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We review the properties of time intervals between the crossings at a level M of a smooth stationary
Gaussian temporal signal. The distribution of these intervals and the persistence are derived within the inde-
pendent interval approximation �IIA�. These results grant access to the distribution of extrema of a general
Gaussian process. Exact results are obtained for the persistence exponents and the crossing interval distribu-
tions, in the limit of large �M�. In addition, the small-time behavior of the interval distributions and the
persistence is calculated analytically, for any M. The IIA is found to reproduce most of these exact results, and
its accuracy is also illustrated by extensive numerical simulations applied to non-Markovian Gaussian pro-
cesses appearing in various physical contexts.
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I. INTRODUCTION

The persistence of a temporal signal X is the probability
that X�t�� remains below �or above� a given level M, for all
times t�� �0, t�. This problem has elicited a large body of
work by mathematicians �1–8�, and physicists, both theorists
�9–21� and experimentalists �22–26�. Persistence properties
have been measured in systems as different as breath figures
�22�, liquid crystals �23�, laser-polarized Xe gas �24�, fluctu-
ating steps on a Si surface �25�, or soap bubbles �26�.

Although the persistence is a very natural and easy quan-
tity to define—in a sense, its physical meaning is easier to
explain to the layman than the meaning of a two-point cor-
relation function—this quantity turns out, in practice, to be
extremely complex to deal with analytically. In fact, exact
results have been obtained in a very limited number of cases,
as far as non-Markovian processes are concerned �4,5,7�.

The mathematical literature has mainly focused on evalu-
ating the persistence

P��t� = Prob�X�t�� � M, t� � �0,t�� , �1�

mostly for Gaussian processes �i.e., processes X�t� for which
the joint distribution of X�t1� , . . . ,X�tn� is Gaussian� and for
large �M�, a regime where efficient bounds or equivalents
have been obtained �1,2,6�. Recently �8�, and for Gaussian
processes only, a numerical method to obtain valuable nu-
merical bounds has been extended to all values of M, al-
though the required numerical effort can become quite con-
siderable for large t.

Physicists have also concentrated their attention on
Gaussian processes �12–15,18,20�, which are often a good or
exact description of actual physical processes. For instance,
the total magnetization in a spin system �16,17�, the density
field of diffusing particles �15�, and the height profile of
certain fluctuating interfaces �19,24,25� are true temporal
Gaussian processes. Two general methods have been devel-
oped, focusing on the case M =0, which applies to many
physical situations. The first one �12–14� is a perturbation of
the considered process around the Markovian Gaussian pro-

cess, which has been extended to small values of �M� �13�.
Within this method, only the large-time asymptotics of P��t�
is known, leading to the definition of the persistence expo-
nent �see below�. The alternative method, using the indepen-
dent interval approximation �IIA� �15,20�, gives very accu-
rate results for “smooth” processes, that is, processes having
a continuous velocity. Initially, the IIA remained restricted to
the case M =0 �15�, but it has been recently generalized to an
arbitrary level M �20�.

The persistence probability is also intimately related to
another important physical quantity: the probability distribu-
tion of the extrema of the considered process, X. For in-
stance, the quantity P��t� can also be viewed as the prob-
ability that the maximum of X in the interval �0, t� has
remained below the level M. Thus, the distribution of the
maximum of X is simply the derivative with respect to M of
P��t�. The distribution of the extrema has been analytically
obtained for the Brownian process �27,28�, but its derivation
remains a formidable task for general non-Markovian Gauss-
ian processes. On this account, the persistence problem is
also related to extreme value statistics �29,30�, which is a
notoriously difficult problem for correlated variables, and
which has recently attracted a lot of attention among physi-
cists �31�.

Hence, the persistence problem has obvious applications
in many other applied and experimental sciences, where one
has to deal with data analysis of complex statistical signals.
For instance, statistical bounds of noisy signals are extremely
useful for image processing �for instance in medical imaging
or astrophysics �32��, in order to obtain cleaner images by
correcting spurious bright or dark pixels �1,8�. In general, it
is important to be able to evaluate the maximum of a corre-
lated temporal or spatial signal originating from experimen-
tal noise. The same question can arise when the signal lives
in a more abstract space. For instance, in the context of ge-
netic cartography, statistical methods to evaluate the maxi-
mum of a complex signal have been exploited to identify
putative quantitative trait loci �33�. Finally, this same prob-
lem arises in econophysics or finance, where the probability
for a generally strongly correlated financial signal to remain
below or above a certain level is clearly of great interest �34�.

In the present paper, we are interested in the persistence
of a non-Markovian Gaussian process, which can be either*clement.sire@irsamc.ups-tlse.fr
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stationary or scale invariant. More specifically, this study fo-
cuses on the properties of the distributions of time intervals
during which the considered process remains below or above
a given level M. We shall see that these distributions are
simply related to the persistence itself, and contain valuable
physical information.

We now summarize the content of the present work, and
mention briefly our main results. In Sec. II, we introduce our
main quantities of interest, and among them �i� the persis-
tence P��t� and P��t� which measure the probability to re-
main above or below the level M up to time t; �ii� the asso-
ciated distributions of � time intervals, P��t�, during which
the process remains above or below the level M. For a gen-
eral level M, we then briefly review the IIA calculation in-
troduced in �20�, which leads to analytical approximate ex-
pressions for the Laplace transform of P��t�, P��t�, and
P��t�. In fact, we present a simpler formulation compared to
�20�, as well as new additional results, which permit a fast
and efficient numerical implementation of the IIA results. In
Sec. III, we first introduce several examples of physically
relevant smooth Gaussian processes, on which the general
results of this paper are numerically tested. Within the IIA,
we then present the calculation of the persistence exponents
���M�, defined, for stationary processes, by P��t�
�exp�−��t�, when t→ +�. We also obtain exact estimates
for ���M�, for large M �0, including exact bounds for P��t�
and �+�M�, and compute the exact asymptotic distributions
P��t�. For large M, P+�t� takes the form of the Wigner dis-
tribution, whereas P−�t� becomes Poissonian. All these re-
sults are correctly reproduced by the IIA, except for the
large-M asymptotics of �+�M�. Finally, in Sec. IV, we obtain
the exact small-time behavior of P��t�, P��t�, and P��t�, for
“very smooth” processes �a term to be defined in the next
section�, and find that the IIA again reproduces these exact
results. For marginally smooth processes, we also obtain ex-
act results, but the IIA is not exact in this case, although its
results remain qualitatively correct and even quantitatively
accurate. Many of these results are also obtained by means of
simple heuristic arguments, helping to understand them on
physical grounds. This study is also illustrated by means of
extensive numerical simulations, revealing a very satisfying
accuracy of the IIA for moderate M, in a regime where, in
contrast to the limit M→ ��, there are no available exact
results for P��t�, P��t�, and P��t�.

