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Large deviation function for entropy production in driven one-dimensional systems
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The large deviation function for entropy production is calculated by solving a time-independent eigenvalue
problem for a particle driven along a periodic potential. In an intermediate force regime, the large deviation
function shows pronounced deviations from a Gaussian behavior with a characteristic “kink™ at zero entropy
production. Such a feature can also be extracted from the analytical solution of the asymmetric random walk
to which the driven particle can be mapped in a certain parameter range.
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The mathematical theory of large deviations is concerned
with the exponential decay of the probability of extreme
events while the number of observations grows [1]. In driven
systems coupled to a heat reservoir, energy in the form of
heat is dissipated and therefore entropy in the surrounding
medium is produced. The large deviation function of the en-
tropy production rate in nonequilibrium steady states is a
frequently studied quantity (see Ref. [2] and references
therein) for basically two reason. First, while entropy is pro-
duced on average, the large deviation function captures the
asymptotically time-independent behavior of the probability
distribution for the entropy production. Second, the large de-
viation function exhibits a special symmetry called the fluc-
tuation theorem. First seen in computer simulations of a
sheared liquid [3], this symmetry has been proven to hold in
nonequilibrium steady states for both deterministic thermo-
stated dynamics [4,5] and stochastic dynamics [6,7].

Analytical solutions for the large deviation function exist
only for a few cases (for a review, see Ref. [8] and for simple
models, see Refs. [7,9-13]). Obtaining the large deviation
function for the entropy production over the full range from
experimental data is a difficult task since trajectories leading
to negative entropy production are strongly suppressed with
increasing trajectory length (see, e.g., Ref. [14]). For a study
of the complete large deviation function one therefore has to
rely on computer simulations. To follow rare trajectories, dif-
ferent schemes have been proposed and implemented
[15-17]. All these approaches have in common that they
simulate trajectories from which the Legendre transform of
the large deviation function is determined. In contrast, in this
paper we calculate numerically the Legendre transform di-
rectly as the lowest eigenvalue of an evolution operator [7].
The problem of determining a time-dependent probability
distribution is therefore reduced to solving a time-
independent eigenvalue problem.

For a simple paradigmatic system, we investigate a single
driven colloidal particle immersed in a fluid and trapped in a
toroidal geometry by optical tweezers such that it effectively
moves in one dimension [18,19]. For short and intermediate
times, the experimentally measured probability distribution
for the entropy production exhibits a detailed structure with
multiple peaks arising from the periodic nature of the system
[20]. As the observation time increases, the distribution be-
comes more and more sharply peaked around its mean. Rare
large deviations from this mean are then governed by the
large deviation function, which we determine in this study.
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We then compare our results in a certain parameter range to
the analytically solvable model of the asymmetric random
walk.

The colloidal particle is driven into a nonequilibrium
steady state through a constant force f. In addition, the par-
ticle moves within an external periodic potential V(¢), where
0= @ <<2m is the angular coordinate of the particle. The total
force acting on the particle is F(¢)=-d,V(¢)+f. The over-
damped motion of the particle is governed by the Langevin
equation

dpp(t) = F() + {(1). (1)

The noise { represents the interactions of the particle with
the fluid and has zero mean and short-ranged correlations
(L(t){(¢")y=28(t—1"). Throughout the paper, we set Boltz-
mann’s constant to unity, leading to a dimensionless entropy.
In addition, we scale time and energy such that the bare
diffusion coefficient and the thermal energy become unity.

We are interested in the large deviation function of the
entropy production,

h(o) = lim - % In p(s,,,1). (2)
t—00

The entropy s,, produced in the heat bath during the time 7 is
a stochastic quantity with probability distribution p(s,,,?).
The asymptotic large fluctuations of s,, are then given by
p(s,,,1) ~exp[—h(o)t], where o= (s,,/t)/{s,,) is the dimen-
sionless, normalized entropy production rate. We will not
determine the large deviation function h(o) directly through
evaluating p(s,,,t) but from the generating function

400

gl N 1) = f ds,, e Mmp(@,s,,1). (3)

—o0

Here, p(¢,s,,,t) is the joint probability for the particle to be
at an angle ¢ and to have produced an amount s,, of entropy
during the time ¢. This generating function obeys the equa-
tion of motion &tg=li)\g with an operator Ij)\ yet to be deter-
mined. We can then expand g into eigenfunctions #,(¢,\)
determined from the eigenvalue equation

La(@N) = = a,(N) i, (@,N). (4)

The lowest eigenvalue ay(\) determines the asymptotic time
dependence of the generating function g~ exp[—ay(\)z]. In
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particular, the mean entropy production rate is (s,,)=a(0).
The large deviation function finally is the Legendre trans-
form

h(o) = ap(N*) = (§,)oN* (5)

of the cumulant generating function, as can be shown by a
saddle-point integration. Here, A* is defined implicitly
through (s,,)o=a((A*), where the prime denotes the deriva-
tive with respect to N. The large deviation function for the
entropy production shows the symmetry relation

h(= o) = h(0) +($,)0, (6)

called the fluctuation theorem [4,6,7]. If the fluctuation theo-
rem holds then the lowest eigenvalue exhibits an equivalent
symmetry, ag(N)=ay(1-N\). Hence, it is a symmetric func-
tion centered at A=1/2 [7].

