.

For a given number of particles, the relative fluctuations
of the instantaneous value of �12, �, and z �i.e., the ratio of
their quadratic average to the mean value� seem to be inde-
pendent of I. The average values of �ec, on the other hand, as
compared to the kinetic energy of the macroscopic field,
which is proportional to �̇2, increases as I decreases. Figure 2
is a plot of ��ec� / �ma2�̇2� versus I, showing that this ratio
approximately diverges as 1 / I in the limit of I→0. This
agrees with measurements made in 2D simulations of shear
flows: the same behavior is reported in Ref. �15�, and an
interpretation was suggested, to which we shall return in Sec.
III E. These observations suggest that in the quasistatic limit
one has increasingly inhomogeneous instantaneous velocity
gradient fields, which we now investigate.

2. Instantaneous velocity profiles

Instantaneous velocity profiles v1�x2� recorded at different
random times for different values of I are plotted in Fig. 3.
Profiles v1�x2� are obtained on averaging particle velocities
over slices cut alongside x2 in the simulation cell �particles

FIG. 1. �Color online� ��12� �left axis, in black� and �22 �right
axis, in gray, red online� as functions of strain �. Note that the left
and right scales are different. Time series obtained with I=3.2
�10−5, �=�1, 	=0.98, and N=4000.

FIG. 2. �Color online� Kinetic energy associated with velocity
fluctuations, as defined in Eq. �3�, normalized by ma2�̇2, versus I, in
simulations with 4000 beads, for �� ��2 ,�1
 and 	=0.98.
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overlapping slice boundaries contribute to several different
averages�. Inertial number I has an important effect on the
granular flow. As shown in Fig. 3, instantaneous velocity
profiles for I=3.2�10−2 are linear, whereas shear bands may
appear for I=3.2�10−4, as in the profile marked “L” �for
“localized”� on the bottom plot of Fig. 3. The transition be-
tween these two regimes seems to be gradual, with profiles in
the middle part of Fig. 3, corresponding to I=3.2�10−3,
exhibiting somewhat intermediate features.

Localization occurs here in the bulk of the material since
the system is not enclosed between walls. Localization is
thus an intrinsic property of the studied material, which
spontaneously appears for small values of I �40�. At first
glance, it seems that the erratic behavior of the velocity pro-
files in the quasistatic limit may seriously jeopardize the in-
terest of the results obtained on averaging over the whole
simulation cell and would demand specific analysis, distin-
guishing between material states within and outside shear
bands. However, localization patterns are not persistent, and
linear velocity profiles are recovered by time averaging, even
in the I→0 limit, which means that on average, the flow is
homogeneous. Figure 4 shows the gradual fading out of
strain rate localization, after a strain interval of order 0.1.
Shear bands thus randomly appear, move and disappear.
Such a behavior is witnessed by larger relative fluctuations
of �ec as I decreases. We did not carry out a detailed study of
the lifetime and dynamics of nonpersistent shear bands, as
the statistical homogeneity of the system in steady state shear

justifies an analysis of global behavior based on averages
over space and time.

B. Macroscopic friction coefficient

For D simulations, the macroscopic friction coefficient,
which we denote as ��, is set equal to the time average—in
the steady state—of the ratio of the shear stress �12 to the
normal stress �22 �we use a convention where compressive
stress components are positive�

�� = � ��12�
�22

�
t
. �4�

The simulations produce raw data in the form of time series.
The steady part of the time series is isolated as explained in
Sec. III A and �� can then be easily computed. To estimate
the statistical uncertainty on the measurement of averages
over finite time series, we use the “blocking” �or “renormal-
ization group”� technique presented in Ref. �41�. This yields
error bars on measurements of averages in finite systems
which should not be confused with the quadratic average of
fluctuations of the observable quantity. In practice, due to
intrinsic long-lasting correlations in the system, we observed
that quite long runs were necessary. In some cases with I
	10−5, up to 109 simulation time steps �corresponding to a
deformation ��4� were necessary for a correct evaluation of
the uncertainty on ��.

In the present case, we could check that the time series of
all observable quantities recorded in distinct samples differ-
ing only by their initial state were statistically identical in
steady state with high accuracy, as expected from critical
state theory �10,42–44�. ��, as estimated from time series in
type D simulations, may depend on the three dimensionless
numbers introduced in Sec. II C, as well as on the number N
of particles. This dependence is investigated in the following
paragraphs.

FIG. 4. �Color online� Velocity profile after shear strain intervals
� equal to 0.004 �red dotted curve�, 0.02 �blue dashed curve�, and
0.1 �black solid curve�, following the instant corresponding to the
localized profile marked L in Fig. 3, bottom graph.

FIG. 3. �Color online� Two velocity profiles at randomly chosen
times, for I=3.2�10−2 �top�, I=3.2�10−3 �middle�, I=3.2�10−4

�bottom�. �=�1, 	=0.98 and N=4000.
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1. Effect of I

Among the three dimensionless parameters governing the
behavior of the system, the inertial number I has the stron-
gest effect on ��. Figure 5 plots �� as a function of I. It
shows that �� is an increasing function of I. This dependence
of the macroscopic friction coefficient on the inertial number
is similar to the ones reported in the literature, as obtained by
both simulations and experiments �15,16,37�, although most
published results pertain to granular systems with friction in
the contacts. Here �� approaches a finite nonzero value �0

� in
the quasistatic limit of I→0, despite the absence of friction
at intergranular contacts. �0

� coincides with the internal fric-
tion coefficient of the material in its critical state. Note the
accuracy of the displayed curve: statistical uncertainties mea-
sured with the blocking method are comprised between 10−4

and 10−3 and are thus invisible on the graph.

2. Effect of �

Near the rigid limit, the macroscopic behavior should re-
flect the absence of stress scale in the contact law: stress
ratios and derived quantities such as the macroscopic friction
coefficient are expected to be independent of the average
stress. The friction coefficient hardly changes between the
two values of � used in our simulations, indicating that the
rigid limit �→� is accurately approached. Those simula-
tions were carried out with 	=0.98 for 1.8�10−4� I�5.6
�10−1, and the relative variation on �� is less than 2%
throughout this range of inertial parameter on varying the
stiffness parameter from �=�1 to �=�2. Thus we decided
to gather the values obtained for the macroscopic friction
coefficient with �=�2 and �=�1 in Fig. 5, because theuncer-
tainty on the macroscopic, geometric limit of �� to be esti-
mated will eventually exceed this small difference.