II. INDEPENDENT INTERVAL APPROXIMATION

In this section, we introduce our main physical quantities
of interest�interval distributions, persistence, sign autocor-
relation, constrained densities of crossings—and relate their
general properties. We then summarize the IIA calculation
introduced in �20�, and obtain more explicit expressions for
the interval distributions and the persistence probability, in
the case of a Gaussian process. These new results will prove
useful in the next sections more specifically devoted to the
interval distributions.

A. Introductory material and notations

One considers a stationary non-Markovian Gaussian pro-
cess X�t� of zero mean and unit variance. Its distribution at
any time is then

g�X� =
e−X2/2

	2�
, �2�

and we define its cumulative distribution as

G�X� = 

−�

X

g�x�dx = 1 − Ḡ�X� . �3�

Due to its Gaussian nature, such a stationary process is
entirely characterized by its two-point correlation function,

f�t� = �X�t + t��X�t��� . �4�

It is understood that the process starts from t=−�, so that the
distribution of the initial condition X�0� at t=0 is given by
Eq. �2�. In addition, all derivatives of X�0�, when they exists,
are random Gaussian variables of zero average and second
moment

��X�n��0��2� = �− 1�nf �2n��0� , �5�

where the superscript �n� refers to a derivative of order n.
The process is assumed to be smooth, although this con-

straint will be sometimes relaxed in the present paper. By
smooth, we mean that the velocity of the process is a con-
tinuous function of time. Very smooth processes will have a
differentiable velocity. In particular, the most general station-
ary Markovian Gaussian process defined by the equation of
motion

dX

dt
= − �X + 	2�	 �6�

does not belong to this class of smooth processes �	�t� is a
Gaussian 
-correlated white noise�. In practice, a process is
smooth if its correlator f�t� is twice differentiable at t=0, and
is very smooth if the fourth derivative of f�t� exists at t=0.
The process introduced in Eq. �6� has a correlator

f�t� = exp�− ��t�� , �7�

which has a cusp at t=0, and is thus not even differentiable
at t=0.

Throughout this paper, we will be interested in the prob-
ability that the process X remains below or above a certain
threshold M, for all times in the interval �0, t�. In particular,
the smoothness of the process ensures that the M crossings
�i.e., the times for which X�t�=M� are well separated, with a
finite mean separation between them, denoted by �. For the
Markovian process mentioned above, the M crossings are
distributed on a fractal set of dimension 1 /2, and the mean
interval is then �=0. For a smooth process, � can be com-
puted by evaluating the mean number of M crossings during
a time interval of length t,

N�t� =


0

t

�X��t���
„X�t�� − M…dt�� =
t

�
. �8�

The correlation functions between the position X and the
velocity X� is
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�X�t�X��t��� = − f��t − t�� . �9�

By time-reversal symmetry, and since f�t� is twice differen-
tiable at t=0, one has

�X�t�X��t�� = − f��0� = 0, �10�

so that the position and the velocity are uncorrelated at equal
time. The distribution of the velocity X��t� is a Gaussian of
zero mean and second moment

�X�2�t�� = − f��0� = a2, �11�

so that

��X��t��� =	2a2

�
. �12�

Finally, N�t�= ��X��t���g�M�t, which leads to

� =
�

	a2

eM2/2. �13�

We also define the distributions of time intervals between
M crossings, P+�t� and P−�t�, during which the process re-
mains respectively above and below the level M. The means
of these two kinds of intervals are defined by ��

=�0
+�tP��t�dt, and are related to �. Indeed, since there are as

many � as � intervals, since they simply alternate, one has

� =
�+ + �−

2
. �14�

In addition, �+ /�− is also equal to the ratio of the times spent
by the process X above and below the level M, i.e.,

Ḡ�M� /G�M�. Finally, we obtain

�− = 2�G�M�, �+ = 2�Ḡ�M� . �15�

We now introduce the persistence of the process X, de-
fined as the probability that it does not cross the level M
during the time interval �0, t�. More precisely, we define
P��t� and P��t� as the persistence, knowing that the process
started, respectively, above and below the level M. In other
word, P��t� is also the probability that the process remains
above the level M during the considered time interval, and
P��t� is the probability that X remains below the threshold
M. Note that the persistence probes the entire history of the
process, and is therefore an infinite-point correlation func-
tion: for instance P��t� is the probability that the process
remains below the level M between the times 0 and dt, dt
and 2dt , . . ., and t−dt and t. For non-Markovian processes, it
is thus understandable that this quantity is extremely difficult
to treat analytically, and there are very few examples where
P��t� or P��t� can be actually computed �2,7,8�.

P��t� and P��t� are intimately related to the interval dis-
tributions P+�t� and P−�t� by the relations �20�

P��t� = �+
−1


t

+�

�t� − t�P+�t��dt�, �16�

P��t� = �−
−1


t

+�

�t� − t�P−�t��dt�. �17�

Indeed, if X�t� has remained below the level M up to time t,
it belongs to a � interval of duration t�� t, starting at an
initial position uniformly distributed between 0 and t�− t, an
interpretation which leads to Eq. �17�. The above expressions
can also be differentiated twice, giving

P+�t� = �+P�� �t� , �18�

P−�t� = �−P�� �t� . �19�

If M =0 �15�, by symmetry of the process under the transfor-
mation X→−X, one has P��t�= P��t� and P+�t�= P−�t�. In
general, we have the symmetrical relations

P��t,M� = P��t,− M�, P+�t,M� = P−�t,− M� , �20�

so that we will restrict ourselves to the case M 
0.
The knowledge of P��t� and P��t� also provides valuable

information on the distribution of the extrema of the consid-
ered process. The statistical properties of extremal events are
an active field of research among mathematicians �29,30�
and physicists �31�. By definition, P��t� is also the probabil-
ity that the maximum of the process in a time interval of
duration t is less than M, and P��t� is the probability that the
minimum of the process remains bigger than M for all times
in �0, t�. Hence, defining Pmax�M , t� and Pmin�M , t� as the
distribution of the maximum and minimum of the considered
process, one has

Pmin�M,t� = −
�

�M
P��t� , �21�

Pmax�M,t� =
�

�M
P��t� . �22�

Note finally that Eqs. �16�–�19�, �21�, and �22� are in fact
valid for any stationary process, not necessarily Gaussian.

