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We consider the dynamics of a single tagged particle in a two-dimensional system governed by Lennard-
Jones interactions. Previous work based on the Mori-Zwanzig projection operator formalism has shown that
the single-particles dynamics can be described via a generalized Langevin equation �GLE� which is exact
within the harmonic approximation, that is, for a low-temperature solid �J. M. Deutch and R. Silbey, Phys. Rev.
A 3, 2049 �1971��. In the present work we explore to what an extent the GLE reproduces the effective
dynamics under thermodynamic conditions where the harmonic approximation is no longer justified. To this
end we compute characteristic time autocorrelation functions for the tagged particle in molecular dynamics
simulations of the full system and compare these functions with those obtained from solving the GLE. At low
temperatures we find excellent agreement between both data sets. Deviations emerge at higher temperatures
which are, however, surprisingly small even in the high-temperature liquid phase.
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I. INTRODUCTION

There is increasing interest in understanding the dynamics
of complex fluids such as colloidal suspensions, polymeric
and surfactant solutions, or biomolecular systems. A com-
mon feature of such systems is that interesting and techno-
logically or biologically important effects such as mesophase
formation or protein folding occur on microsecond to second
time scales. These are currently far out of reach for conven-
tional molecular dynamics �MD� simulations involving all
degrees of freedom characterizing the microscopic system.
As a consequence, much effort is spent to develop coarse-
grained �“mesoscopic”� simulation techniques �1–3�, all of
which rely on a drastic reduction of variables. This procedure
implies two steps. First one has to identify the relevant
“slow” degrees of freedom and, in turn, the remaining fast
ones which one usually wants to account for only in an av-
erage manner. Familiar examples of slow variables �whose
choice depends, of course, on the phenomenon of interest�
are the positions and momenta of heavy colloidal particles in
a solvent, or the center of masses and conjugated momenta
of the building blocks of a polymer chain. The second main
step consists of setting up a suitable coarse-grained equation
of motion for these slow degrees of freedom. Various meso-
scopic simulation methods such as Brownian dynamics and
dissipative particle dynamics �4,5� make an ansatz for the
effective dynamics. Typically, the total force acting on a slow
particle separates into conservative contributions �which are
gradients of an effective interaction potential� and noncon-
servative contributions mimicking the influence of the ne-
glected degrees of freedom. These nonconservative parts are
often formulated to optimize the computation, especially
when ones focusses on static equilibrium properties �for

which the precise shape of the nonconservative forces should
be irrelevant�. For dynamic applications such as simulations
of hydrodynamic “swimmers,” shear thickening or thinning,
or conformational dynamics in biomolecules, however, it
would desirable if these nonconservative contributions could
be derived from the microscopic system. Indeed, the conser-
vative contributions to the effective force can be rigorously
defined on the basis of the partition sum related to the mi-
croscopic Hamiltonian �6–8�. The role of the resulting effec-
tive interactions for the dynamic properties of fluid mixtures
is discussed in Ref. �9�.

A systematic way to obtain coarse-grained equations of
motion was proposed by Mori �10� and Zwanzig �11� who
developed the projection operator formalism in the 1960’s.
The main idea consists of introducing a projection operator
into the �typically Hamiltonian� dynamics of the microscopic
system, that serves to average over the irrelevant degrees of
freedom. This procedure leads to an exact generalized
Langevin equation �GLE� for the slow variables to which we
shall refer as “particles” henceforth. Apart from conservative
forces the GLE involves a dissipative force reflecting the fact
that the motion of slow particles is retarded by friction from
the fast ones, and the so-called random force arising from
collisions of the fast and slow particles. For practical appli-
cations, the main drawback of the GLE method is that it is
generally unclear how to actually calculate the random force.
The same is consequently true for the dissipative contribu-
tion which is related to the random part through the
fluctuation-dissipation theorem �see, e.g., Ref. �12��. Thus,
simplifications have to been done, the simplest one being the
Markov approximation leading to the conventional Langevin
equation �characterized by a �-like friction kernel� �12�.
More sophisticated approximations have been recently pro-
posed in projection-operator investigations of polymer dy-
namics �13�, protein folding �14,15�, and various “multi-
scale” model systems �16–18�.

Interestingly, there exists one particular system for which
the random force appearing in the GLE can be calculated in
an exact manner. This is a harmonic lattice consisting of one
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or more colloidal �tagged� particles in a “bath” of �usually
much lighter� particles. The corresponding rigorous expres-
sions for the random forces have been first derived by
Deutch and Silbey �19� and later, in a slightly generalized
manner, by Wada and Hori �20�. Clearly, the harmonic lattice
is a special system, which has, nevertheless, relevance for a
variety of polymeric systems such as physical gels �21� and
unentangled polymer melts �see Ref. �22�, and references
therein�. Moreover, one-dimensional harmonic models have
recently been investigated to study the consequences of basic
coarse-graining concepts such as grouping of particles into
clusters �17,23,24�.

From a more physical point of view, harmonic lattices are
important if one thinks of colloidal solutions in the low-
temperature solid state �25�. Having this in mind, our goal in
the present paper is to explore to what an extent the exact
GLE of the harmonic system reproduces the effective dy-
namics of a single particle under thermodynamic conditions
where the harmonic approximation is no longer justified.
Specifically, we consider a two-dimensional model system of
spherical particles in the solid and the liquid phase. To
benchmark the performance of the GLE �that is, the exact
prescription of the random forces� we compute characteristic
time autocorrelation functions for the tagged particle in MD
simulations of the full system and compare these functions
with those obtained by solving the GLE. Our results reveal a
surprisingly wide applicability of the effective equation of
motion. Indeed, the GLE turns out to generate accurate re-
sults even in high-temperature solids and �dense� liquids.

The remainder of this paper is organized as follows. In
Sec. II we describe the theoretical background of our study,
including the main steps in deriving the GLE on which our
results are based. The two-dimensional model system used in
the actual simulations is introduced in Sec. III. Our numeri-
cal results will be discussed in Sec. IV, followed by conclud-
ing remarks in Sec. V.

II. THEORETICAL BACKGROUND

Following Deutch and Silbey �19� we consider a system
composed of N+1 particles without internal degrees of free-
dom. Among these particles, one �the “tagged” particle� has
mass m0, and we characterize its position and momentum by
vectors r0 and p0, respectively. The other particles �forming
the “bath”� have mass m and are characterized by vectors ri
and pi, i=1, . . . ,N. The total Hamiltonian of the system is
given as

H = H� +
p0

2

2m0
= �

i=1

N
pi

2

2m
+ U�r0,rN� +

p0
2

2m0
, �2.1�

where U�r0 ,rN� is the total potential energy which depends
on the spatial configuration rN=r1 , . . . ,rN of the bath par-
ticles and of the position r0 of the tagged particle. Thus, the
Hamiltonian H� introduced in Eq. �2.1� defines a modified
system in which the tagged particle interacts with the others
but has, at the same time, zero kinetic energy. In other words,
in the modified system the tagged particle is positionally
fixed �in fact, it rather acts as an external potential on the

bath particles�. We shall refer to the system described by H�
as the “reference system.”