3. Effect of �

The viscous damping term is indispensable in the model,
as the only source of dissipation, but its magnitude should
be irrelevant in the quasistatic limit. Consequently, the influ-
ence of 	 on our results had to be assessed and we performed
simulations for different values of I with 	=0.98 �this value
corresponds to a restitution coefficient eN=3.3�10−3�,
	=0.55 �eN=0.17�, 	=0.25 �eN=0.49�, and 	=0.05
�eN=0.87�. Our results show that for I�10−3, the maximal
relative variation of 	 on the macroscopic friction �� is less
than 1%. Far from the quasistatic regime, the influence of 	
is no more negligible: the relative variation of �� is greater
than 10% on changing 	 when I�10−1.

4. Effect of N

The influence of the sample size on the average of the
apparent friction coefficient ��12� /�22, was investigated on
comparing results for three different numbers of particles:
N=500, 1372, and 4000. Results are listed in Table III. We
also recorded the standard deviations, denoted as ��, and
the average of the top percentile of the instantaneous values,
denoted as ��,100. Let us recall that we are dealing here with
the fluctuations of the time series, which differ from the sta-
tistical uncertainties on the average values.

The effect of the sample size on the macroscopic friction
is unnoticeable for N=1372 and 4000 since the difference
between the friction coefficients pertaining to these two sizes
is less than the statistical uncertainty marring the accuracy on
��. However, the impact of N on �� cannot be neglected in
the quasistatic limit for a system of N=500 beads. These
results show that some minimum number of beads, of order
about 1000, is required to approach the thermodynamic limit
with an acceptable accuracy.

The data of Table III also witness the regression of fluc-
tuations of stress ratio �� in the steady state in the large
system limit. The results are compatible with the classical
form for the decrease of fluctuations of collective variables,
viz. �� /���N−1/2. Specifically, for I=3.2�10−5, �=�1, and
	=0.98, a fit of the data to the following form:

��/�� = �7.6 � 0.7�N−1/2 �5�

has good statistical admissibility. This result is shown in Fig.
6 in graphical form �two additional sizes N=2048 and 2916
were also simulated�. Therefore, we expect the steady state
stress-strain curves such as the ones of Fig. 1, however noisy
for the sample sizes simulated, to become smooth in the
large system limit.

5. Approach to the macroscopic geometric limit

According to the previous parametric study, the geometric
limit can be confidently studied as the limit of I→0 on
samples of 4000 beads with ���2 and 	=0.98. �� should be
a function of the sole inertial number in very good approxi-
mation for sufficiently small values of I. In the absence of
any scale, we tried to fit the data by a power law function
�see Fig. 5� of the form

FIG. 5. �Color online� Macroscopic friction �� vs inertial num-
ber I for stiffness parameter �� ��2 ,�1
, damping parameter 	
=0.98, and number of beads N=4000. The solid line is Eq. �6� with
the parameters of Table IV �no visible difference on using best
parameters with �1 or �2�.
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�� = �0
� + cI
. �6�

As stated above, this fit is not expected to be accurate for
large I values and we therefore restricted ourselves to fit the
data points with I�0.01. Parameters �0

� �the geometric mac-
roscopic friction coefficient�, 
 and c were separately esti-
mated for �=�1 and �=�2 �keeping 	=0.98 and N=4000�
and results are shown in Table IV.

The value of the geometric macroscopic friction angle �0
�

corresponding to �0
� is �for �=�1�

�0
� = 5.76 ° � 0.22 ° . �7�

Quite similar values are also reported with two-dimensional
packings of polydisperse disks by Taboada et al. �17�, whose
estimate of the macroscopic friction angle lies between 4°
and 7° for frictionless grains, and by Da Cruz et al. �15�, who
obtained �0

��0.1 in shear flow simulations for small I pa-
rameters. Hatano �16� recently performed three-dimensional
�3D� numerical simulations on polydisperse assemblies of
about 10000 spherical beads, for different intergranular fric-
tion coefficients �. The reported value of the macroscopic

friction coefficient in the quasistatic limit is 0.06 for �=0,
apparently lower than our result. It should be recalled, how-
ever, that Hatano’s work was motivated by applications to
granular materials under high confining stresses within geo-
logical fault zones, and that consequently simulations were
carried out with lower stiffness levels ��=1840, 136, 84, and
42� than in the present study. Moreover, the lower range of I
parameters, below 3�10−4, was only investigated with the
lower � values. Hatano used the same form as Eq. �6� to fit
his data, but his estimate 
=0.28�0.05 differs from ours
�see Table IV�. Although some effect of the polydispersity is
possible, we also attribute this discrepancy to some non-
negligible influence of � in Hatano’s simulations �16�. Only
the simulations with �=1840 in Ref. �16� can be expected to
approach the rigid limit accurately. For this stiffness level,
Hatano’s data points are available for I�3�10−4 and are in
very good agreement with ours �e.g., ���0.17 for I=0.01�.

C. Dilatancy and steady-state density

Dilatancy under shear is a basic property of granular ma-
terials in quasistatic deformation �9–11,17�, when dense
samples are subjected to increasing deviator stresses. The
steady-state density is mainly sensitive to I if � is large
enough �15�. The small I behavior of frictionless bead as-
semblies is investigated here with greater accuracy than in
previous studies.

We could check that, just like the macroscopic friction
coefficient, the steady state time average of the volume frac-

TABLE IV. Best fit parameters for Eq. �6� and the data obtained
with N=4000, 	=0.98 for �=�1 and �=�2.

� �0
� 
 c

�1 0.101�0.004 0.38�0.04 0.40�0.07

�2 0.100�0.003 0.39�0.02 0.42�0.03

TABLE III. Influence of sample size N on macroscopic friction �� and volume fraction � for different
values of inertial number I, with �=�1 and 	=0.98. Superscripts “100” denote the average of the top
percentile values in the steady state part of the time series.

I N �� �� /�� ��,100 � �� /� �,100

500 0.1169 0.3100 0.2188 0.6367 0.0022 0.6403

3.2�10−5 1372 0.1101 0.1907 0.1609 0.6380 0.0015 0.6408

4000 0.1090 0.1245 0.1431 0.6387 0.0008 0.6404

500a 0.1432 1.263 0.8378 0.6738 0.0178 0.7148

3.2�10−4 1372 0.1209 0.1689 0.1779 0.6365 0.0016 0.6390

4000 0.1197 0.1002 0.1519 0.6368 0.0010 0.6388

500 0.1473 0.2091 0.2275 0.6316 0.0027 0.6360

3.2�10−3 1372 0.1457 0.1293 0.1966 0.6322 0.0016 0.6346

4000 0.1458 0.0764 0.1752 0.6323 0.0009 0.6338

500 0.2112 0.2045 0.3317 0.6193 0.0025 0.6234

3.2�10−2 1372 0.2123 0.1197 0.2802 0.6197 0.0015 0.6223

4000 0.2125 0.0694 0.2517 0.6200 0.0009 0.6215

aThis numerical experiment displays shear-induced ordering, a feature observed only for systems of N
�1000 beads �see the Appendix for details�.