Before presenting an approximate method leading to ana-
lytical expressions for the different quantities introduced
above, we need to define two quantities which will prove
useful in the following. We start with the autocorrelation
function of ��M −X�t�� �� is Heaviside’s function: ��x�=1 if
x�0; ��x�=0 if x�0; ��0�=1 /2�,

A��t� = ���X�t� − M���X�0� − M�� , �23�

A��t� = ���M − X�t����M − X�0��� = 2G�M� − 1 + A��t� ,

�24�

where the last relation is obtained by using ��x�=1−��−x�.
In addition, since the process is invariant under the transfor-
mation X→−X, one also has

A��M,t� = A��− M,t� . �25�

For a Gaussian process, these quantities can be explicitly
expressed in terms of the correlation function f�t� �35�,
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A��t� = 

M

+�

g�x�Ḡ�M − xf�t�
	1 − f2�t�

�dx , �26�

A��t� = 

−�

M

g�x�G�M − xf�t�
	1 − f2�t�

�dx . �27�

For M =0, these integrals can be explicitly performed �15�,
giving

A��t� = A��t� =
1

4
+

1

2�
arcsin�f�t�� . �28�

Finally, the time derivative of A��t� and A��t� can be simply
written as

A�� �t� = A�� �t� =
1

2�

f��t�
	1 − f2�t�

exp�−
M2

1 + f�t�� . �29�

We now introduce N��t� and N��t�, the mean number of
M crossings in the time interval �0, t�, knowing that the pro-
cess started from X�0��M and X�0��M, respectively.
These quantities satisfy the sum rule

G�M�N��t� + Ḡ�M�N��t� = N�t� =
t

�
, �30�

which expresses the fact that an M crossing is crossed from
either above or below M. Again, it is clear that

N��M,t� = N��− M,t� . �31�

In addition, for large time t,

N��t� � N��t� � N�t� =
t

�
, t → + � , �32�

since the initial position of X�t� becomes irrelevant when t
→ +�. On the other hand, for short times,

N��t� �
t

�+
, N��t� �

t

�−
, t → 0, �33�

which expresses the fact that the probability per unit time to
meet the first M crossing is, respectively, �+

−1 and �−
−1, for �

and � intervals. Note that both asymptotics of Eqs. �32� and
�33� are consistent with the sum rule of Eq. �30�. For a
Gaussian process, N��t� and N��t� can be calculated after
introducing the correlation matrix of the Gaussian vector
(X�t� ,X�0� ,X��t�), which reads

C�t� = � 1 f�t� 0

f�t� 1 f��t�
0 f��t� − f��0�

� . �34�

For instance, in the same spirit as Eq. �8�, one has

N��t� = G−1�M�

0

t

��X��t�����dt�, �35�

where ��X��t���� is the average of the velocity modulus,
knowing that X�t�=M, and averaged over X�0��M:

��X��t���� = 

−�

M

dx0

−�

+�

dv
�v�e−U†C−1U/2

�2��3/2	det C
, �36�

where U= �M ,x0 ,v�. N��t� is similarly defined as

N��t� = Ḡ−1�M�

0

t

��X��t�����dt�, �37�

with

��X��t���� = 

M

+�

dx0

−�

+�

dv
�v�e−U†C−1U/2

�2��3/2	det C
�38�

=�−1 − ��X��t����. �39�

��X��t���� can be written more explicitly,

���X��t���� = G�b� + a�1

2
− G�ab��e−�M2/2��1−f�/�1+f�,

�40�

with

a�t� =
�f��t��

	a2�1 − f2�t��
, �41�

b�t� = M
1 − f�t�

	1 − f2�t� − f�2�t�/a2

, �42�

where a2=−f��0�. Using Eq. �39�, one finds a similar expres-
sion for ��X��t����,

���X��t���� = Ḡ�b� − a�1

2
− G�ab��e−�M2/2��1−f�/�1+f�.

�43�

When t→ +�, a�t�→0 and b�t�→M, so that �36�

��X��t���� �
G�M�

�
, ��X��t���� �

Ḡ�M�
�

. �44�

Using Eqs. �35� and �37�, one recovers the asymptotics of
Eq. �32�. On the other hand, when t→0, we have a�t�→1
and f�t�→1, which leads to

��X��t���� � ��X��t���� �
1

2�
, �45�

and we recover Eq. �33�.

B. Derivation of the IIA distributions

In the previous section, we introduced the so far unknown
interval distributions P+�t� and P−�t� which are intimately
related to the persistence probabilities P��t� and P��t�
�through Eqs. �16�–�19�� and the distribution of extrema of
the process �see Eqs. �21� and �22��. On the other hand, for a
Gaussian process, we have computed explicitly the autocor-
relation A��t� �and A��t�� and the constrained number of M
crossings N��t� �and N��t�� as a function of the correlator
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f�t� �see Eqs. �29�, �40�, and �43��. We will now try to relate
the two unknown interval distributions to these two known
quantities.

Let us define P��N , t� and P��N , t� as the probabilities
that there are exactly NM crossings in the interval �0, t�,
starting, respectively, from X�0��M and X�0��M. By defi-
nition of A��t�, one has

A��t� = G�M��
n=0

+�

P��2n,t� , �46�

A��t� = Ḡ�M��
n=0

+�

P��2n,t� , �47�

since X�t� is on the same side of M as X�0� if and only if the
number of M crossings in the interval �0, t� is even. N��t�
and N��t� can also be simply written as

N��t� = �
n=0

+�

nP��n,t� , �48�

N��t� = �
n=0

+�

nP��n,t� . �49�

Note that, by definition, one has P��0, t�= P��t� and
P��0, t�= P��t�.

Our central approximation now consists in assuming that
the interval lengths between M crossings are uncorrelated
�15,20�. This will lead to closed relation between
(P��N , t� , P��N , t�) and P��t�. Using Eqs. �46�–�49�, we will
then obtain an explicit expression of P��t� as a function of
A��t� �or A��t�� and N��t� �or N��t��.

Let us consider an odd value of N=2n−1�n
1�. Using
the IIA, we obtain

P��2n − 1,t� = �−
−1


0

t

dt1Q−�t1�

t1

t

dt2P+�t2 − t1�

�

t2

t

dt3P−�t3 − t2� � ¯

� 

t2n−3

t

dt2n−2P+�t2n−2 − t2n−3�

� 

t2n−2

t

dt2n−1P−�t2n−1 − t2n−2�Q+�t − t2n−1� ,

�50�

where

Q��t� = 

t

+�

P��t��dt�. �51�

is the probability that a � interval is larger than t. Equation
�50� expresses the fact that to find 2n−1 crossings between 0
and t starting from X�0��M, we should find a first crossing
at t1 �and hence an initial—interval of length bigger than t1,
with probability �−

−1Q−�t1��, followed by a � interval of

length t2− t1, and so on, up to a last crossing time t2n−1,
associated with a � interval of length t2n−1− t2n−2. Finally,
there should not be any further crossing between t2n−1 and t;
hence the last factor Q+�t− t2n−1�. All these events have been
treated as independent, so that there probabilities simply fac-
tor; this is the core assumption of the IIA. For even N
=2n �n
1�, one obtains a similar expression,

P��2n,t� = �−
−1


0

t

dt1Q−�t1�

t1

t

dt2P+�t2 − t1�

t2

t

dt3P−�t3 − t2�

� ¯ � 

t2n−2

t

dt2n−1P−�t2n−1 − t2n−2�

� 

t2n−1

t

dt2nP+�t2n − t2n−1�Q−�t − t2n� . �52�

For a given function of time F�t�, one defines its Laplace

transform F̂�s�=�0
+�F�t�e−stdt. The convolution products in

Eqs. �50� and �52� take a much simpler form in the Laplace
variable s:

P̂��2n − 1,s� = �−
−1Q̂+Q̂−�P̂+P̂−�n−1, �53�

P̂��2n,s� = �−
−1Q̂−

2P+�P̂+P̂−�n−1, �54�

where

Q̂��s� =
1 − P̂��s�

s
�55�

is the Laplace transform of Eq. �51�. If we express the con-
servation of probability,

P��t� + �
N=1

+�

P��N,t� = 1, �56�

after summing simple geometric series, we obtain

P̂��s� =
1

s
−

1 − P̂−�s�
�−s2 . �57�

This relation is nothing but the Laplace transform of Eq.
�17�. It is certainly satisfying, and also reassuring, that the
IIA reproduces this exact relation, as well as the equivalent
relation between P��t� and P+�t� of Eq. �16�. Of course,
P��2n−1, t� and P��2n , t� satisfy similar equations as Eqs.
�50�, �52�–�54�, �56�, and �57�, obtained by exchanging the
indices +↔− and �↔�.