Consider now the force F0�t�= ṗ0�t�=�p0�t� /�t acting on
the tagged particle at time t in the original system where all
N+1 particles can move. Its spatio-temporal evolution is
governed by the Liouville operator L

iL = �
i=0

N � pi

mi

�

�ri
+ Fi

�

�pi
� , �2.2�

where m1= ¯ =mN=m. We can relate F0�t� to the corre-
sponding force at t=0 via the propagator exp�iLt�, that is

F0�t� = exp�iLt�F0�0� . �2.3�

Equation �2.3� corresponds to the integrated form of the gen-

eral Liouville equation Ȧ�t�= iLA�t� for a dynamic variable
A, specialized to the case where L is not explicitly time
dependent.

The goal is now to derive an effective, i.e., coarse-grained
equation for F0�t� where the bath particles’ coordinates and
forces do not appear explicitly anymore. To this end we split
the Liouville operator into two contributions �19�

iL = iL�0� + iL�B�, �2.4�

where

iL�0� =
p0

m0
·

�

�r0
+ F0 ·

�

�p0
, �2.5a�

iL�B� = �
j=1

N �p j

m
·

�

�r j
+ F j ·

�

�p j
� . �2.5b�

From the above definitions it is clear that L�0� and L�B� act on
the tagged particle and on the bath, respectively. Moreover,
as shown in Appendix A 1, the operators L, L�B�, and L�0�

satisfy the integral equation

exp�iLt� = exp�iL�B�t� + �
0

t

dt� exp�iL�t − t���

� iL�0� exp�iL�B�t�� . �2.6�

We can now employ Eq. �2.6� to rewrite the equation of
motion for F0�t� given in Eq. �2.3�. Introducing the projec-
tion operator P we may write

iL�0� = PiL , �2.7a�

iL�B� = �I − P�iL , �2.7b�

where we have also introduced the unit operator I. Combin-
ing Eqs. �2.3�, �2.5�, and �2.7� we obtain

F0�t� = F0
+�t� + �

0

t

dt� exp�iL�t − t���iPLF0
+�t�� . �2.8�

In Eq. �2.8�, the quantity F0
+�t� is defined as
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F0
+�t� 	 exp�i�I − P�Lt�F0�0� = exp�iL�B�t�F0�0� .

�2.9�

From Eq. �2.9� it follows that F0
+�0�=F0�0�. For all later

times �t�0� F0
+�t� is often called the “random force.”

A more explicit form of the time integral appearing in Eq.
�2.8� can be obtained by specifying the projection operator
P. One possible choice suggested by Deutch and Silbey �19�
reads

P�¯� 	 
¯� =
1

Q��r0��i=1

N � dpi� dri ¯ exp�− �H�� ,

�2.10�

where �=1 /kBT �with kB and T being Boltzmann’s
constant and temperature, respectively� and Q��r0�
=�i=1

N 
dpi
dri exp�−�H��. Thus, the action of P corre-
sponds to “integrating out” the positions and momenta of the
bath particles, which are considered as irrelevant �“fast”� de-
grees of freedom. More precisely, an application of P corre-
sponds to averaging in an equilibrium statistical �canonical�
ensemble governed by the Hamiltonian of the “reference sys-
tem” introduced in Eq. �2.1� �this definition of P differs from
the more common Mori-Zwanzig definition �10� where one
averages canonically over all degrees of freedom including
those of the tagged particle�. Note that, within the present
definitions, the partition sum Q��r0� still depends on the po-
sition of the tagged particle since the integrations are carried
out only over the positions and momenta of the bath par-
ticles.

From the above definition of P it follows �see Appendix
A 2� that the last term in the integrand appearing in Eq. �2.8�
can be rewritten according to

iPLF0
+�t� = iPL�0�F0

+�t� = � �

�p0
−

�p0

m0
�
F0

+�0� · F0
+�t�� .

�2.11�

Inserting Eq. �2.11� into Eq. �2.8� we obtain

F0�t� = F0
+�t� + �

0

t

dt� exp�iL�t − t���

�� �

�p0
−

�p0

m0
�
F0

+�0� · F0
+�t��� . �2.12�

Equation �2.12� is exact, irrespective of the details of the
total potential energy. However, for general interactions one
does not know how to compute �or measure� the “random”
force F0

+�t�. In particular, F0
+�t� cannot be derived from an

interaction potential unlike F0�t�= ṗ0�t�=−��U /�r0��t�.
A remarkable exception is the special case of a harmonic

crystal, where the potential energy is a quadratic form of the
positions. This case has been studied by Deutsch and Silbey
�19� who demonstrated that the random force F0

+�t� is iden-
tical to the total force F0

ref�t� acting on the same �tagged�
particle in the corresponding “reference system.” We recall
�see text after Eq. �2.1�� that the reference system is charac-
terized by a spatially fixed tagged particle, with the remain-
ing bath particles moving under the influence of their mutual

interactions and their interaction with the fixed tagged par-
ticle. The force of interest can then simply be calculated as a
“mechanical” force, that is,

F0
+�t� = F0

ref�t� = �
i=1

N

F0i�t� = − �
i=1

N
�U

�r0i
, �2.13�

where the right side of Eq. �2.13� involves the pair forces
F0i�t� between a bath particle and the fixed one �r0i=r0−ri is
the corresponding separation vector�. Clearly, these pair
forces are easily accessible in a conventional computer simu-
lation. From a physical point of view, positional fixation of
the tagged particle can be achieved by assigning an infinite
mass m0→� to it �in the reference system�. Therefore, we
use the notation F0

����t� instead of F0
ref�t� from now on.

The equivalence of F0
+�t� and F0

����t� �see Eq. �2.13�� for
harmonic crystals leads to a significant simplification of the
integrand appearing on the right side of the equation of mo-
tion �2.12�. First, since F0

����t� is conservative �and, thus,
independent of p0�, the derivative of the autocorrelation
function 
F0

����0� ·F0
����t�� with respect to p0 vanishes. Sec-

ondly, because we are focussing on systems at thermody-
namic equilibrium, the autocorrelation function is stationary
�i.e., independent of the time origin�, that is,

exp�iL�t − t���
F0
����0� · F0

����t���

= 
F0
����t − t�� · F0

����t�� =
t→t�


F0
��� · F0

����t��� . �2.14�

Using these properties we rewrite Eq. �2.12� as a generalized
Langevin equation �GLE� �19�

F0�t� = F0
����t� −

�

m0
�

0

t

dt�p0�t − t��
F0
����0� · F0

����t��� .

�2.15�

Notice that Eq. �2.15� is exact within the harmonic approxi-
mation for the potential energy. We also note that its validity
does not depend on the mass ratio m0 /m in the original sys-
tem.