FIG. 6. �Color online� �� /�� as a function of N for I=3.2
�10−5, �=�1 and 	=0.98. The solid line equation is relation �5�.
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tion �����t��t is an intrinsic property of the material, inde-
pendent of its initial preparation. Next, we investigate its
dependence on the three dimensionless parameters I, �, and 	
and on the number of particles N.

1. Effect of I, �, and �

Once again, numerical experiments demonstrate that
among the three dimensionless numbers governing the be-
havior of the system, the inertial number I has the most im-
portant effect on �����t��t. Figure 7 shows the influence of
I on �. We observe that � decreases for increasing I, as
previously reported �15,16�. It starts from a value �0
�0.64 in the quasistatic limit and the system expands as I
increases. Statistical uncertainties on � measured thanks to
the blocking method are comprised between 10−5 and 10−4

and are thus invisible on the figure. �0 is very close to �RCP
�21,23�, which coincides �up to small corrections due to the
finite contact stiffness� with the initial volume fraction �iso,
right after the samples are assembled with procedure O. For
�=�2 and N=4000 we have �iso=0.6382�0.0011 and
�iso=0.6369�0.0009 for �=�1 �averages and standard de-
viations are evaluated on five samples�. The system studied
thus appears to be devoid of dilatancy in the quasistatic limit.
Whether �0 should be regarded as equal to �iso��RCP at
the macroscopic level will be discussed after the possible
influence of N on the average densities is investigated.

Stiffness parameter � typically induces a relative increase
of the volume fraction of roughly 0.1% when it changes from
�=�2 to �=�1, whatever the value of I—a small effect, yet
distinguishable from statistical uncertainties. Such a density
increase is of course expected, as larger contact deflections
due to larger stresses or a softer material decrease the sample
volume. Simulations with 	=0.98 �eN=3.3�10−3�, 	=0.55
�eN=0.17�, 	=0.25 �eN=0.49�, and 	=0.05 �eN=0.87� for a

wide range of inertial numbers have also been run. The in-
fluence of 	 on � is important for large I: for I�0.1, the
relative variation of � with 	 can reach 30%. However, this
effect, as expected, gradually vanishes as the quasistatic limit
is approached, and for I�0.01 the relative variation of �
with 	 is less than 0.1%.

2. Effect of N

According to Table III, � very slightly varies with the
number N of particles, as in static, isotropic systems �21,23�.
The following fit, based on the measurements for the small-
est available value of I, i.e., I= I1=3.2�10−5 for �=�1, may
be used:

��� = �1,I = I1,N� = �1 − k1N−1/2 �8�

with the parameters

�1 = 0.6398 � 0.0002, �9a�

k1 = 0.070 � 0.008. �9b�

As with the macroscopic friction coefficient ��, we could
check for the regression of fluctuations of the volume frac-
tion for increasing N. For the same set simulations with
I=3.2�10−5, �=�1, and 	=0.98 as in Sec. III B 4, we ob-
serve that the decrease of density fluctuations with increasing
N can be fitted by the following relation:

��

�
=

A
�N

with A = 0.051 � 0.011 �10�

as shown graphically in Fig. 8, whence a well-defined large
system limit for �.

3. Approach to the macroscopic geometric limit

Volume fraction � can therefore be modeled as a function
of I near the quasistatic limit, say for I�0.01, with small
corrections to account for the influence of N and �. It can be
regarded as independent of 	 �at least for I�0.01�. The fit
form used is

�−1 = �0
−1 + eI�. �11�

For N=4000 and 	=0.98, the best fit values of the param-
eters of Eq. �11� are given in Table V.

FIG. 7. �Color online� Volume fraction � as a function of iner-
tial number I �for 	=0.98, N=4000�, for both stiffness levels �
=�1 �blue squares� and �=�2 �red triangles� The solid lines are
given by Eq. �11� with the parameters of Table V.

FIG. 8. �Color online� �� /� as a function of N for the same
time series as in Fig. 6, fitted with Eq. �10� �solid line�.
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To evaluate the macroscopic value �0
� in the double limit

of I→0 and N→ +�, it is reasonable to assume that the
small corrections to �0

� that result from the finite value of N
and from the nonvanishing value of I are additive. The use of
Eqs. �8� and �9� to evaluate the finite N correction to the
value �0 of the quasistatic density, as obtained on fitting Eq.
�11� to the results with N=4000, yields, for �=�1:

�0
� = 0.6410 � 0.0005. �12�

The increases of �, from its value in the rigid limit, due to
the finite stiffness is of order �−1 �see Ref. �23�, Eq. �31�� and
is smaller than the statistical uncertainty in Eq. �12�. The
value of �0

� given in Eq. �12� is thus our best estimate, from
D-type simulations, of the solid fraction of sheared sphere
packings in the macroscopic geometric limit.

D. Static behavior

We now compare the results of Secs. III B and III C for
steady shear-rate-controlled simulations �procedure D� with
those obtained through static shear numerical experiments
�procedure S�.

1. Friction coefficient

The static macroscopic friction coefficient is defined in
procedure S as

�stat =
�
max�

P
, �13�

where 
max denotes the maximum shear stress which the sys-
tem has been able to sustain in mechanical equilibrium and P
the confining pressure. Static microscopic friction coeffi-
cients for different sample sizes are displayed in Table VI.

Values of �stat are larger than the dynamical value �0
�

=0.100�0.004 obtained in D simulations in the quasistatic
limit. As shown by Table VI, �stat is size dependent, unlike
�0

� �for N�1000�. Analogous observations were reported in
Ref. �29� for two-dimensional systems of frictionless disks:
in the limit of vanishing shear rates, the shear stress reaches
its large system limit with only several hundreds of beads,
whereas the minimum shear stress required to maintain a
long lasting steady shear flow exceeds the previous one and
is more sensitive to N.

Figure 9 shows the influence of system size N on �stat

�discarding the smallest N values�. The data are correctly
fitted by the following relation:

�stat = ��
stat + dN−1/2, �14�

with

��
stat = 0.091 � 0.009, �15a�

d = 2.87 � 0.32. �15b�

The related angle of friction is ��
stat=5.20° �0.52°. This is

consistent with the equality, in the thermodynamic limit �N
→��, of the dynamical and static macroscopic friction coef-
ficients �see Eq. �7��. The influence of � is very small and
negligible in comparison to the effect of the system size, and
we therefore averaged over systems with both stiffness levels
�1 and �2. With the smallest system size simulated N=256
we observed that some of the samples, once submitted to
shear stresses, acquired a strongly ordered, crystalline struc-
ture, to be discussed in the Appendix.

2. Density

Static shear simulations with procedure S support the ob-
servation made in Sec. III C that the frictionless model ma-
terial studied is devoid of dilatancy in the quasistatic limit.