Using Eqs. �46�–�49�, we can now write explicitly the
Laplace transform of the known quantities A��t� and N��t�
in terms of the Laplace transform of P��t�:

N̂��s� =
�1 + P̂+��1 − P̂−�

�−s2�1 − P̂+P̂−�
, �58�
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Â��s� = G�M��1

s
−

1 − P̂+

1 + P̂+

N̂��s�� . �59�

Again, A��t� and N��t� are given by similar expressions,

after the substitution +↔− and �↔�, and G�M�↔ Ḡ�M�.
Using P̂�� �0�=−�0

+�tP��t�dt=−�� and Eq. �15�, one ob-
tains the following estimates when s→0:

N̂��s� �
1

�s2 , Â��s� �
G2�M�

s
. �60�

The first expression in Eq. �60� is equivalent to the general
result of Eq. �32�, whereas the second relation expresses that,
for large t, A��t��G2�M�. For large s,

N̂��s� �
1

�−s2 , Â��s� �
G�M�

s
, �61�

which corresponds to the small-time behavior of Eq. �33� for
N��t�, whereas the second relation is equivalent to A��0�
=G�M�.

Finally, writing

F̂��s� =
G�M� − sÂ��s�

G�M�sN̂��s�
, �62�

and using Eqs. �58� and �59�, the interval distributions are
given by

P̂+�s� =
1 − F̂��s�

1 + F̂��s�
, �63�

P̂−�s� =
2 − �−s2N̂��s��1 + F̂��s��

2 − �−s2N̂��s��1 − F̂��s��
. �64�

Inserting these expressions of P̂��s� in Eq. �57�, one obtains

P̂��s� �and P̂��s�� from the sole knowledge of A��t� and
N��t� �or their Laplace transforms�, which are known explic-

itly for a Gaussian process. Alternative expressions for P̂� in
terms of the Laplace transform of A��t� and N��t� are
readily obtained after the substitution +↔− and �↔�, and

G�M�↔ Ḡ�M� in Eqs. �60�–�64�. Finally, due to the symme-
try of the process under the transformation X→−X, the fol-
lowing symmetric relations hold:

P��− M,t� = P��M,t�, P��− M,t� = P��M,t� . �65�

Using Eq. �29�, we find that the dimensionless function
W�t�,

W�t� = − �A�� �t� = − �A�� �t�

= −
�

2�

f��t�
	1 − f2�t�

exp�−
M2

1 + f�t�� �66�

=
a

2
e−�M2/2���1−f�/�1+f��, �67�

has a simpler analytical form than A��t� or A��t�. Similarly,
we define the dimensionless auxiliary function V�t� by

�Ḡ�M�N�� �t� = ���X��t���� = Ḡ�M� + V�t� , �68�

�G�M�N�� �t� = ���X��t���� = G�M� − V�t� . �69�

Using Eq. �40�, we find that V�t� takes an explicit form in
contrast to N��t� or N��t�:

V�t� = G�M� − G�b� + a�G�ab� −
1

2
�e−�M2/2��1−f�/�1+f�,

�70�

where a�t� and b�t� are simple functionals of the correlator
f�t�, which have been defined in Eqs. �41� and �42�. We give
below the behavior of W�t� and V�t�, in the limit t→ +�,

V�t� �
M

	2�
e−M2/2f�t� , �71�

W�t� � −
1

2	a2

e−M2/2f��t� , �72�

while one has V�0�=G�M�−1 /2 and W�0�=1 /2.
The Laplace transform of W�t� and V�t� can be explicitly

written as

�−1Ŵ�s� = G�M� − sÂ��s� = Ḡ�M� − sÂ��s� , �73�

and

�Ḡ�M�sN̂��s� =
Ḡ�M�

s
+ V̂�s� , �74�

�G�M�sN̂��s� =
G�M�

s
− V̂�s� . �75�

In terms of Ŵ�s� and V̂�s�, the interval distributions take the
symmetric form

P̂+�s� =
G�M� − sV̂�s� − sŴ�s�

G�M� − sV̂�s� + sŴ�s�
, �76�

P̂−�s� =
Ḡ�M� + sV̂�s� − sŴ�s�

Ḡ�M� + sV̂�s� + sŴ�s�
. �77�

In practice, the explicit forms of W�t� and V�t� obtained in
Eqs. �67� and �70� permit a fast and efficient numerical
implementation of the IIA.

Note that for a smooth non-Gaussian process, all the
above results of the IIA remain unaltered, G�M� now being
the cumulative sum of the associated distribution of X, and �
being given by the general form �20�

�−1 = g�M���X��t��� , �78�

whereas �� are still given by Eq. �15�. Applying the IIA
results to a general non-Gaussian process requires only the
prior knowledge of A��t� and N��t� �or A��t� and N��t��. In
general, these time-dependent functions should be given a
priori, analytically, or extracted from numerical or experi-
mental data.
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Finally, let us briefly address the validity of the IIA. First,
crossing intervals are strictly never independent, except in
the particular case of a Markovian process �see Eq. �6��, for
which the IIA does not apply, due to the singular nature of
this process. The IIA is also an uncontrolled approximation
which seems almost impossible to improve systematically,
by introducing interval correlations. However, in practice,
the IIA is found numerically to be a surprisingly good ap-
proximation, especially for “very smooth” processes for
which f�t� is analytic �15,20� �see the counterexample of
f3�t� in Eq. �90� below�. We will even show in the next
sections that some of the predictions of the IIA are in fact
exact for smooth Gaussian processes.

III. PERSISTENCE EXPONENTS

A. General properties and physical applications

In many contexts, one is interested in the large-time be-
havior of the persistence probabilities P��t� and P��t�. It has
been rigorously established that, if �f�t���C / t, for suffi-
ciently large time t �C is some arbitrary constant�, then the
persistence decays exponentially �6�. Hence, we define the
two persistence exponents, by the asymptotics

P��t� � e−�−t, P��t� � e−�+t, �79�

valid when t→ +�. Due to the symmetry relation of Eq.
�65�, we have

���− M� = ���M� . �80�

Hence, from now on, we consider only the case M 
0. From
Eqs. �16�–�19�, we find that the interval distributions P��t�
decays in the same way as their associated persistence, for
t→ +�.