A generalization of Eq. �2.15� was derived by Wada and
Hori �20�. Considering again harmonic crystals, and using a
slightly different definition of the partial Liouville operators
L�0� and L�B� �see Eq. �2.5�� they showed that the mass of the
tagged particle in the reference system can be set to an arbi-
trary value M. As a consequence, the tagged particle in the
reference system may move �assuming that M is finite�. The
total force acting on this particle, which we denote by
F0

�M��t�, can then again be calculated as a mechanical force
given by Eq. �2.13�. In this case, the generalized GLE can be
written as �20�

F0�t� = F0
�M��t� − �� 1

m0
−

1

M
�

��
0

t

dt�p0�t − t��
F0
�M��0� · F0

�M��t��� . �2.16�

By construction, Eq. �2.16� reduces to the Deutch-Silbey
form �see Eq. �2.15�� in the limit M→� �corresponding to a
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spatially fixed tagged particle in the reference system�. On
the other hand, in the special case M =m0 the second term on
the right side of Eq. �2.16� vanishes altogether. This is rea-
sonable, because M =m0 implies equivalence between the
original and the reference system, and thus ṗ0�t�	F0�t�
=F0

�m0��t� irrespective of the specific form of the interactions.

III. MODEL AND STRATEGY OF INVESTIGATION

Based on the GLE �2.16� derived in the preceding Sec. II
the effective dynamics of a given particle immersed in a bath
�solvent� can be computed in an exact fashion. We recall,
however, that this equation of motion relies on a particular
shape of the total potential energy, that is, the harmonic ap-
proximation. For a realistic system of atoms or colloidal par-
ticles one expects this approximation to be justified within
the low-temperature solid phase, that is, when the deviations
of the actual particle positions from their lattice sites are so
small that anharmonic terms in an expansion of the true po-
tential energy can be neglected. Our main objective in the
present work is to explore to what an extent the GLE is
capable of �approximately� reproducing the dynamics under
conditions where the harmonic approximation is no longer
justified. That is, we are specifically interested in high-
temperature solids and the liquid phase.

To this end we consider a simple model system of spheri-
cal particles confined to a plane, which we investigate via
molecular dynamics �MD� simulations �for technical details,
see Appendix B�. Choosing a two-dimensional �2D� model
system rather than a 3D one significantly restricts the com-
putational burden of our numerical investigations. Indeed,
already for our 2D systems we have found that long simula-
tions involving up to 108 time steps combined with relatively
large systems �particle numbers N�3000−6000� are re-
quired to obtain acceptable statistics. Extending these system
sizes into the third spatial dimension would correspond to an
enormous additional computational effort. Moreover, 2D
systems are interesting themselves since their physical be-
havior can be markedly different from that of typical 3D
systems. An example is the crystallization and melting of 2D
colloidal systems recently observed in experiments �26,27�.
Given that both solid and fluid phases were found in such
systems, it seems particularly interesting to explore the va-
lidity of the GLE under anharmonic conditions.

Our 2D model system consists of N+1 particles interact-
ing via a shifted and truncated Lennard-Jones �LJ� potential,
that is,

u�r� = �uLJ�r� − uLJ�rc� − uLJ� �rc��r − rc� , r � rc,

0, r � rc,
�

�3.1�

where r is the distance between a pair of particles, u�
=du /dr, and rc is a cutoff distance, at which both the poten-
tial u and its first derivative �and thus, the corresponding
force� vanish. The actual LJ potential appearing in Eq. �3.1�
is given by

uLJ�r� = 4����

r
�12

− ��

r
�6� . �3.2�

For simplicity we consider a monodisperse system where the
diameter � of the tagged particle is equal to that of the bath
particles. We further specialize to the case m0=m, that is, the
tagged particles has the same mass as the bath particles �note
that this choice concerns the original system but not the ref-
erence system, where the mass M of the tagged particles is
different from m�.

At low temperatures and high densities the particles ar-
range into a solidlike state with long-range planar positional
order. In the present work we consider two different 2D lat-
tice structures which are illustrated in Fig. 1. The hexagonal
lattice �see Fig. 1�a��, where each particle has six nearest
neighbors, corresponds to the thermodynamically stable
crystal structure for a variety of systems such as LJ particles
�28�, hard disks �29�, and repulsive paramagnetic colloids
�25–27�. The quadratic lattice �see Fig. 1�b��, where each
particle has four nearest neighbors, is more “open” than the
hexagonal one. For the systems mentioned above the qua-
dratic lattice is only metastable even at very low tempera-
tures. A rather “exotic” exception is a granular crystal mod-
eled with an embedded-atom potential. This system does
indeed exhibit a stable solid phase with quadratic lattice
structure �30�. We have included the quadratic structure in
our investigations of the 2D LJ systems to explore the influ-
ence of lattice geometry, particularly the role of the number
of neighbors.

To define the densities of the solid states we set the
nearest-neighbor separation r0 equal to the distance where
the truncated LJ potential �see Eq. �3.1�� has its minimum,
that is

�du�r�
dr

�
r0

=
!

0, �3.3�

which yields r0�1.1384� for the present choice rc=1.6�
�this choice for rc corresponds to a LJ system with a very
short-ranged attraction, that is, a nearest-neighbor attraction
in the solid phase�. The corresponding dimensionless number
densities are 	*		�2= �� /r0�22 /�3�0.891 for the hexago-
nal lattice and 	*= �� /r0�2�0.772 for the quadratic lattice,
respectively �with 	=N /A, A being the area of the cell�.

r0

lx

ly

(a)

r0

lx

ly

(b)

FIG. 1. Sketch of a particle on a hexagonal �a� and quadratic �b�
lattice with nearest-neighbor distance r0. Dashed rectangles with
side lengths lx= ly =�2r0 �square lattice� or, respectively, lx=�3r0,
ly =2r0 �hexagonal lattice� indicate subunits of the simulation cell.
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Based on the 2D model described above our investigation
of the performance of the GLE proceeds as follows.

�1� We first determine the dynamics of the tagged particle
of mass m0 in the original system governed by the full
Hamiltonian H �see Eq. �2.1��. This is done by means of MD
simulations at fixed density and temperature. As explained in
Appendix B we control the temperature implicitly via sto-
chastic boundary conditions. By using sufficiently large sys-
tems we can ensure that this technical procedure does not
influence the dynamical properties of interest. Our target
quantities are the �non-normalized� velocity-autocorrelation
function �VACF� of the tagged particle


vv�t� = 
v0�t̃� · v0�t̃ + t�� �3.4�

and the force-autocorrelation function �FACF�


ff�t� = 
F0�t̃� · F0�t̃ + t�� . �3.5�

In Eqs. �3.4� and �3.5�, 
¯� denotes an average over time
origins t̃. The FACF plays a key role since it is the force
F0�t� which is described by the GLE �see Eq. �2.16��. In fact,
the only reason not to consider F0�t� directly is that its time
average vanishes, thus making a numerical investigation im-
possible. Therefore, the FACF is the quantity where one
would expect a failure of the GLE to become visible most
clearly.