TABLE V. Best fit parameters for Eq. �11� and the data obtained
with N=4000, 	=0.98 for �=�1 and �=�2.

� �0 � e

�1 0.6398�2.10−4 0.39�0.01 0.1786�8.10−4

�2 0.6405�2.10−4 0.42�0.02 0.2038�310−4

TABLE VI. Average ��stat� and standard deviation ��stat of the
static friction coefficient obtained in S-type simulations, over SN

samples of N grains for different N. Data corresponding to both
values of � �with SN /2 samples each� are aggregated.

N SN ��stat� ��stat

256 4 0.246 0.022

500 4 0.210 0.007

1372 6 0.169 0.004

2048 6 0.154 0.004

2916 6 0.145 0.007

4000 10 0.136 0.007

8788 6 0.122 0.005

FIG. 9. �Color online� Size dependence of ��stat�. N denotes the
number of particles in the system. The solid line is the fit of Eqs.
�14� and �15�. Crosses are the top percentile values extracted from
the time series of ��12� /�22 obtained in procedure D, as listed in
Table III. The hashed region represents the estimate, from D simu-
lations, of �0

� with its error bar �Table IV�. The �blue� dot with an
error bar on the left axis is the static estimate ��

stat.
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As shown in Fig. 10, which represents � as a function of the
macroscopic stress ratio 
 / P imposed to the material in dif-
ferent samples with N=4000, the volume fraction hardly
evolves with the stress deviator as it is increased toward its
maximum value. However, whatever the initial state of the
system, it experiences a slight compaction at the beginning
of the shear and a small decompaction near the failure limit,
but we have no convincing explanation for this phenomenon.
The evolution of � is somewhat erratic �as in previous stud-
ies on 2D rigid, frictionless disk assemblies �24,25�� and the
density change between the isotropic initial state and the one
supporting the maximum shear stress is equal to zero, within
statistical uncertainties. Similarly to the values of � mea-
sured in D simulations, solid fraction �stat in static packings
under maximum shear stress is slightly dependent on sample
size, with a negative finite-size correction to the macroscopic
value. On fitting a variation proportional to N−1/2 one gets,
for �=�1,

�stat = ��
stat − k/�N , �16�

with

��
stat = 0.6403 � 0.0004, �17a�

k = 0.125 � 0.026. �17b�

� values for �=�2 are slightly larger, by about 10−3.
Comparing this estimate of ��

stat with the result for �0
�

given in Eq. �12�, we conclude that static and dynamic solid
fractions in quasistatic shear are identical, within statistical
uncertainties. Disregarding the very small correction due to
the finite value of �1 �equal to about 1.1�10−4 on applying
the formula given in Ref. �23�, Eq. �31��, this means that, just
as for ��, the values of solid fraction � in the macroscopic,
geometric limit coincide in strain rate controlled and in shear
stress controlled approaches.

As to the value �iso of the solid fraction in the initial
isotropic state, a similar evaluation of size effects yields �us-
ing the samples of Table VI with �=�1 and N�500�:

�iso = ��
iso −

k0

�N
, �18�

with

��
iso = 0.6397 � 0.0008, �19a�

k0 = 0.15 � 0.03. �19b�

As announced, this is the random close packing value
�21,23�. Results �19�, �17�, and �12� are compatible, and we
thus conclude that the system is devoid of dilatancy under
shear in the macroscopic geometric limit.

E. Discussion

We briefly review and comment here the essential results
on the macroscopic behavior of the material under simple
shear, and compare them to other available results on similar
systems.

1. Internal friction and the macroscopic geometric limit

Whether assemblies of frictionless grains have a well-
defined, finite internal friction coefficient has sometimes ap-
peared as a debatable issue, although some previously cited
works �15,16,45� relying on numerical simulations of slow
shear flows in steady state agree with our positive conclu-
sion. A proper evaluation of �0

� in the macroscopic geometric
limit requires more care than corresponding measurements in
granular assemblies with friction. This is due to the impor-
tance of fluctuations, as apparent on Fig. 1. In D-type simu-
lations, it is also necessary to explore a range of very small
inertial numbers to accurately evaluate the quasistatic fric-
tion coefficient, as apparent in Fig. 5. As an example, for I
=5.6�10−4, quite a small value, the macroscopic friction
coefficient already exceeds its quasistatic limit by 25%.

Our estimate for �0
� is confirmed by static simulations,

once the results are suitably extrapolated to the limit of large
systems. One may understand this size effect on S results as
follows. The friction coefficient evaluated in D simulations is
an average over time series with large fluctuations. However,
the system remains close to mechanical equilibrium at any
time. Assuming it is possible to find an equilibrated configu-
ration very close to all dynamically explored states, however
large the instantaneous value of the shear stress, the S pro-
cedure would be able to find statically supported shear stress
values as large as the maximum of �12 in D time series.
Although clearly oversimplifying the evolution of the system
in configuration space, this explanation appears to be correct
at least on correlating N-dependent maximum static shear
stress levels to fluctuations in slow shear flows: the N depen-
dence of �stat, as plotted in Fig. 9, is paralleled by that of the
typical largest values of �� �top percentile� in D simulations.

Static and dynamic values of shear stress thresholds for
flow are also observed to coincide in the fixed density simu-
lation results of Xu and O’Hern �29�, obtained on 2D pack-

FIG. 10. �Color online� Variation of the volume fraction � with
the static shear �
� / P imposed to five different samples of 4000
beads with �=�2. Each curve stops at a given value of �
� / P
= �
max� / P: this is the greatest value for which the packing has man-
aged to reach mechanical equilibrium.
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ings of frictionless disks, with a similar excess of the static
value that vanishes as N→�. When non negligible inertial
effects are present, we observe that the increase of internal
friction with inertial number I is the dominant feature of the
material behavior �the effect of stiffness level � is smaller by
orders of magnitude�, in qualitative agreement with many
other results on frictional and frictionless grains �15,16�.

2. Absence of dilatancy

Our results also agree in static shear and in steady state
constant shear rate flows for the average volume fraction �,
which stays equal to its value in the initial, isotropically con-
fined configuration in the macroscopic geometric limit. Our
data show that, within statistical uncertainties �i.e., about 5
�10−4� the critical value of � is equal to �RCP in packings
of frictionless spherical beads.

The material studied is thus devoid of dilatancy. Interest-
ingly, this contradicts the simple pictures of the origins of
dilatancy which have been proposed since the introduction of
this property by Reynolds �9�, based on the distortion of
simple assemblies of a small number of contacting spheres
�such as, e.g., a regular tetrahedron� �27�.