The name persistence “exponent” �instead of “decay
rate”� arises from its numerous applications in out-of-
equilibrium physics �9–26�. Indeed, in many cases, the nor-
malized two-times correlation function of the relevant physi-
cal variable Z�T� obeys dynamical scaling,

�Z�T�Z�T���
	�Z2�T���Z2�T��

= F�T/T�� , �81�

where T is the physical time, and F is the scaling correlation
function. Defining

t = ln T, X�t� =
Z�T�

	�Z2�T��
, �82�

the resulting process X�t� becomes stationary in the new ef-
fective time t �12,13�, with correlator

f�t� = F�exp t� . �83�

Hence, the persistence P�
X �M , t� for the process X�t� is equal

to the probability P�
Z �M ,T� that the process Z�T� remains

above the level M	�Z2�T�� up to time T=expt �12,18�. Since
P�

X �M , t� decays exponentially, the persistence of the process
Z�T� decays as a power law, hence the name persistence
“exponent,”

P�
Z �M,T� = P�

X �M,t� � e−�+t � T−�+. �84�

Similarly, one has

P�
Z �M,T� = P�

X �M,t� � e−�−t � T−�−. �85�

In particular, for M =0, the persistences of the processes X
and Z are both equal to the probability that the associated
process does not change sign up to the time t=ln T.

In order to illustrate the dynamical scaling of the cor-
relator resulting from Eq. �81�, let us give three physical
examples. In the next sections, our analytical results will be
tested on the correlators f1�t�, f2�t�, and f3�t�, introduced
below in Eqs. �87�–�90�.

�1� Consider a d-dimensional ferromagnetic system �for
instance, modeled by the Ising model� quenched from its
equilibrium state above the critical temperature Tc, down to
Tc �critical quench� or below Tc �subcritical quench�. As time
T proceeds, correlated domains of linear size L�T��T1/z

grow, and this coarsening dynamics leads to dynamical scal-
ing for the total magnetization, of the form Eq. �81�. Initially
the spins have only short-range spatial correlations, and as
the domains grow, the correlation length remains finite, of
order L�T�. If L�T� remains much smaller than the linear size
of the system, the law of large numbers ensures that the
magnetization Z�T�, which is the sum of the individual spins,
is a true Gaussian variable. For M =0, the persistence is
equivalent to the probability that the magnetization never
changes sign from the time of the quench �T=0�, up to time
T. For a critical quench, the persistence decays as a power
law with a persistence exponent �c, which is a universal criti-
cal exponent of spin systems, independent of the familiar
ones �� ,	 ,z , . . . �, due to the non-Markovian nature of the
magnetization �14,16�. For a subcritical quench, the magne-
tization persistence also decays as a power law with a uni-
versal d-dependent persistence exponent controlled by a
zero-temperature fixed point �17�, and the dynamical expo-
nent is z=2.

�2� If the field Z�x ,T� evolves according to the
d-dimensional diffusion equation �or more sophisticated in-
terface model equations �19��

�Z

�T
= �x

2Z , �86�

starting from an initial random configuration of zero mean,
the process becomes Gaussian for large times, another con-
sequence of the law of large numbers. For any fixed x, the
normalized two-time correlator of Z�x ,T� obeys dynamical
scaling, and the probability that Z�x ,T� does not change sign
decays as a power law with a d-dependent exponent com-
puted approximately in �15�. The associated stationary cor-
relator in the variable t=ln T is

f1�t� =
1

coshd/2�t/2�
. �87�

Moreover, in d=1 and at a fixed time T, the process Z�x ,T� is
a stationary Gaussian process in the spatial variable x. The
variable X�x�=Z�x ,T� /	�Z2�x ,T��x �where �·�x denotes the
average over the spatial variable x� has a Gaussian correlator.
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Hence, we shall later illustrate our results using the correlator

f2�t� = e−t2/2. �88�

�3� The random acceleration process �7� is defined by its
equation of motion

d2Z

dT2 = 	�T� , �89�

where 	�T� is a 
-correlated white noise. Again, its two-time
correlator obeys dynamical scaling, and the associated sta-
tionary correlator is �16�

f3�t� =
3

2
e−�t�/2 −

1

2
e−3�t�/2. �90�

For M =0, this process is a rare case for which the exact
value of the persistence exponent is known exactly �7�,

���M = 0� =
1

4
. �91�

Note that for the random acceleration process, the correlator
f3�t� is not analytic. Although, twice differentiable at t=0, its
third derivative is not defined at t=0. For this process, it is
not surprising to find that the IIA is not as precise as for
smoother processes �15,20�. Indeed, one finds the IIA result
���M =0�=0.2647. . ., off by 6% compared to Eq. �91�, a
relative error much bigger than usually observed for M =0
persistence exponents obtained by means of the IIA.

B. Persistence exponents within the IIA

Within the IIA, the persistence exponents �� are obtained
as the first pole on the negative real axis of the Laplace
transform of the associated interval distribution P��t�, since
the Laplace transform of exp�−��t� is 1 / �s+���. Using Eqs.
�63� and �64�, we find that �� satisfies

G�M��1 + �−N̂��− �−�� + �−Â��− �−� =
1

��−
, �92�

G�M��1 − �+N̂��− �+�� + �+Â��− �+� = 0, �93�

or the equivalent relations in terms of Â� and N̂�,

Ḡ�M��1 + �+N̂��− �+�� + �+Â��− �+� =
1

��+
, �94�

Ḡ�M��1 − �−N̂��− �−�� + �−Â��− �−� = 0. �95�

In terms of the auxiliary functions V�t� and W�t� introduced
in Eqs. �66�, �68�, and �69�, the defining equations of �� take
a simpler form

Ŵ�− �+� − V̂�− �+� =
G�M�

�+
, �96�

Ŵ�− �−� + V̂�− �−� =
Ḡ�M�

�−
. �97�

The residues R� associated with ��, and defined by

P��t� � R�e−��t, �98�

can easily be extracted from Eqs. �76� and �77�, using the
identity

R�
−1 =

dP̂�
−1

ds
�s = − ��� . �99�

Before addressing the limit M→ �� in the next section,
we present some numerical results for moderate M, and for
the processes associated with the correlators f1�t�, f2�t�, and
f3�t�, introduced in Eqs. �87�–�90�. We recall the symmetry
relation ���−M�=���M�, so that we restrict ourselves to the
case M 
0. In order to compare the values of �� for the
different correlators, it is instructive to multiply the persis-
tence exponents �of dimension �t�−1� by the time scale �0,
which is the mean crossing time interval for M =0,

�0 = ��M = 0� =
�

	a2

. �100�

We have performed extensive numerical simulations of
the processes associated with the correlators f1�t�, f2�t�, and
f3�t�, and measured the persistence and the crossing interval
distributions, and in particular, the persistence exponents. Let
us briefly describe how to generate long trajectories of a
stationary Gaussian process solely characterized by its two-
time correlator �12�. In real time, the most general form of
such a process X reads