�2� Parallel to the MD simulations of the original system
we perform MD simulations of the corresponding �Wada-
Hori� reference system, defined by changing the mass of the
tagged particle from m0 to M. Apart from this difference the
two systems are identical, including their thermodynamic
state characterized by temperature and density. In particular,
when the original system is a liquid the reference system is a
liquid as well. For given M we then compute the force
F0

�M��t� and its autocorrelation function

��M��t� = 
F0
�M��t̃� · F0

�M��t̃ + t�� . �3.6�

�3� Based on F0
�M��t� and ��M��t� we calculate the effec-

tive force F0�t� by numerical solution of the GLE �2.16�. We
then use this reproduced force to compute the trajectory of
the tagged particle according to the coarse-grained dynamics,
and, based on that, the reproduced versions of the time-
autocorrelation functions specified in Eqs. �3.4� and �3.5�.
These functions will be denoted �for a specific value of M�
by 
vv

�M��t� and 
 f f
�M��t�. Comparing the latter functions with

the original time autocorrelation functions we can finally
benchmark the performance of the GLE.

IV. NUMERICAL RESULTS

Our subsequent discussion of the effective dynamics pro-
ceeds as follows. We start in Sec. IV A by considering lattice
systems with hexagonal or quadratic positional structure, fo-
cussing on very low temperatures. Under these conditions we
expect the harmonic approximation �which is the prerequisite
for the validity of the GLE� to work best. In Sec. IV A we
also discuss, from a practical point of view, possible choices
for the dimensionless mass M*=M /m0 characterizing the
tagged particle in the reference system. The subsequent Sec.

IV B deals with temperatures around the melting point,
where we restrict our analysis of solid states to the hexagonal
lattice. Indeed, for the density considered it turned out that
the quadratic lattice is �meta�stable only up to a temperature
T*�10−4 �with T*=kBT /� being the dimensionless tempera-
ture�. At higher temperatures, the system �when started from
a quadratic lattice� quickly collapses into an inhomogeneous
mixture of hexagonal and gaslike regions, indicating global
instability of the squarelike order. Section IV B also includes
results for the dense liquid �	*=0.891� into which the hex-
agonal solid melts upon increase of T*. Finally, to illustrate
the influence of density we present in Sec. IV C some liquid-
state results obtained at 	*=0.6.

A. Effective dynamics in low-temperature solid states

In this section we consider the dynamics of the tagged
particle at T*=10−5. This value is representative for the tem-
perature range where the harmonic approximation of the to-
tal potential energy U�r0 ,rN� is justified. We have explicitly
checked this point by comparing averages for the potential
energy and the velocity autocorrelation function

v0�t� ·v0�0�� in the harmonic system, on one hand, and the
full system, on the other hand. At T*=10−5 these functions
turned out to be indistinguishable.

Given the validity of the harmonic approximation for
U�r0 ,rN� we would expect the GLE to reproduce the tagged
particle’s dynamics exactly �see Sec. II�. As explained in
Sec. III we can test the GLE by comparing the velocity au-
tocorrelation function 
vv�t� of the tagged particle in the
fully interacting system �see Eq. �3.4�� with the function

vv

�M��t� obtained by solving the GLE �using the input from a
reference system characterized by a mass M�.

Results for the dimensionless functions 
vv�t� and

vv

�M��t� are shown in Fig. 2 where we consider both the
hexagonal and the quadratic lattice. For both structures the
reference system was characterized by M*=�, correspond-
ing to the original Deutch-Silbey approach �19� where the
position of the tagged particle in the reference system is
fixed. Inspecting the data in Fig. 2�a� one sees that 
vv

�M��t�
indeed coincides with 
vv�t� for the quadratic lattice, thus
satisfying the relations formulated by Deutch and Silbey
�19�. For the hexagonal lattice, however, the data in Fig. 2�b�
reveal strong deviations between 
vv�t� and 
vv

�M��t�.
In order to shed some light on the specific role of the

hexagonal lattice we computed the memory functions K�t� of

vv�t� for both lattice types. The function K�t� is defined
through the Volterra equation �31� �for the numerical solu-
tion, see Ref. �32��

d

dt

vv�t� = − �

0

t

dt�
vv�t − t��K�t�� . �4.1�

From Eq. �4.1� it is seen that K�t� acts as a weighting func-
tion measuring to what an extent the VACF �more precisely,
its time derivative� at a given time t is influenced by earlier
times t�� t. Numerical results for the memory functions cor-
responding to the VACFs plotted in Fig. 2 are presented in
Fig. 3. Comparing the data for the two lattice structures we
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observe, in both cases, an oscillatory behavior at short times
whereas the long-time behavior and the overall magnitude of
K�t� differs markedly. In particular, the memory function cor-
responding to the quadratic lattice decays rather rapidly. On
the other hand, for the hexagonal lattice K�t� approaches a
finite value as t becomes large, signaling an extremely long

lifetime of the tagged particle’s VACF at least on the time
scale of our simulations.

As we will see below the same long lifetime characterizes
the kernel of the GLE when M*=�. This might explain why
it is so difficult from a numerical point of view to reproduce
the VACF �and likewise the corresponding FACF� according
to the Deutch-Silbey GLE �see Eq. �2.15�� even under con-
ditions where the harmonic approximation is justified.

Fortunately, this problem essentially disappears when we
employ a reference system in the spirit of Wada and Hori
�20� where the tagged particle can move �that is, the mass M
has a finite value�. In Fig. 4 we present numerical data for the
VACF in its original and its reproduced form obtained with
M*=4. It is seen that the GLE now yields quasiexact results
not only for the quadratic, but also for the hexagonal lattice.
Thus, allowing the probe particle to move �i.e., choosing a
sufficiently small value of M*� strongly facilitates the nu-
merical investigations as compared to the case M*→�.

We can understand this phenomenon by inspecting in
more detail the influence of M* on the kernel appearing in
the GLE �2.16�, that is, the force autocorrelation functions
��M��t� in the reference system defined in Eq. �3.6�. It proves
instructive to consider in parallel the power spectrum of
��M��t� defined as
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�̃�M��
� = �
0

�

dt��M��t�cos�
t� . �4.2�

Some exemplary data for ��M��t� and �̃�M��
� are plotted in
Figs. 5 and 6, respectively, where we have included the case
M*=1 corresponding to the original system. At the low tem-
peratures considered the latter represents essentially a system
of harmonic oscillators which are coupled to each other via
�nearest neighbor� LJ interactions. Neglecting these interac-
tions for a moment one is left with a decoupled system of
harmonic oscillators, in which the force autocorrelation func-
tion of the tagged particle can be evaluated analytically. In-
deed, consider a single oscillator characterized by mass M
and spring constant �. Its momentum is given by p�t�
=�2MkBTp̂ cos�
idt� where we have used the equipartition
theorem in 2D for the initial value, and the frequency 
id
=�� /M. The corresponding force autocorrelation function
for given time origin t0 then becomes F�t0� ·F�t+ t0�
=2�kBT sin�
idt0�sin�
id�t+ t0��. Finally, averaging over time
origins in the interval 0� t0
id�2� yields �id

�M��t�
= ��kBT�cos 
idt. The resulting frequency spectrum �in the
positive frequency domain� is characterized by a single �

peak at 
id. As seen from the data plotted in Figs. 5 and 6,
the present interacting system �M*=1� does have similarities
with its ideal counterpart, as reflected in particular by the
pronounced, single peak in �̃�M��
� �see Fig. 6�. Deviations
from the ideal case manifest themselves mainly as a damping
of the oscillations in ��M��t� and a corresponding broader
�nonsingular� distribution in �̃�M��
�. We note in passing
that these interaction effects seem to be more pronounced in
the hexagonal case as reflected by the much faster damping
of ��M��t� as compared to the quadratic case. This may be
due to the fact that the number of nearest neighbors, and
thus, the number of interaction partners is larger in the hex-
agonal lattice.