The absence of dilatancy in the quasistatic limit is also at
odds with the classical ideas on the relation between dila-
tancy and internal friction, according to which macroscopic
friction stems from two microscopic origins, intergranular
friction and dilatancy, with an additive combination of rel-
evant angles �11,27�. Reference �17� adds another component
�0 to macroscopic friction, due to intergranular collisions as
a source of dissipation, and therefore accounts for the inter-
nal friction of frictionless grains. Thus �0 is the internal fric-
tion angle that we measure in the geometric limit. Reference
�17�, although only incidentally dealing with frictionless ma-
terials, nevertheless appears to predict a positive dilatancy in
that case, which our results do not confirm. Similarly, a re-
cent study published by Kruyt and Rothenburg �44�, which
also deals with 2D disk assemblies, predicts a nonvanishing
dilatancy when intergranular friction coefficient �0 ap-
proaches zero. Reference �44�, similarly to Ref. �17�, dis-
cusses stress-dilatancy relations, and finds a linear variation
of the dilatancy ratio with the difference between peak and
steady-state macroscopic friction. In contradiction with our
data, it attributes a positive value to both quantities as the
friction coefficient approaches 0, while its estimate for �0

� is
significantly larger than our 3D one, or than the 2D one of
Ref. �17�. �Note that the maximum deviator to mean stress
ratio, as defined in Refs. �42,44�, is sin �� tan �.� The fric-
tionless case was not directly simulated in this work. Some
rapid variations of macroscopic friction and dilatancy angles
near the singular limit of �0→0 might be overlooked. In our
simulations, instantaneous fluctuating shear stress and vol-
ume fraction, however, appear to be correlated, suggesting
some stress-dilatancy coupling at the level of short-lived,
transient and rearranging structures, which disappears on tak-
ing time averages.

3. Toy model

Since some of our results on the macroscopic behavior of
frictionless bead packs might seem counter-intuitive, we de-

signed a simple model in which similar basic ingredients
�geometric constraints defining isolated equilibrium posi-
tions, inertia, viscous dissipation� produce an analogous be-
havior in a suitably defined “macroscopic geometric limit.”
In both cases, the microscopic motion is a succession of
arrested dynamical phases, alternating with approaches to
transient equilibria. The toy model simply provides sugges-
tive analogies, it should not be regarded as a real physical
explanation for the macroscopic behavior of the granular
system.

We consider a single object of mass M, subject to its
weight W, pushed along a rough horizontal surface. For sim-
plicity the model is two-dimensional, with only one horizon-
tal coordinate x1 and the surface profile h�x1�, along vertical
coordinate x2, is periodic with wavelength �, as depicted in
Fig. 11. The mobile object is driven either by a constant
horizontal force F, or by a piston with constant horizontal
velocity V. Both contacts are rigid and unilateral, so that the
mobile object might move faster than the piston if acceler-
ated downhill by gravity, or occasionally take off from the
surface. Force F is the analog of shear stress �12 in the
granular material, and W that of �22, while horizontal and
vertical displacements, respectively, correspond to shear
strain and volume increase. A viscous force opposes the tan-
gential motion along the surface, so that for F=0 the slider
stabilizes at some local minimum of profile h�x1�, such as
point O on the figure. Such minima are analogous to equi-
librium states under isotropic pressure.

Let us first discuss the static experiment, in which the
mobile object, initially in equilibrium in O under F=0, is
subjected to a growing horizontal force F. It equilibrates
where the tangent direction to the substrate is orthogonal to
the applied force dh

dx =F /W. It has first to move upwards,
hence some dilatancy. The maximum value of F /W is the
static effective friction coefficient �S=tan � of the object on
the surface, equal to the maximum slope of profile h�x1�. It is
reached at point S on the figure. Effective static friction angle
� is the maximum angle between the reaction of the sub-
strate, force R on Fig. 11, and the vertical direction. As the
quasistatic motion from O to S follows the surface, dilatancy

FIG. 11. The model of the slider on a rough surface. �a� Case of
a sinusoidal profile. Forces at point S are drawn as vectors. �b�
Profile for which �D=�S.
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tan �, defined as the ratio of vertical to horizontal coordi-
nates of the velocity �corresponding to ratio �̇22 / �̇ in the
sheared granular material�, is also identical to the maximum
profile slope. Dilatancy and friction angles coincide: �=�. If
a nonzero friction coefficient �0=tan �0 is introduced in the
contact between the mobile object and the substrate, then
reaction R at point S �see Fig. 11� may form an angle �0 with
normal direction �Sn�, so that the effective static friction
angle is �=�0+�—a classical form of the stress-dilatancy
relation �10,17�.

In the velocity-controlled case, the dynamic friction coef-
ficient is conveniently evaluated from the dissipation of en-
ergy. In the limit of small velocity, the mobile object pulls
ahead of the velocity-controlled driving piston at each maxi-
mum of h�x1�. Its subsequent downhill sliding is accelerated
by gravity, but it is prevented by viscous dissipation to pass
the next maximum, and ends up at the bottom of the valley,
where it is later picked up by the slow piston, to be pushed
up the next ascending slope. In this scenario the dissipated
energy per wavelength � is the potential energy loss HW in a
fall over height H. Hence an effective friction coefficient
�D=H /�. This result is, remarkably, independent of the vis-
cous damping coefficient, just like the macroscopic friction
of the granular material in slow shear flow. As the properties
of the system only depend then on substrate geometry, the
limit of slow imposed velocity is the geometric limit.

The macroscopic limit can be defined as � /L→0, where
L is the length scale on which the effective properties of the
slider are studied. Consequently, its vertical motion, on the
scale H	� of microscopic asperities of the surface, becomes
irrelevant, and one observes effective macroscopic friction
without dilatancy. Models for dilatancy �27� apparently focus
on microscopic phases of the motion in which the slider rises
up the slope, but ignore the equally important ones in which
it falls down.

�D is the average slope of the ascending part of the pro-
file, multiplied by the fraction of length for which h�x1� is
increasing. It is in general smaller than �S, which is the
maximum slope. Thus, for a sinusoidal profile h�x1�
=H /2 sin�2�x1 /��, as represented on Fig. 11�a�, one has
�S=�H /�, while �D=H /�. In order for both friction coef-
ficients to coincide, function h�x1� should be as shown on
Fig. 11�b�, with ascending parts of constant slope, followed
by vertical drops.

The particular profile shape of Fig. 11�b� can be argued to
be appropriate for the analogy with the bulk material. As
long as the contact with the substrate is maintained, the con-
figuration might be an equilibrium position for some �possi-
bly negative� value of F. In the analogy with the granular
material, the contact network might balance the external load
for some value of the applied stress components. The free
fall, on the other hand, is the analog of a network rearrange-
ment, during which applied loads cannot be supported be-
cause of the missing contacts. In the granular material �as
explicitly shown in Ref. �24�� intervals of stress components
for which a given contact network is stable shrink to zero in
the large system limit. This corresponds for the toy model to
a constant slope of the rising parts of profile h�x1� �defining a
unique possible value of F in equilibrium�.