X�t� = 

−�

t

J�t − t��	�t��dt�, �101�

where 	�t� is a 
-correlated Gaussian white noise. The
Gaussian nature of 	�t� and the linear form of Eq. �101�
ensure that X�t� is a Gaussian process. Moreover, the convo-
lution product of the noise 	�t�� with the kernel J�t− t�� �in-
stead of a general kernel J�t , t��� ensures stationarity. Taking
the Fourier transform of Eq. �101�, we obtain

X̃��� = J̃���	̃��� , �102�

where X̃���=�−�
+�X�t�exp�−i�t�dt, and the noise Fourier

transform satisfies �	̃���	̃�����=2�
��+���. The Fourier
transform of the correlator of X is hence

�X̃���X̃�����
2�

= f̃���
�� + ��� = �J̃����2
�� + ��� ,

�103�

which relates the kernel J�t� to the correlation function f�t�,
through their Fourier transform, f̃���= �J̃����2. Note that a
necessary condition for f�t� to be the correlator of a Gaussian

process is that its Fourier transform f̃��� remains positive for
all real frequencies �. Finally, a trajectory of X is obtained
after sampling

X̃��� = 	 f̃���	̃��� �104�

on a frequency mesh, and performing an inverse fast Fourier

transform of the obtained X̃���. The Fourier transform of the
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correlators f1�t�, f2�t�, and f3�t� having simple explicit ex-
pressions, this procedure for obtaining long trajectories is
extremely efficient. Otherwise, one has to tabulate the Fou-
rier transform of f�t�, before simulating Eq. �104�.

In practice, our numerical results are obtained after aver-
aging 106–107 trajectories of length T=1024�0 �sometimes
2048�0� and with a frequency mesh of typically 10242

points spaced by ��=T −1. Since for a general
M, �=�0 exp�M2 /2�, we obtain typically �109–1010�
�exp�−M2 /2� M crossings, a number that decays rapidly for
large M. Despite the loss of statistics for large positive M,
we find that �−�M� can still be measured with great accuracy,
since P−�t� and P��t� becomes purely Poissonian in this limit
�see next section�. On the other hand, the error bars for
�+�M� increase rapidly with M, due to the occurrence of
fewer M crossings. In addition, the determination of �+�M� is
also plagued by the fact that the exponential asymptotics of
P+�t� and P��t� develops only for increasingly large t, as M
increases, which may produce uncontrolled systematic errors
in the numerical estimates of �+�M� �see the next section�.

Table I compares �0�−�M� for the correlators f1�t� �for d
=2� and f2�t�, as obtained from numerical simulations and
from the IIA calculation of Eq. �97�. The agreement between
the theory and the simulations is excellent for both correla-
tors, and is even improving as M increases. In fact, we will
show in the next section that the IIA becomes exact for
�−�M� when M→�, and we will obtain an analytic
asymptotic expression for �−�M�. Our theoretical and nu-
merical results are also consistent with the numerical bounds
computed in �8� for the correlator f1�t�, for M =1 and M =2:

0.3681 � �0�−,1�M = 1� � 0.4298, �105�

0.0666 � �0�−,1�M = 2� � 0.0748. �106�

It is also clear that the IIA provides much better estimates of
the persistence exponent �−�M� than these bounds, which
are, however, exact, although they require a much bigger
numerical effort than the IIA �8�.

Table II compares �0�+�M� for the correlators f1�t� and
f2�t�, as obtained from numerical simulations and from the
IIA calculation of Eq. �96�. The agreement between the
theory and the simulations is satisfying, although we will
show that the IIA ultimately fails in predicting the exact

asymptotics of �+�M� as M→�, although the limiting form
of P+�t� will be given exactly by the IIA for t not too large.

For the process associated with the correlator f3�t� ��0
=2� /	3�, �0��

IIA�M =0�=0.9602. . ., compared to the exact
value �0���M =0�=� /2	3=0.9069. . .. obtained in �7�. The
agreement between the IIA and numerical estimates of �−�M�
greatly improves as M increases, as observed for the two
other correlators in Table I, whereas �+�M� is only fairly
reproduced for large M �as already observed in Table II�,
suggesting that the IIA somewhat fails to reproduces �+�M�
in the limit M→ +�, as will be confirmed in the next sec-
tion. Finally, we note that for the three processes considered
here �and all other smooth Gaussian processes known to the
author�, one has ���M =0���0

−1, with a proportionality con-
stant close to unity.

C. Exact results in the limit M\ ±�

In the limit M→ +�, and using

Ḡ�M� �
e−M2/2

	2�M
�107�

and Eqs. �13� and �15�, the means of the � intervals are

�− �
2�

	a2

eM2/2 � 2� , �108�

�+ �	2�

a2
M−1. �109�

Hence, as expected physically, the typical length of the �
intervals is becoming increasingly large as M→ +� �of order
2��, whereas the typical length of the � is going slowly to
zero.

1. Distribution of � intervals and �−

For large M, and using Eqs. �67� and �70�, we obtain that

V�t� = W�t��1 + O�e−M2/2�� . �110�

Moreover, in this limit both functions can be approximated
by developing f�t� up to second order in t,

TABLE I. Values of �0�−�M� as obtained from the IIA calcula-
tion �� −

IIA� and simulations �� −
sim�, for different values of M, calcu-

lated for the processes associated with the correlators f1�t� ��0

=2�� and f2�t� ��0=��, introduced in Eqs. �87� and �88�.

M �0� −,1
IIA �0� −,1

sim �0� −,2
IIA �0� −,2

sim

0 1.1700 1.178�2� 1.2928 1.330�5�
1 /2 0.6949 0.7008�7� 0.7587 0.7723�8�

1 0.3715 0.3743�6� 0.3994 0.4032�8�
3 /2 0.1734 0.1750�4� 0.1831 0.1850�4�

2 6.813�10−2 6.834�6��10−2 7.065�10−2 7.116�7��10−2

5 /2 2.177�10−2 2.180�3��10−2 2.224�10−2 2.225�3��10−2

3 5.509�10−3 5.510�2��10−3 5.568�10−3 5.568�2��10−3

TABLE II. Values of �0�+�M� as obtained from the IIA calcula-
tion �� +

IIA� and simulations �� +
sim�, for different values of M, calcu-

lated for the processes associated with the correlators f1�t� ��0

=2�� and f2�t� ��0=��, introduced in Eqs. �87� and �88�.