In this approach, the asymptotic fluctuations of s,, can be
extracted from the solution of the eigenvalue equation (4) for
n=0. As an advantage compared to following definition (2),
we do not have to solve a time-dependent equation of motion
for p(s,,,t). Instead, the information of the asymptotic fluc-
tuations is contained in a time-independent equation which
we can tackle more easily.

The entropy change along a single stochastic trajectory is
defined as the functional [21]

2

sulx(n)] = f d7 F(x(7)x(7) = f(x — x9) — AV.

0

The time integration implies the introduction of a second
angular coordinate x which takes into account the number of
revolutions of the particle and measures the total traveled
distance in contrast to the bounded coordinate ¢. Since the
terms involving AV and x, are bounded they will not con-
tribute to the entropy production rate in the limit of large
times. Hence, the expression for the entropy production in
this limit simplifies to s,,~ fx.

The Fokker-Planck operator corresponding to the Lange-
vin equation (1) reads

Ly=-3,(F-4,). (7)

In the next step, we want to obtain the evolution operator L

for the joint probability p(¢,s,,,f) which obeys ﬁtszAp. This
operator is then converted to the sought-after evolution op-

erator I:x for the generating function (3). The stochastic pro-
cesses for ¢ and x (and hence s,,) share the same noise. We
can therefore replace d,— (d,+d,) to obtain

L="Ly+(29,~ F)d, + . (8)

Differentiating Eq. (3) with respect to time and inserting the
operator (8) leads after partial integration to

Ly=Lo+ (23, = )+ () 9)
with vanishing boundary terms.

For the numerical evaluation, we represent the operator I:x
as a matrix through choosing a basis. To this end, we distin-
guish left-sided (k| from right-sided |k) basis states. The basis
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must be complete and orthonormal, {k|l)=&,. Expanding the
eigenfunctions ,(¢,\)=(¢|¢,(\)) into the chosen basis,
() =™ (\)|K), Bq. (4) becomes

> Ly’ =—a,N)e”, Ly=(ILD.  (10)

[=—00

Hence, we seek the lowest eigenvalue ap(N) of the matrix
L, =(L;;) where \ appears as a mere parameter. A suitable
choice for the basis is

e—ik(p e+ik<p 2
(kloy=—=, (¢lk)=—7=—, f dele)Xe|=1 (11)
| Bon | e )¢l

due to the periodic nature of the system.

We now specialize our analysis to a cosine potential
V(p)=v, cos ¢ introducing a second dimensionless param-
eter v,. A straightforward calculation shows that the matrix
L, becomes tridiagonal with elements

L=~ (k—ifN)? - if (k= if)),

2Ok —in).

Lig=1= * )

We are not aware of an analytic solution for the eigenvalues
of such a matrix. However, by truncating the size of the
matrix to some finite value, they can easily be found numeri-
cally by standard algorithms. In Fig. 1, we show both a;(\)
and the large deviation function k(o) of the entropy produc-
tion. The fluctuation theorem (6) is satisfied as can be seen
immediately by the symmetry of ay(\). For large driving
forces f>wv, as depicted in the right panels, both functions
are almost parabolic. In this case, the particle hardly “feels”
the potential and the mean velocity becomes (x) = f. Integrat-
ing over the angle ¢, the eigenvalue can then be read off
from the operator (9) as

ay(N) = ($,ONML=N), k(o) =(($,)/4)(o-1)* (12)

with (s,,) = f2. For small forces f<v, (left panels), the par-
ticle remains mostly within one potential minimum and the
mean rate becomes exponentially small in the barrier height
2vy. In this case, the large deviation function again ap-
proaches a parabola for which the symmetry (6) enforces the
same functional form (12) as in the large force regime. The
analytical functions (12) are shown together with the numeri-
cal curves for both small and large forces in Fig. 1.
Deviations from the simple Gaussian behavior show up in
the right panels of Fig. 1 even for surprisingly large forces.
The eigenvalue exhibits a flattening compared to the analyti-
cal curve around its center A=1/2. This feature becomes
more pronounced in the intermediate force regime f=v,
(center panels). For the cosine potential f,=v corresponds to
the critical force f., for which the barrier vanishes and deter-
ministic running solution for ¢(z) set in. In the large devia-
tion function /(o), this flattening corresponds to a “kink,” an
abrupt albeit differentiable change around o=0. For an ex-
planation of the physical origin of this phenomenon note that
all trajectories along which s,, grows more slowly than lin-
early in time are mapped onto o=0. If for a large number of
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FIG. 1. (Color online) Eigenvalue ay(N\) (top row) and large deviation function /(o) (bottom row) for the entropy production versus the
force values f=0.05 (left), 4.05 (center), and 100 (right) for a potential depth vy=>5. The ordinates are in units of the mean production rate
(s,,). For small and large forces, the large deviation function and therefore the eigenvalues are almost parabolic. The corresponding analytical
functions (12) are shown for comparison. The insets in the right panels show the enlarged regions around A=1/2 and o=0, respectively.