Further pronounced differences between the dynamics in
the two lattices appear when the mass M* of the tagged
particle in the reference system is increased from one. Spe-
cifically, for the hexagonal system slow oscillations in
��M��t� emerge which extend to very long times. This is even
more evident in the frequency domain �see Fig. 6�b��, where
we see that the �“quasi-ideal”� peak characterizing the spec-
trum at M*=1 remains upon increasing M*, but becomes
strongly reduced in intensity. At the same time a second peak
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FIG. 5. The force autocorrelation function in the reference sys-
tem ��M��t� for M*=4 �solid line� and M*=10 �dashed bold line� in
the quadratic �a� and the hexagonal �b� lattice at T*=10−5. Included
are data for the case M*=1 corresponding to the original system
�dash-dotted line�.
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develops �at a frequency 
m� which increases in intensity
and moves towards smaller and smaller frequencies upon
increasing M*. In fact, as demonstrated in the inset of Fig.

6�b�, the position of the main peak of �̃�
� follows essen-
tially the power law 
m�M−1/2 characterizing an ideal non-
interacting oscillator of mass M. Moreover, already for M*

�10 this low-frequency peak dominates the spectrum.
Therefore, and because the small-frequency behavior of

�̃�
� determines that of ��M��t� at long times t �see Eq.
�4.2��, it is clear that numerical calculations of ��M��t� in the
reference system become increasingly difficult and time con-
suming. Moreover, the long lifetime of the force correlations,
which act as a kernel in the GLE �see Eq. �2.16��, also im-
plies that it becomes more and more difficult to evaluate the
integral in the GLE accurately. In the quadratic lattice �see
Fig. 6�a��, on the other hand, the frequency spectrum of the
force autocorrelation function depends much less on M*. In
particular, there is no dominant low-frequency peak even at
the largest values of M* considered, as reflected by the fast
decay of the corresponding time-dependent functions �see
Fig. 5�a��. This explains why we do not experience signifi-
cant numerical problems in calculating the VACF from the
GLE in the quadratic lattice.

We conclude that the “problem” of reproducing the exact
time correlation functions of a hexagonal harmonic lattice
via the GLE with M*=� and the success of the same GLE
with M*=4 has a systematic numerical reason which be-
comes manifest most directly in the mass dependence of

�̃�
�. From a more physical point of view, we understand
this mass dependence as a dependence on the strength of the
perturbation induced by the tagged particle on the remaining
“bath:” For M*=�, the perturbation may be viewed as a
static external field to which the “bath” particles must adjust.
Given the strong spatial and dynamic correlations character-
izing hexagonal lattices �see Sec. IV B and Ref. �33��, it
seems then plausible that this perturbation yields a very long
lifetime of correlation functions, such as ��M��t�. For M*

��, the tagged particle becomes a degree of freedom and
thus can “feel” the reaction of the bath. In other words, there
is a feedback from the dynamics of the bath particles to that
of the tagged particle. As a consequence, the “external field”
responds more easily to the bath the smaller M* becomes.
Intuitively, one would therefore anticipate the perturbation to
become less and less pronounced, as reflected by the shift

�and decreasing magnitude� of the main peak of �̃�
� to-
wards higher frequencies �see Fig. 6�b��. In our subsequent
numerical investigations we therefore fix the mass of the
tagged particle in the reference system at a finite, numeri-
cally suitable value of M*.

B. Intermediate temperatures

Increasing the temperature from the very small value of
T*=10−5 considered in Sec. IV A the displacements of indi-
vidual particles from their equilibrium lattice sites become
more and more pronounced until the solid finally melts into a
dense liquid. Under such conditions, that is, just below or
above the melting point, the harmonic approximation of the

total potential energy becomes invalid. It then seems particu-
larly interesting to explore the performance of the GLE.

In the following we first estimate the temperature where
melting of the present system occurs, focussing exclusively
on the hexagonal solid �as explained at the beginning of Sec.
IV the quadratic lattice is globally unstable already for tem-
peratures T*�10−4�. This estimate is necessary because so
far no simulation results for the melting of 2D LJ systems
with precisely the same cutoff chosen in the present work
exist �for simulations of a slightly different system, see Ref.
�34��. We then consider the GLE results for two particularly
interesting temperatures below and above the melting point.

1. Estimating the melting point

For three-dimensional systems, a standard way to distin-
guish fluid and solid phases is to consider the long-time limit
of the �system-averaged� mean-squared displacement f��t�
=N−1�i=1

N 
�ri
2�t��, where �ri�t�=ri�t�−ri�0�. In the solid

phase this function should approach a constant �correspond-
ing to a vanishing diffusion constant D�, contrary to the liq-
uid phase where f��t��Dt as t→�. In 2D crystals, however,
the mean-squared displacement diverges logarithmically
with system size �35�, indicating a cooperative drift of the
particles from their equilibrium sites �indeed, it is well
known that formally there is no true long-range order in 2D
crystals as signaled by an algebraic decay of the density cor-
relations�. On the other hand, it is known �and can be experi-
mentally observed �26,27�� that neighboring particles keep a
nearly constant distance from each other even when the sys-
tem drifts as a whole. Therefore it is sensible to introduce a
“local” coordinate system where the particle’s displacement
is calculated with respect to the positions of its nearest
neighbors �36�. These considerations lead to the definition of
the so-called dynamic Lindemann parameter �26,27�

�L�t� = 
��ri�t� − �ri+1�t��2�/2r0
2, �4.3�

where r0 is the mean nearest-neighbor distance �see Eq. �3.3�
below�. From Eq. �4.3� it is seen that the function �L�t�
couples the displacements of neighboring particles i and i
+1. In the crystal, �L�t� tends to a constant value as t be-
comes large �36�. On the other hand, in the liquid phase the
displacements of the two particles become uncorrelated at
long times, such that �L�t� becomes proportional to the stan-
dard mean-squared displacement, f��t� �27�.