M �0� +,1
IIA �0� +,1

sim �0� +,2
IIA �0� +,2

sim

0 1.1700 1.178�2� 1.2928 1.330�5�
1 /2 1.8164 1.865�6� 2.0232 2.125�7�

1 2.6475 2.67�2� 2.9606 3.11�2�
3 /2 3.6677 3.74�3� 4.1031 4.36�4�

2 4.8926 5.06�5� 5.4338 5.90�7�
5 /2 6.2651 6.6�1� 6.9152 7.6�2�
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V�t� � W�t� �
1

2
e−M2a2t2/8 =

1

2
e−��/4��t/�+�2

. �111�

The constraint that

�−1

0

+�

W�t�dt = A��0� − A��+ �� �112�

=A��0� − A��+ �� �113�

=G�M�Ḡ�M� �114�

�
e−M2/2

	2�M
�115�

is consistently recovered up to leading order, after integrating
Eq. �111�. Moreover, the explicit form of Eq. �111� implies
that the Laplace transform of W�t� can be approximated by
its value at s=0, provided that

�s� � �+
−1, M � 1. �116�

Finally, using Eqs. �15� and �77�, we find that the Laplace
transform of P−�t� is given by

P̂−�s� =
1

1 + s�−
, �117�

under the conditions of Eq. �116�. Hence, we conclude that
for large M one has

�−�M� �
1

�−
�

1

2�
, �118�

and, taking the inverse Laplace transform of Eq. �117�, that
the distribution of � intervals is essentially Poissonian,

P−�t� = �−
−1e−t/�−, P��t� = e−t/�−, �119�

except in a narrow region of time 0� t��+��−, correspond-
ing to the conjugate time domain of the condition of Eq.
�116�. The behavior of P−�t� and P��t�, for t��+, will be
obtained exactly in Sec. IV. The fact that the distribution of
the long � intervals is becoming Poissonian can be physi-
cally interpreted. Indeed, since �−→ +� when M→ +�, the
process X can be considered to be Markovian at this time
scale. In addition, this also shows that for the � intervals the
IIA is in fact exact. In the next section, in the process of
finding exact bounds for �+�M�, we will prove the exact
result, valid in the opposite M→0 limit,

�−�M� = �0 −
�X�t��X�0

2 f̂�0�
M + O�M2� , �120�

where �0=�−�M =0�, �X�t��X�0 is the average of X over all

trajectories for which X�t��0 for all times, and f̂�0�
=�0

+�f�t�dt.
In Fig. 1, we plot �−�M� obtained by simulating the pro-

cess associated with the correlator f2�t� of Eq. �88�. We also
plot the IIA result of Eq. �97�, which is in perfect agreement
with numerical simulations. In addition, we illustrate the

rapid convergence of �−�M� to the exact asymptotics of Eq.
�118�. In Fig. 2, we plot P−�t� for M =3, which has already
perfectly converged to its asymptotic Poissonian form of Eq.
�119�.

2. Distribution of � intervals and �+

For M→ +�, and using the asymptotics Eq. �110� and the

IIA expression for P̂+�s� of Eq. �76�, we obtain

P̂+�s� = 1 − 2sŴ�s� . �121�

In real time, Eq. �121� reads

0 1 2 3
M

10
-2

10
-1

10
0

τ 0
θ -(M

)

FIG. 1. �Color online� �−�M� �in unit of �0
−1�, for the non-

Markovian process associated with the correlator f2�t� of Eq. �88�.
Symbols are the results of numerical simulations �see text and Eq.
�104��, while the full line is the result of the IIA approximation, Eq.
�97�. Finally, the dashed line corresponds to the exact asymptotic
result, �−�M���−

−1. Some values of �−�M� are also reported in
Table I.
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FIG. 2. �Color online� Distribution of �=� intervals, P��t�, for
M =3, as a function of t /�� �full lines for M =3, �+

�0.763 50a2
−1/2, and �−�564.83a2

−1/2�, for the process associated
with the correlator f2�t� of Eq. �88�. The distribution of � intervals
has converged to the Poissonian form of Eq. �119� �dashed line�.
Note that the linear regime of P−�t� predicted in Eqs. �163� and
�168�, for t��+��−, cannot be seen at this scale. The distribution
of � intervals is well described by the Wigner distribution of Eq.
�122� �dashed line�, but ultimately decays exponentially for t
�a2

−1/2 �inset: dotted line of slope �+�+�2.35�.
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P+�t� = − 2�A�� �t� =
�

2

t

�+
2 e−��/4��t/�+�2

, �122�

which is valid for t�a2
−1/2. Using Eqs. �23� and �108�, the

relation P+�t�=−2�A�� �t� can be explicitly written as

P+�t� = − �−�X��t�X��0�
„X�t� − M…
„X�0� − M…� .

�123�

When the process X crosses the level M for the first time at
time t, after the preceding crossing at time 0, one has
−X��t�X��0��0. Equation �123� states that, for small times
t�a2

−1/2, the probability of having a � interval of length t is
of the same order as the probability of having an M crossing
at time t, knowing that there is such a crossing at time 0,
which follows a � interval �hence the factor �−�. In other
words, for short time t, a crossing at time t is very often the
first crossing following the crossing at time 0.

The form of P+�t� found in Eq. �122� can be obtained
from a simple physical argument, which will be our basis for
obtaining exact results for the small-t behavior of P��t� in
Sec. IV. Indeed, let us consider a � interval of length t
�a2

−1/2. For 0� t�� t, one can expand the smooth process
X�t�� in power of t� up to second order, starting from X�0�
=M,

X�t�� = M + X��0�t� +
X��0�

2
t�2 + ¯ , �124�

remembering that X��t� is a Gaussian variable of second mo-
ment �X�2�t��=a2=−f��0�, the probability distribution of the
velocity v=X��0��0, at an M crossing following a � inter-
val, is given by

��v� =
��X��0��
„X�0� − M…
„X��0� − v…�X��0��0

��X��0��
„X�0� − M…�X��0��0
.

�125�

Since X�0� and X��0� are uncorrelated �as �X��0�X�0��
= f��0�=0�, these Gaussian averages are easily performed,
leading to the exact result

��v� =
v
a2

e−v2/2a2. �126�

In addition, the distribution of X��0�, conditioned to the fact
that X�0�=M, is a Gaussian of mean

�X��0��X�0�=M = − Ma2 �127�

and mean square deviation f IV�0�− f �2�0�, which is of order
a2

2, and is independent of M. Hence, for large M, one can
replace X��0� by its average, and the interval length t can be
obtained by finding the first M crossing of the trajectory of
Eq. �124�,

tv =
2v

Ma2
. �128�

Hence, for small time t, one has

P+�t� = 

0

+�

��v�
�t − tv�dv . �129�

Finally, using Eq. �126� and the asymptotic expression for �+
of Eq. �108�, we obtain the distribution of � intervals given
by Eq. �122�.