Finally, the velocity-controlled sliding of the object on the
profile of Fig. 11�b� also provides an interpretation of inertial

number I �37�, and of the behavior of the kinetic energy �15�.
The motion involves two characteristic times: the duration of
the rising phase, in which the object is in contact with the
piston and moves with horizontal velocity V, 
1=� /V; and
the duration of the free fall 
2���MH /W�. Their ratio

2 /
1� �V /����MH /W� is the analog of number I, as readily
checked on replacing distance H by some length of order a
�a typical interstice between neighboring grains to be closed
for a new contact to appear�, V /� by �̇, and force W by a2P,
which is the order of magnitude of unbalanced forces on the
grains in the dynamical phases of motion. The free fall
phases of the motion explain why the kinetic energy is, on
average, much larger than the scale MV2 associated with the
macroscopic motion. More precisely, the time average �ec of
the kinetic energy associated with velocity fluctuations is of
order HW�
2 /
1� �for 
2�
1�, whence �discarding constant
factor �H /��2� the behavior shown in Fig. 2, �ec� �MV2� / I.

IV. MICROSTRUCTURE AND FORCE NETWORKS

Our specific emphasis on the geometric limit of the mac-
roscopic mechanical behavior of frictionless bead packings
calls for an analysis of the geometry of sheared configura-
tions, the first motivation of which is to explain the micro-
scopic origins of macroscopic friction. Ultimately, a model
should be sought which, unlike the analogous one of Sec.
III E 3, would explicitly and quantitatively describe the
mechanisms, involving instabilities and network rearrange-
ments at the microscopic level, by which the material de-
forms and flows. Such goals will be only partly achieved
here, since, leaving the detailed study of velocity correlations
and strain mechanisms for future work, we focus on simple
characterizations that are local in space and time. We also
check here that the various microstructural variables studied,
if measured in D-type simulations, approach their values ob-
served in S-type ones in the limit of I→0 �at least in the
large system limit�.

Packing geometry is classically described with a few state
variables, among which the simplest ones are scalar: the vol-
ume fraction, the coordination number, as studied here in
Sec. IV A below. The much-studied distribution of contact
force values �46,47� is also determined in the present case
�Sec. IV B�, and we check for effects of inertia and aniso-
tropy.

Under stress, or influenced by the history of their assem-
bling process, the microstructure of grain packings develops
anisotropic features, which are most often characterized with
the fabric tensors, expressing statistics on orientations of nor-
mal directions at contacts, as studied in Sec. IV C. The criti-
cal state is microscopically characterized by stationary val-
ues of �, z, and fabric tensors, which are reached after a
sufficiently large interval of monotonically growing strain in
the quasistatic regime �42,43,48�.

A. Coordination number

The coordination number z strongly depends on I in
steady state shear flow, and it is also affected by �. It de-
creases with increasing I, or with increasing �. As to the
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influence of 	 on z, it is notable for the largest I values
explored, but it decreases as the quasistatic limit is ap-
proached. Larger viscous damping coefficients increase the
duration of contacts in shear flow, and thus produce slightly
better coordinated networks on average. However, the inten-
sity of viscous forces becomes irrelevant in the quasistatic
limit. According to our results, the 	 dependence of z can
safely be ignored for I�10−4. The I dependence of z is
shown in Fig. 12.

The coordination number of the equilibrated �S-type� an-
isotropic configurations is also very close to 6. This is a
consequence of the isostaticity property of the force-carrying
structure �also called “backbone” �23�� of equilibrated sphere
packings in the rigid limit—a remarkable property discussed
in several recent publications �21–23�, which is specific to
packings of rigid, frictionless and cohesionless spherical
grains �49,50�.

Figure 12 shows that for quite low values of I, many
contacts are lost �z is down to about 5 for I in the 10−3

range�. The proportion p0 of rattlers increases with increas-
ing I: p0 is less than 1.5% in S simulations and for D simu-
lations with I�10−4 and �=�1, but is equal to 30% for
I=3.2�10−1 and �=�1. Our results are compatible with the
theoretical value z=6�1− p0� in the limit I→0 and �→ +�.
Furthermore, it has been often observed that the grains only
have a small number of contacts bearing large forces—this is
the very reason why the “force chains” exist �31,51,52�.
Consequently, as contacts carrying smaller forces are neces-
sarily shorter lived, and tend to rarefy as I increases, the
populations of grains with the largest local coordination are
quickly depleted.

B. Distribution of forces

Figure 13 is a plot of the probability distribution function
of the intergranular force normalized by the average force,
for different values of I. The force distribution strongly de-

pends on I: for I�3.2�10−2 the probability distribution
function p�f� �f denoting the ratio of the normal force to
the average value �FN�� is monotonically decreasing. For
smaller values of I, p�f� has a maximum, around f =0.5,
and an approximately exponential decay for large values,
as often observed in equilibrated granular packings
�22,23,46,47,51,53,54�. The distributions obtained for the
low values of I in D-type simulations gradually approach the
one obtained in S-type, equilibrated packings under maxi-
mum shear stress. The Kolmogorov-Smirnov test �55� can be
used to detect the influence of parameters on the force
distribution—the answer depending of course on the level of
statistics of the available data. Based on 10 independent con-
figurations of 4000 grains, it leads to the conclusions that no
significant difference in force distribution could be detected
between S-type results under maximum shear stress and
D-type ones, and no influence of � either, provided the iner-
tial parameter is small enough: I�5�10−3, while some in-
fluence of 	 is only visible for I�0.1. Our results are also
compatible with a unique distribution, valid for maximum
shear stress equilibrium configurations as well as for isotro-
pic ones.

C. Fabric

Macroscopic friction is known to stem �at least partially�
from the build-up of fabric anisotropy in materials made of
frictional beads or disks �42,48�. This connection is explored
here with frictionless beads.

Anisotropy of the tridimensional contact network can
be characterized by the probability density function E�� ,��
of finding a contact with direction �� ,��. � is the colatitude
angle and � is the longitude angle of the spherical coor-
dinates. E can be expanded in a series of spherical harmon-
ics. The coefficients of the expansion are in one-to-one
correspondence with the values of the fabric tensors, which
are defined as the moments of the distribution of normal

FIG. 12. �Color online� Coordination number z as a function of
inertial number I, for �=�1 �red square dots joined by dotted line,
bottom data points� and �=�2 �blue crosses, top, dashed line�.