In Fig. 7�a� we plot �L�t� for the present hexagonal system
at various temperatures in the range 0.55�T*�1.2. At T*

=0.55 the dynamic Lindemann parameter is bound at large
times and this is still the case at T*=0.69. For the latter
temperature we find a plateau value of ���0.019, which is
typical for a crystalline phase. Indeed, the �universal� “criti-
cal” plateau value at which the solid melts is given by ��

c

=0.033 �27,36�. At the somewhat higher temperature T*

=0.72 and, more visibly, at T*=0.76 we observe from Fig.
7�a� an increasing behavior of �L�t� at the longest times con-
sidered. This increase becomes even more pronounced at the
larger temperatures T*=0.9 and T*=1.2. Thus, we estimate
the melting temperature T

m
* to be located somewhere in the

range 0.69�T
m
* �0.72.
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An additional issue in this context is the appearance of a
hexatic phase as an intermediate phase between the solid and
the isotropic liquid. Such a two-stage melting scenario is
predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young
�KTHNY� theory �37–40� which was recently confirmed ex-
perimentally for 2D systems of paramagnetic colloids
�26,27�. There, the topological features �formation of discli-
nation and dislocation pairs� characterizing the two-stage
melting can be directly observed by video microscopy. In the
present work, however, we are interested in identifying true
solid or liquid �rather than hexatic� states since those seem
most suitable to investigate the performance of the GLE. To
check whether the temperatures identified above fall into the
hexatic range we have calculated the �static� bond-
orientational correlation function �41�

G6�r� = 

6�r1�
6�r2�� , �4.4�

where r= �r1−r2� and 
6�ri�=Ni
−1� j

Ni exp�6i�ij� is a local
bond-angle parameter which is sensitive to the degree of
hexagonal ordering around a given particle at ri �Ni is the
number of nearest neighbors located at r j, and �ij is the angle
between the vector connecting i and j and the x axis�. In a

hexagonal solid, G6�r� decays towards a finite value for large
particle separations r, indicating the presence of long-range
translational �hexagonal� order in the system. The isotropic
liquid, on the other hand, is characterized by an exponential
decay of G6�r� towards zero. Finally, in the hexatic phase
G6�r� decays algebraically signaling quasi-long-range order.

Two results for G6�r� are plotted in Fig. 7�b� where we
have chosen a double-logarithmic representation. At the tem-
perature T*=0.55 the bond order correlation function indi-
cates solidlike behavior in agreement with our dynamical
analysis based on the time-dependent Lindemann parameter
�L�t�. On the other hand, for T*=1.2 the data presented in
Fig. 7�b� reveal that the system is in a truly isotropic liquid
state. Indeed, we did not observe indications for a hexatic
behavior at the temperatures considered. This is in contrast to
a previous simulation study �34� of a slightly different 2D LJ
system, where a metastable hexatic phase was found in a
very narrow temperature range �and for system sizes much
larger than the ones considered in the present work�.
Whether or not the present system exhibits �meta�stable
hexatic phases remains to be explored in a more systematic
study with much higher temperature resolution and larger
system sizes. Here we concentrate on the temperatures T*

=0.55 �solid� and T*=1.2 �liquid� henceforth.

2. Coarse-grained dynamics around the melting point

Numerical results for the velocity and force autocorrela-
tion functions of the tagged particle at T*=0.55 and T*

=1.2 are plotted in Fig. 8. We first consider the results cor-
responding to the solid state �see Fig. 8�a��. Comparing the
original VACF and its reproduction via the GLE we see that
the overall agreement is still very good, although the system
is far beyond the regime where the harmonic approximation
applies. In particular, the GLE correctly describes the origi-
nal system’s temperature �which is proportional to 
vv�t
=0�� as well as the general shape of the VACF and the time
interval over which velocity correlations extend. Small quan-
titative deviations between 
vv�t� and 
vv

�M��t� occur in that
range where the VACF is negative and displays oscillatory
behavior. More precise information is revealed by the corre-
sponding force autocorrelation functions plotted in the inset
of Fig. 8�a�. It is seen that the GLE overestimates the ampli-
tude of the oscillations in the FACF at intermediate times
�here, 0.1� t*�0.6�, indicating that the effective force on
the tagged particle itself is not reproduced correctly. This in
turn leads to the observed errors in the VACF. On the other
hand, short- and long-time behavior of the FACF are again
very accurate.

Surprisingly, the GLE still yields reasonable results when
we consider the high-density liquid state �characterized by
T*=1.2, 	*=0.891�, where the particles are no longer bound
to lattice sites neither in the original nor in the reference
system. The good quality of the reproduced data is seen
when we compare in Fig. 8�b� the original and the GLE data
for the VACF �main part� and the FACF �inset�. Compared to
the solid-state results in Fig. 8�a� the deviations of the repro-
duced autocorrelation function from their original counter-
parts are somewhat more pronounced. This concerns in par-
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ticular the magnitude of the oscillations in the VACF. These
oscillations reflect backscattering effects which are overesti-
mated the more the larger M* becomes. However, at a quali-
tative level, the GLE still reproduces the main features of the
correlation functions. This is a remarkable result which may
be due to the fact that the local positional order at the high
density considered is already very similar to what one finds
in the hexagonal solid stabilized at lower temperatures. From
that point of view one would expect less accurate results at
lower densities. We will revisit this issue in the subsequent
Sec. IV C.

Here it is interesting to briefly consider the role of the
mass M chosen for the tagged particle in the reference sys-
tem for the predictions of the GLE. We recall that in a perfect
harmonic system the value of M is arbitrary �20� �despite
from the practical, that is, numerical considerations dis-
cussed in Sec. IV A�. In an anharmonic system such as a
liquid, however, perfect agreement �between, say, 
vv�t� and

vv

�M��t�� should only occur for the trivial choice M =m0 �i.e.,
M*=1� for which the integral term in Eq. �2.16� vanishes
and the reference system reduces to the original one. From
that point of view, we expect the deviations to increase with
increasing dimensionless mass M*. That this is indeed true

can be seen from the additional data plotted in Fig. 8�b�,
which refer to M*=100. The differences between the cases
M*=100 and M*=4 are particularly pronounced in the
FACF �inset�. Indeed, it seems that increasing the mass ratio
has a similar effect than increasing the temperature, that is an
enhancement of the amplitude of the oscillations. On the
other hand, upon further increase of the mass ratio the effec-
tive force- and velocity-autocorrelation functions rapidly
converge to limiting functions. For instance, the autocorrela-
tion functions obtained with M*=104 are nearly indistin-
guishable from those at M*=100, indicating that the precise
value of M is not very important in this range. This is also
confirmed by the behavior of the corresponding power spec-
tra �not shown� of the kernel ��M��t� determining the integral
in the GLE �2.16�.