trajectories s,, grows sublinearly, i.e., if 0=0 has a high
probability density, then A(0) becomes small. Due to the
fluctuation theorem (6) and Eq. (5), ay(1/2)=h(0) always
holds. Since the slope «(0)=-a/(1)=(s,) at A\=0 and
A=1 is fixed by the mean entropy production rate, for small
ay(1/2), i.e., for small h(0) the concave curve ay(\) must
become approximately flat. In Fig. 2, the ratio (s,,)/h(0) is
plotted together with the force curve f™*(v,) for which
s,/ h(0) becomes maximal for fixed v. This curve indicat-
ing the strongest kink is of the order of the critical force
f.=v,. Hence, it seems that in this force regime the particle
disproportionately often stays at or departs sublinearly from
its initial position.

A similar kink in the large deviation function around
o=0 can be observed for the analytically solvable asymmet-
ric random walk. The asymmetric random walk is described

maximum
critical force -+

ratio

FIG. 2. Ratio (s,,)/h(0) as a two-dimensional contour plot for
the parameters f and v,. The straight line is the critical force
f=vg. The thick line indicates the maximal value, i.e., it indicates
the parameter pair for which the kink at 0=0 in Fig. 1 becomes the
most pronounced.

by two rates k* and k= for a step forward and backward,
respectively. The entropy produced or annihilated in a single
jump is b=In(k*/k~) [21,22]. The random walker jumps n*
steps forward and n~ steps backward. The probability to have
traveled n=n*—n" steps in the forward direction during a
time ¢ is known analytically [23],

p(n,t) = I,(2Nk k1) (k1K) 2e~ K+, (13)

where I,(z) is the modified Bessel function of the first kind
of order n. For the entropy production s,,=bn, the generating
function (3) becomes

g = 2 eMp(n1) = X L (VKT e,

n=—0 n=—0

The sum can be evaluated using [24]

o

E I(2)c" = exp[(z/2)(c + ¢ D)].

n=—o0

We thus obtain an exponentially decaying generating func-
tion g(\,1)=exp[—ay(\)f] with the single eigenvalue

ap(\) = k(1 + ™0 — N — ~(17MD) (14)

obeying the symmetry ap(A\)=ag(1-\), as expected.' The
curvature of the large deviation function (o) at =0 can
now be obtained analytically as

"The large deviation function for the entropy production of the
asymmetric random walk has been obtained previously somewhat
differently in Ref. [7].
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’ 2 +
h//(o) - _ % — %e—(3/2)b(eb _ 1)2 (15)
%

For fixed forward rate k*, this expression diverges for
k~—0 (b— ), i.e., for vanishing backward steps.

In a parameter regime where the dynamics of the driven
colloidal particle is dominated by hopping events from one
potential minimum to another, i.e., for f<<v,, we can map
the driven particle to the discrete asymmetric random walk.
The escape rate k™ can be obtained by specializing the gen-
eral Kramers expression [25] as

k= ;_707)( exp{-2vo[x — (7/2)a + a arcsinal}  (16)

with y= V1-a2 depending on the two parameters v, and the
ratio a= f/v,. The backward rate follows from k*/k =e>™.
In Fig. 3, we compare the large deviation functions of the
continuous dynamics and the mapping to the corresponding
asymmetric random walk for three different parameter sets
vo and f. For small forces (left panel), the function A(o) is a
parabola as it should be in such a linear response regime.
Excellent agreement between the two models is also ob-
tained for deep potentials and larger forces (center panel) for
which i(o) significantly deviates from a parabola but still
shows no kink at =0. Finally, in the right panel for f ap-
proaching the critical force, the mapping to the Kramers
model breaks down as expected. Still, both curves show a
kink in this regime.
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FIG. 3. (Color online) Comparison between the large deviation
functions h(o) of the continuous dynamics and the asymmetric ran-
dom walk (ARW). The parameters are (left) vo=5 and f=0.05,
(center) vy=13 and f=1, and (right) vy=>5 and f=4.05.

In summary, we have determined for a driven colloidal
particle the large deviation function of the entropy produc-
tion by calculating the lowest eigenvalue of the operator (9).
We have used a numerical approach to directly calculate the
eigenvalue without simulating trajectories. This approach
can be extended to more complex systems with more than
one degree of freedom through choosing an appropriate ba-
sis. We have further compared our results for a certain pa-
rameter range with a model where the large deviation func-
tion and the eigenvalue can be obtained analytically. In both
cases, the large deviation function develops a kink, an abrupt
change around zero entropy production. This interesting fea-
ture deserves a more systematic investigation in particular
for interacting systems.
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