FIG. 13. �Color online� Probability distribution function of f
=N / �N� for I=3.210−1 �red triangles�, I=3.210−3 �blue round dots�,
and I=3.210−5 �black square dots�.
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unit vectors n� on the unit sphere. Since a contact is left
invariant by the parity symmetry r�→−r�, E satisfies
E�� ,��=E��−� ,�+��. This means that the coefficients of
odd order in the expansion in spherical harmonics are all
equal to zero, and corresponds to the vanishing of all odd
order fabric tensors. Coefficients can be computed from even
order tensor products, viz.

��
i=1

2k

n�� �
1

Nc


c�C

�
i=1

2k

n�c, �20�

C denoting the set of Nc contacts, labeled with index c�C,
where the normal unit vector is n�c.

Keeping only the lowest order of anisotropy, the expan-
sion of E is restricted to the spherical harmonics of order 2.
Coefficients of the development are directly related to the
value of the fabric tensor of order 2, denoted by F�� :

E��,�� = 1/�4�� + F12dxy��,�� + �F11 – F22�dx2−y2��,��

+ �F33 − 1/3�dz2��,�� + F13dxz��,�� + F23dyz��,��

+ higher order terms. �21�

The constant 1 / �4�� corresponds to an isotropic distribution
and the next five terms of the development characterize the
anisotropy of the material at the lowest order. Functions d
are combinations of spherical harmonics of order two, with
following expressions:

dxy��,�� =
15

8�
sin2 � sin�2�� , �22�

dx2−y2��,�� =
15

16�
sin2 � cos�2�� , �23�

dz2��,�� =
15

16�
�3 cos2 � − 1� , �24�

dxz��,�� =
15

4�
sin � cos � cos � , �25�

dyz��,�� =
15

4�
sin � cos � sin � . �26�

Fabric tensor F�� is computed as a time average in the steady
shear simulations. The numerical results show that F13 and
F23 are always less than their respective statistical uncertain-
ties, and can be considered as equal to zero, as requested by
the symmetry in simple shear. We observe that F12 is always
greater �by at least one order of magnitude� than the two
other non negligible anisotropic coefficients F11–F22 and
F33−1 /3. These two latter terms are below 2�10−3 for I
�10−3. Such low values are comparable with sample to
sample fluctuations in equilibrated configurations. Thus, in
the quasistatic limit, the anisotropy can be characterized
by the sole F12 coefficient, the limit of which, as I→0, is
evaluated as F12

0 =−0.0165�7.10−4 for �=�1 and F12
0

=−0.0156�7.10−4 for �=�2, with a fitting procedure. As
with �� and �, F12 strongly varies with I �Fig. 14�, and its

dependence on I can be represented by a power law, with
exponent �0.36 for �=�1 and �0.37 for �=�2.

F12 values measured in S-type equilibrated samples under
maximum shear stress are influenced by system size N, very
similarly to the static friction coefficient: larger values of
�F12� are observed �typically �0.02 for N=4000�, but the
excess over F12

0 , the estimate from D-type simulations in the
quasistatic limit, regresses as N increases, and the extrapo-
lated macroscopic limit is compatible with the estimated val-
ues of F12

0 . This will be further examined in the more general
context of the relationship between stress and anisotropies,
for arbitrary stress tensors, in a forthcoming publication �56�.

On changing 	 from 0.98 down to 0.05, �F12� increases
�correlatively with the decrease of z�, by about 30% for I
	10−2. This relative change is reduced to about 1% for I
	10−4 and the effect of 	 vanishes in the limit of I→0.

Variations of F12 with parameters I, � and 	 are qualita-
tively understood on noting that F12 is negatively correlated
with the coordination number. If there are more contacting
neighbors, on average, around a sphere, they are prevented
by steric constraints from achieving highly anisotropic orien-
tation distributions. This argument, which with simple as-
sumptions was made quantitative in 2D in Ref. �48�, thus
explains that the increase of z observed as � is lowered tends
to reduce �F12�, as observed on Fig. 14. Similarly, the larger
anisotropies observed away from the quasistatic limit are
made possible by the smaller number of contacts. The in-
crease of �F12� with I is also due to the correlation of force
intensities with contact directions: on evaluating separately
the fabric of the subnetworks corresponding to forces larger
�or smaller� than the average contact force, one typically
obtains, for I	10−5, values of �F12� twice as large �respec-
tively: four times as small� as with the complete contact net-
work. Contacts with small forces open if I is increased, and
the remaining more strongly loaded ones are consequently
more anisotropically oriented.

V. DISCUSSION

This work was devoted to the study of frictionless identi-
cal spherical balls subjected to simple shear. The influence of

FIG. 14. �Color online� F12 as a function of inertial number I,
with 	=0.98 and N=4000, for �=�1 �red square dots connected by
a dotted line� and for �=�2 �blue crosses connected by a dashed
line�. Both lines are power law fits of F12.
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the three dimensionless quantities controlling the problem—
inertial number I, stiffness number �, and level of viscous
damping 	—was carefully assessed and we observed that I
has the most dramatic impact on the system behavior. Fluc-
tuations of the measured quantities were shown to vanish for
large systems. Consequently, the particular nature of the
boundary conditions employed has no importance: for suffi-
ciently large systems, fixed-volume simulations would lead
to the very results we obtained with our stress driven numeri-
cal experiments. Particular attention was paid to the macro-
scopic geometric limit, that is the triple limit N→ +�, I
→0, and �→ +�. In this regime, the system behavior is
governed by a succession of instabilities due to dynamical
rearrangements of the contact network. A thorough investi-
gation of such events remains an interesting, yet challenging,
perspective.

The existence of a nonzero macroscopic friction angle
was evidenced by two different kinds of simulations—shear-
rate controlled dynamic calculations �D-type simulations�
and quasistatic stress-controlled calculations �S-type simula-
tions�. Whereas the dynamic friction angle �D is independent
of the system size for N�1000, the static friction angle �S is
very sensitive to the number of grains and is systematically
greater than �D for all studied sizes �N�8788� and �S−�D
increases for decreasing N. This might be the reason why
localization seems to occur more easily as the system size
decreases. In finite-size systems, the shear stress is a multi-
valuated function of the strain rate in the quasistatic limit and
the range of multivaluation increases with decreasing N.
Thus shear bands are more likely to appear in small systems
�15,57,58�. However, in the macroscopic geometric limit, we
found that both friction angles �S and �D are equal within
statistical uncertainties. In frictionless granular assemblies,
all dissipation is due to viscous terms in contact forces,
which therefore can be regarded �17� as the physical origin
of macroscopic friction. However, the value of the damping
coefficient 	 is irrelevant in the quasistatic limit since the
amount of dissipated energy is geometrically determined. In
the macroscopic geometric limit, we have seen that the shear
has no effect on the microscopic scalar quantities of the ma-
terial �coordination number, distribution of forces�, but it in-
duces some structural anisotropy and a correlation between
force intensities and contact orientations. We thus attribute
the macroscopic friction angle to the shear-induced aniso-
tropy of the material, as in the frictional case �59�. Reference
�56� will show quantitatively that this is indeed the case.