C. Liquids at lower densities

Given the very good performance of the GLE in the melt
�	*=0.891� it is interesting to explore the influence of par-
ticle density within the liquid state. Indeed, the lower the
density, the less we expect the local positional structure in
the system to resemble that of a harmonic solid for which the
GLE was constructed originally. As an example we consider
the density 	*=0.6. Results for the VACF and the FACF of
the tagged particle and the corresponding reproduced data
are plotted in Fig. 9�a�, where we have chosen M*=4 and
M*=100. Considering first the original data we see that, as
expected, the VACF has a simpler structure compared to the
high-density case �see Fig. 8�b��. Whereas the latter reveals a
pronounced cage effect �see the two negative minima�, the
VACF at 	*=0.6 decays monotonically and smoothly to
zero. Still, the GLE is not capable of fully reproducing these
data, with the deviations becoming more pronounced the
larger M* is. This is consistent with the observations made at
high densities �see Sec. IV B�. In particular, for M*=100 we
observe from Fig. 9�a� that the reproduced VACF has oscil-
lations absent in the original data. Corresponding deviations
are also seen in the FACF plotted in the inset of Fig. 9�a�.

A natural measure to quantify such deviations in the liq-
uid phase would be to calculate the diffusion constant via the
�Green-Kubo� integral of the VACF. However, it is well
known that in 2D fluids at moderate density the VACF pos-
sesses a long-time tail ��t−1� �42� due to hydrodynamic
backflow effects �12�, and a similar behavior is observed in
the present numerical data. Thus, it becomes problematic to
evaluate the Green-Kubo integral numerically. As an alterna-
tive, we integrate the squared difference between the VACF
and its reproduction, yielding the time-dependent function

��t� = �
0

t

�
vv�t�� − 
vv
�M��t���2dt�. �4.5�

Results for ��t� at 	*=0.6 are given in Fig. 9�b�, where we
have included corresponding data obtained at the high den-
sity 	*=0.891. It is seen that substantial contributions to ��t�
occur at times t*�0.5 as indicated by the plateaus reached
by ��t� at later times. The other main conclusion is that, for
fixed value of M*, the absolute deviation �as given by the
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plateau value� indeed increases significantly upon decrease
of 	*. This confirms our expectation that the GLE generally
becomes less accurate when the local structure becomes in-
creasingly more liquidlike.

V. CONCLUSIONS

The main goal of the present paper is to explore the suit-
ability of a generalized Langevin equation, which is exact in
harmonic solids, to describe the single-particle dynamics in
“anharmonic” situations such as high-temperature solids and
liquids. To this end we have performed MD simulations of a
two-dimensional model system and a corresponding refer-
ence system. The latter is needed to compute the key ingre-
dient of the GLE, that is, the random force and its correla-
tions determining the kernel. Our main finding is that the
GLE works surprisingly well even if the structure of the
actual system is very different from that of a harmonic solid.
As a side product, the present simulations also illustrate
some specific physical properties of the 2D LJ system con-
sidered here. In this context, the most prominent features are

the long lifetime of correlations in the low-temperature hex-
agonal phase, and the presence of collective displacements
close to the melting point which motivates the use of a modi-
fied dynamic Lindemann parameter.

The good performance of the GLE at finite temperatures
is particularly remarkable in view of the fact that the mass of
the tagged particle in our original system m0 was set equal to
the mass m characterizing the remaining bath particles. This
choice corresponds, in a way, to a “worst-case” situation
since the resulting kernel ��M��t� �which is determined by
the motion of the bath particles� then decays on the same
time scale as dynamic correlations �e.g., the VACF� of the
tagged particle. Indeed, one would expect even better perfor-
mance of the GLE if m0�m, corresponding to the classical
situation of a heavy colloidal particle in a solvent. In the
latter case, ��M��t� should decay on a time scale much
shorter than the time scale governing fluctuations in the
heavy particle’s momentum. In other words, the two time
scales should separate, with the consequence that the detailed
structure of ��M��t� becomes irrelevant for the resulting in-
tegral appearing in the GLE �which in turn yields a much
higher tolerance for the actual computation of the kernel�.
Thus, a detailed investigation of the influence of the mass
ratio m0 /m on the performance of the GLE would be worth-
while. Another interesting topic concerns the influence of
additional conservative forces resulting from the presence of
several tagged particles. The original GLE proposed by
Deutch and Silbey can be easily generalized to this situation
�19�.

Of course, given that the original idea behind using GLE’s
�and other coarse-graining concepts� is to reduce computa-
tional burden, investigations of the present type which rely
on parallel simulations of two many-particle systems �the
original and the reference one� appear rather elaborate. From
that point of view, it is encouraging to see that �according to
our results in Sec. IV A� some main features of the kernel
��M��t� and its power spectrum �such as the mass depen-
dence� may be inferred from simple concepts such as a har-
monic oscillator. This finding might serve as a guide for a
future development of simple models of the kernel. Such an
approach would be similar in spirit to basic concepts of
mode-coupling theory �12�. Another approach to modeling
the kernel has been suggested in numerous papers by Adel-
man and co-workers �see Ref. �43� for a comprehensive re-
view�. Here one maps the GLE onto a one-dimensional har-
monic chain of pseudoparticles immersed in a heat bath
where the heat bath is modelled by a hierarchy of time cor-
relation functions. The hierarchy is then truncated at some
level by making a Markovian approximation. The applicabil-
ity of such concepts on the problems discussed in the present
work is currently under investigation.
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APPENDIX A: DERIVATION OF THE GLE

1. Derivation of the operator identity (2.6)

In this appendix we first derive an analog of Eq. �2.6�
�44�, which is more general since it does not rely �contrary to
Eq. �2.6�� on the assumption that the Liouville operators are
independent of time. We then specialize to the case consid-
ered in the present work.

We depart from the Liouville equation for an arbitrary
operator U�t , t0�,

U̇�t,t0� = iL�t�U�t,t0� , �A1�

in which the Liouville operator L�t� may be explicitly time
dependent. We supplement Eq. �A1� by the initial condition
U�t0 , t0�=1. Splitting L�t� according to Eq. �2.4�, and

introducing a second operator through U̇B�t , t0�
= iLB�t�UB�t , t0� �with the initial condition UB�t0 , t0�=1� one
may prove �see below� the exact relation

U�t,t0� = UB�t,t0� + �
t0

t

U�t,t��iL�0��t��UB�t�,t0�dt� 	 X�t,t0� .

�A2�

To verify Eq. �A2� we note that two time-dependent opera-
tors are identical if they have the same time derivative and
coincide at t= t0. The latter property immediately follows
from the fact that the integral on the right side of Eq. �A2�
disappears at t= t0 and that U�t0 , t0�=UB�t0 , t0�=1.

Thus, we consider the time derivative of Eq. �A2�, where
the left side simply follows from the Liouville equation �A1�.
The derivative of the right side becomes

Ẋ�t,t0� = U̇B�t,t0� + U�t,t�
=1

iL�0��t�UB�t,t0�

+ �
t0

t

U̇�t,t��L�0��t��UB�t�,t0�dt�

= iL�B��t�UB�t,t0� + iL�0��t�UB�t,t0�

+ iL�t��
t0

t

U�t,t��L�0��t��UB�t�,t0�dt�,
�A3�

where we have used the Liouville equation for U �see Eq.
�A1�� and the analogous one for UB. Summarizing the first
two terms on the far right side of Eq. �A3� and comparing
with the definition of X given in Eq. �A2�, we find

Ẋ�t,t0� = iL�t�X�t,t0� . �A4�

Thus, X satisfies the same differential equation as U �see Eq.
�A1��, which completes our proof of Eq. �A2�.

In the context of this work the operators L, L�B�, and L�0�

exhibit no explicit time dependence. We can then formally
integrate the Liouville equation �see Eq. �A1�� to obtain
U�t , t0�=exp�iL�t− t0�� and, analogously, UB�t , t0�
=exp�iLB�t− t0��. Replacing the latter expressions into Eq.
�A2� and setting t0=0 gives Eq. �2.6�.

2. Derivation of Eq. (2.11)

We start by considering the first member of Eq. �2.11�,
which implies that PiL�B�F0

+�t�=0. Since, according to Eq.
�2.9�, F0

+�t�=exp�iL�B�t�F0�0�, and since the operators L�B�

and exp�iL�B�t� commute with one another, it is sufficient to
show that PiL�B�=0. To see this we use the explicit expres-
sion for the action of P given in Eq. �2.10� and the definition
of L�B� �see Eq. �2.5b��, yielding

PiL�B� =
1

Q��r0��i=1

N � dpi� driiL�B� exp�− �H��

= −
�

Q��r0��i=1

N � dpi� dri�
j=1

N �p j

m

�H�

�r j
+ F j

�H�

�p j
�

�exp�− �H��

= −
�

Q��r0��i=1

N � dpi� dri�
j=1

N �p j

m

�U

�r j
+ F j

p j

m
�

�exp�− �H�� = 0. �A5�

In obtaining the last line we have used the definition of the
Hamiltonian H� �see Eq. �2.1��. The last zero then simply
follows from the fact that �U /�r j =−F j so that the expression
in brackets vanishes for each j independently.

To verify the second member of Eq. �2.11�, consider �us-
ing Eq. �2.5a��

PiL�0�F0
+�t� =

1

Q��r0��i=1

N � dpi� dri

�� p0

m0

�

�r0
+ F0

�

�p0
�F0

+�t�exp�− �H��

=
p0

m0
� �F0

+�t�
�r0

� +
�

�p0

F0�0� · F0

+�t�� . �A6�

In writing the last term we have used that the force F0 is
conservative and therefore independent of p0. Moreover,
since we are performing an equilibrium average, F0 appears
as a time-independent quantity which we can therefore set
equal to F0�0�.

To evaluate the first term on the far right side we make
use of the fact that the time average of the random force
vanishes, that is, 
F0

+�t��=0. As a consequence, a spatial de-
rivative of this average vanishes as well. Combining this fact
with the product rule, we find

�

�r0

F0

+�t�� = 0

=
�

�r0
� 1

Q��r0��i=1

N � dpi� driF0
+�t�exp�− �H���

= � �F0
+�t�

�r0
� + �
F0�0� · F0

+�t�� . �A7�

Solving Eq. �A7� with respect to 
�F0
+�t� /�r0�, and inserting

the result into Eq. �A6�, we obtain
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P�iL�0�F0
+�t�� = � �

�p0
−

�p0

m0
�
F0�0� · F0

+�t��

= � �

�p0
−

�p0

m0
�
F0

+�0� · F0
+�t�� , �A8�

where the last line follows from the fact that, at t=0, the
forces F0 and F0

+ becomes identical �see Eq. �2.9��.

APPENDIX B: SIMULATION DETAILS

In our MD simulations the equations of motion were
integrated using the velocity-Verlet algorithm �45� with
a time step of �t*=10−3 �the reduced time is defined as
t*= t�� /m�2�. In order to reduce finite size effects we apply
periodic boundary conditions in x and y directions in all of
our simulations. However, at very low temperatures this
standard procedure alone leads to artifacts in the time corre-
lation functions such as the force autocorrelation function
defined in Eq. �3.5�. For a finite crystalline system �at low
temperatures� these functions display recurring patterns
whose recurrence frequency decreases with increasing sys-
tem size. We can interpret these recurring patterns as sound
waves propagating through the system. When reaching the
boundary of the simulation cell these waves reenter the cell
from the opposite side due to the periodic boundary condi-
tions. To circumvent this problem we supplement these con-
ventional boundary conditions by so-called stochastic bound-
ary conditions �46�. Within this framework those bath
particles which are “far away” �in practice, �25�� from the
tagged particle at the center of the simulation cell, “feel”
nonconservative forces Fi

nc in addition to the conservative
�pair� forces resulting from the neighboring particles. These
forces are of Brownian type, but chosen in such a way that
the total momentum of the entire system is conserved in each
time step �contrary to conventional Brownian dynamics�.
More specifically, we set Fi

nc=−��vi−� jv j�+��̃i /��t where
� is the friction coefficient and � is the amplitude of the

random force. In �̃i=�i−� j� j the components of the vector
�i are uniformly distributed random numbers sampled from
the interval �−1;1�. The presence of the frictional and ran-
dom forces enables those bath particles, that are located close
to the boundaries of the simulation cell to dissipate energy
from an incoming sound wave. In this way, the sound waves
are effectively damped out. In order to model a canonical
system with fixed temperature T, the parameters � and �
were chosen according to the fluctuation-dissipation theo-
rem, that is, kBT=�2 /2�.

Clearly, one would like to avoid any influence of the non-
conservative forces acting at the boundaries on the dynamics
of the tagged particle in the cell center. This is achieved by
using sufficiently large system sizes, i.e., we set the side
lengths of the simulation cell equal to 40 times the side
lengths lx, ly of subcells depicted in Fig. 1. Moreover, a small
amplitude � of the frictional forces is chosen.

Upon increasing the temperature towards the melting
point the sound-wave problem described above essentially
disappears. The corresponding MD simulations �see Sec.
IV B� are therefore carried out without stochastic boundary
conditions. The same holds for the MD simulations within
the liquid state described in Sec. IV C.

All simulations begin with an equilibration period of
about 105 time steps, after which we start to collect averages
of the dynamical quantities of interest �see Sec. III�. For the
original system, these are the correlation functions 
 f f�t� and

vv�t� defined in Eqs. �3.5� and �3.4�, respectively. Since
these autocorrelation functions involve only one �the
“tagged”� particle, averaging over many time origins is re-
quired to obtain sufficient statistics. We have used 2�105

samples corresponding to a total production period of 108

time steps. Similar effort is required for the reference system
where we calculate, for given mass M, the autocorrelation
function ��M��t�= 
F0

�M��0�F0
�M��t��. Finally, we also store the

function F0
�M��t� which is the second key ingredient for the

GLE �see Eq. �2.16��.
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