The result that �S=�D contrasts with observations on
Lennard-Jones glasses at temperature T�0 �57,58� and on
granular avalanches �60,61�. Glass simulations show that the
dynamic angle is less than the static one. This difference is
linked to a stress overshoot visible on strain-stress curves.
Similarly, in dense granular materials with friction, the shear
stress goes through a maximum before the steady state
�“critical state”� is reached, a feature which is absent in fric-
tionless granular assemblies �both states coincide in this
case�. Similar differences ��S��D� are reported for granular
flows down inclined plane. Thus, in Refs. �60,61�, �stop�h� is
less than �start�h�, where � is the inclination of the plane and
h the thickness of the flowing layer in the stationary state.
The small thickness of the layer �typically less than ten grain

diameters� and the intergranular friction are certainly respon-
sible for this hysteresis.

The stress-dilatancy interplay is a well known feature of
granular materials. However, our simulations show that ho-
mogeneously sheared frictionless bead assemblies do not dis-
play any dilatancy in the macroscopic geometric limit. In this
limit, volume fraction � remains equal to �RCP during the
whole time the material is sheared and the backbone stays
isostatic in the rigid and quasistatic limits. This surprising
lack of dilatancy can be intuitively understood in the light of
the simple model presented in Sec. III E 3. We thus conclude
that the steady state �critical� volume fraction �c is equal to
�RCP.

The behavior of frictionless granular assemblies under ar-
bitrary load directions will be the subject of a future work
�56� in order to gain a better knowledge of the yield surface
and of the mechanical properties of such granular systems
under a small enough stress deviator �before failure�. One
motivation of the present work is the study of highly concen-
trated non-Brownian suspensions �Péclet number Pe= +��,
modeled as assemblies of nearly touching grains bonded by a
viscous lubricant �62–64�. Ideal lubrication effectively sup-
presses the tangent forces. Lubricated dynamics has already
been employed as a means to obtain the force-carrying con-
tact network of frictionless rigid particles, as the set of vis-
cous bonds on which stresses concentrate �65�. Although
crude, our current model should be able to reproduce the
behavior of dense suspensions in the quasistatic limit. In this
regime, the system evolves via a sequence of equilibrium
states. At some point, the initial network is no longer able to
sustain the imposed stress, it becomes unstable and a dy-
namic “crisis” occurs. Consequently, the evolution of the
system is not quasistatic in the strictest sense �each point of
the configuration space cannot be reached through a continu-
ous series of equilibrium configurations�. However, details of
the dynamics are expected to be irrelevant. Thus we expect
that the same equilibrium states will be visited in the quasi-
static limit by both frictionless granular systems and dense
suspensions with frictional grains. According to the simple
toy model of Sec. III E 3, a dense suspension might be
sketched by a slider moving on a bumpy surface in a media
of viscosity �. Close to the quasistatic limit, the most impor-
tant parameter would be the dimensionless number ��̇ / P.
One may notice that it is very similar to the parameter Iv
introduced by Cassar et al. that controls submarine ava-
lanches in what they call the viscous regime �66�. Steady
shear simulations evidenced that the material is still able to
flow with a volume fraction approximately equal to ��

=�RCP�0.64. This result is consistent with theoretical re-
sults pertaining to suspensions, where the volume fraction
�� at which the viscosity of the suspension diverges is be-
lieved to tally with the random close packing volume frac-
tion �67�. However, it is not in agreement with the experi-
ments exposed in Ref. �6�, where the value of �� was found
to be below 0.61. This discrepancy very likely originates in
small scale features of the experimental system that are not
accounted for in a model of perfectly lubricated spherical
beads. The behavior of dense suspensions is known to be
strongly impacted by short-range physics �68�. In the near
future, we plan to study lubricated pastes with frictional con-
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tacts in the spirit of the simplified Stokesian dynamics
scheme proposed by Ball and Melrose �62–64�.
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APPENDIX: CRYSTALLIZATION UNDER SHEAR

Small samples, in both D- and S-type simulations, tend to
form strongly ordered structures under shear. This phenom-
enon, which do not occur for N�1000, is briefly reported
here. A more detailed study would be outside the scope of
the present paper, and would require some investigation of
the role of cell shape and boundary conditions, which is nec-
essarily important in such small systems.

Two out of three S-type samples with N=256 and stiff-
ness level �2, and two out of two D-type samples with N
=500, I=3.2�10−4, and �=�1 present the following anoma-
lies. First, solid fractions are considerably higher than �RCP
�and even more so considering the size effect �21,23� on ��,
with values approximatively equal to 0.67 �see fourth line of
Table III�. Apparent friction coefficients are also particularly
large. A lower bound for the static macroscopic friction co-
efficient of S-type ordered samples is 0.4, whereas dynamic
macroscopic friction coefficient �� of D-type ordered
samples for I=3.2�10−4, �=�1, and N=500 may exceed by
20% the corresponding friction coefficient in bigger samples
that do not experience any ordering. S-type samples also
have very large coordination numbers 8�z�9. This latter
characteristic is a clear indicator of partial crystalline order,
as one necessarily has z�6 in generically disordered situa-
tions. The denser crystal arrangements, face-centered cubic
�fcc� and hexagonal compact �hcp� �and stacking variants
thereof�, have z=12. For D simulations, anomalous values of
� and �12 appear after strains of order 5.

In order to detect crystalline order more quantitatively,
we use the standard order parameters Q6 and Q4 employed
in Refs. �23,69–71�. Values of the pair �Q4 ,Q6� can

be used to distinguish different local environments. In
Ref. �23�, following Ref. �69�, the frequency of occur-
rence of ranges of values �0.191�0.05,0.574�0.05� and
�0.097�0.05,0.485�0.05�, respectively, corresponding to
fcc-like and hcp-like configurations around one grain, were
recorded. In the present case, most samples had very similar
proportions of hcp-like and fcc-like local arrangements as in
the RCP states studied in Ref. �23�: about 12% of beads fall
in the hcp category, and fcc-like ones are virtually absent.
The exceptions are the samples with anomalous, crystal-like
properties, for which, while none of the beads has an fcc-like
environment in that sense, the proportion of the hcp-like cat-
egory raises to about 60% in S samples and to 40% in D
ones.

A direct visualization, Fig. 15, reveals strikingly ordered
configurations. A tentative conclusion to those preliminary
observations is that the small samples tend to crystallize on
somewhat shear-distorted hcp lattices. One convenient char-
acterization of order that is not sensitive to the distortion of
crystalline patterns was suggested in Ref. �70�, and used in
Ref. �23�. With this method, more than 90% of the particles
of the anomalous samples are declared to belong to crystal-
line regions.
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