Thus we find that the distribution of � intervals is given
by the Wigner distribution for t�a2

−1/2, a result also obtained
in �3�. However, note that the ratio t /�+ can be arbitrarily
large in the limit M→ +�, or �+→0. The probability distri-
bution of Eq. �122� is correctly normalized to unity and has a
mean equal to �+. Of course, for t�a2

−1/2, the actual distribu-
tion of � intervals should decay exponentially �6�, with a
rate �+�M�. Matching the two asymptotics at t�a2

−1/2, we
find that, up to a so far unknown multiplicative constant,

�+�M� � 	a2M2 �130�

for large M. In addition, the above argument shows that the
total probability contained in the exponential tail of P+�t�
vanishes extremely rapidly as M→ +�, and is of order
exp�−KM2�, where K is a constant of order unity. Moreover,
the result of Eq. �122� implies that the persistence is given by

P��t� = e−��/4��t/�+�2
�131�

for t�a2
−1/2, and decays exponentially for t�a2

−1/2.
In the limit M→ +�, the determination of �+�M� seems to

be beyond the IIA. Indeed, let us assume for simplicity that
f�t� decays faster than any exponential, f�t��exp�−ct��, with
��1. Anticipating that �+�M� is large, we need to evaluate

P̂+�s� for large negative s. In this limit, Eqs. �71� and �72�
lead to

V̂�s� �
M

	2�
e−M2/2 f̂�s� , �132�

Ŵ�s� � −
1

2	a2

e−M2/2s f̂�s� . �133�

If 1���2, and using the IIA expression for P̂+�s� of Eq.
�76�, we obtain

P̂+�s� �
2	2a2/�M

s + 	2a2/�M
, �134�

which leads to

� +
IIA�M� �	2a2

�
M , �135�

which grossly underestimate the divergence of �+�M� when
M→�. If f�t��exp�−ct2� decays as a Gaussian ��=2�, Eq.
�76� leads to

� +
IIA�M� � 	cM , �136�

which, again, behaves linearly with M. Finally, if ��2, we
find that

� +
IIA�M� � M2��−1�/�, �137�

up to a computable multiplicative constant.
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Let us now present exact bounds for P��t� which will
lead to an exact asymptotics for �+�M�, fully consistent with
Eq. �130�. We discretize time ti= i�t, with �t= t /n, and de-
fine xi=X�ti�. By definition,

P��t,M� = 

M

+� �
i=1

n

dxi

�2��n/2	det C
e−S��xi��, �138�

where the Gaussian “action” has the quadratic form

S��xi�� =
1

2�
i,j

Dijxixj , �139�

and where the matrix D is the inverse of the correlation
matrix C defined by its matrix elements

Cij = �X�ti�X�tj�� = f�ti − tj� . �140�

Making the change of variables yi=xi+M � �0, +��, and
noting that

S��yi�� =
1

2�
i,j

Dijyiyj + M�
i,j

Dijyi +
M2

2 �
i,j

Dij , �141�

we obtain

P��t,M� = P��t,M = 0�
exp�− M�
i

�iyi��
y�0

e−�M2/2�n�̄,

�142�

with

�i = �
j=1

n

Dij, �̄ =
1

n
�
i=1

n

�i, �143�

and where �·�y�0 denotes the average over all processes for
which y�ti�
0 for all i. If we assume that the process is
periodic of period t, the vector u= �1,1 , . . . ,1� is an exact
eigenvector of C associated with the eigenvalue

� = �
i=−n/2

n/2

f�ti� , �144�

and one has

�i = �
j=1

n

Dij � 1 = �D · u�i = �−1ui = �−1. �145�

For large time t, the periodic constraint should not affect the
value of the persistence exponent. In fact, in this limit of
large time and fine discretization ��t→0�, and even drop-
ping the assumption that the process is periodic, one finds
that

�i = �̄ = �−1 =
�t



−�

�

f�t�dt

=
�t

2 f̂�0�
, �146�

where the discrete sum of Eq. �144� has been transformed
into an integral when �t→0, and the integral limits �t /2

extended to �� for large t. Finally, defining �0=���M =0�
and using Eq. �142�, we find the exact result

�+�M� = �0 + ��M� +
M2

4 f̂�0�
, �147�

with

��M� = lim
t→+�

−
1

t
ln
exp�−

M

2 f̂�0�



0

t

X�t��dt���
X�0

.

�148�

Using the convexity of the exponential function and the fact
that the argument in the exponential in Eq. �148� is negative,
we obtain the exact bounds

0 � ��M� �
�X�t��X�0

2 f̂�0�
M , �149�

where �X�t��X�0 is the average of the process X restricted to
the trajectories which remain positive for all times, and is a
constant strictly independent of M. Equations �147� and
�149� lead to an exact bound for �+�M�,

�0 +
M2

4 f̂�0�
� �+�M� � �0 +

�X�t��X�0

2 f̂�0�
M +

M2

4 f̂�0�
,

�150�

which implies that for large M

�+�M� �
M2

4 f̂�0�
, �151�

with a subleading correction bounded by a linear term in M.
The exact asymptotics of Eq. �151� confirms our heuristic
argument of Eq. �130�. In addition, for small M, it is clear
from Eqs. �148� and �149� that one has the exact expansion,

�+�M� = �0 +
�X�t��X�0

2 f̂�0�
M + O�M2� . �152�

Since �−�M�=�+�−M�, we also get

�−�M� = �0 −
�X�t��X�0

2 f̂�0�
M + O�M2� . �153�

In Fig. 3, we plot �+�M� obtained by simulating the pro-
cess associated with the correlator f2�t� of Eq. �88�. We also
plot the IIA result of Eq. �97�, which underestimates the
actual value of �+�M�, as explained above. In addition, we
plot the exact bounds of Eq. �150�, as well as a convincing fit
of �+�M�, to the functional form �+�M�=a0+a1M

+M2 /4 f̂�0�, where the exact leading term was obtained in
Eq. �151�. In Fig. 2, we plot P+�t� for M =3, which follows
the predicted Wigner distribution of Eq. �122�, for t�a2

−1/2,
before decaying exponentially, with rate �+�M�, for large t.

IV. DISTRIBUTIONS P±(t) FOR SMALL INTERVALS

The heuristic argument presented in the preceding section,
below Eq. �124�, can be adapted to provide the exact behav-
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ior of P��t�, P��t�, and P��t� for small time t. For a smooth
process with f�t� at least four times differentiable, we will
show that the IIA surprisingly reproduces these exact results.
However, for a marginally smooth process, such that for
small t and 2���4,

f�t� = 1 −
a2

2
t2 + a��t�� + ¯ , �154�

the fourth derivative of f�t� is not defined at 0. We will show
that for such a process the IIA does not lead to exact results
for the small-t behavior of P��t�, although it is in fact quali-
tatively and even quantitatively accurate. Note that the pro-
cess associated with the correlator f3�t� defined in Eq. �90�
satisfies the property of Eq. �154�, with �=3, which implies
that its velocity is not differentiable.

A. Exact small-time behavior for very smooth processes

In the limit t→0, the trajectory of the very smooth pro-
cess X inside a � or � interval is essentially parabolic,

X�t�� = M + vt� +
a

2
t�2 + O�t3� , �155�

where the distribution of the velocity at a crossing time is
given by

��v� =
�v�
a2

e−v2/2a2, �156�

and the distribution of the acceleration a, conditional on the
fact that X�0�=M, is

��a� =
1

	2�a2z
e−�a + Ma2�2/2a2

2z2
, �157�

with

z =	 f IV�0�
f �2�0�

− 1, �158�

and a2=−f ��0�. Note that the acceleration at t�=0 is inde-
pendent of the velocity at t�=0, since �X��0�X��0��= f��0�
=0. In addition, since

f IV�0� − f �2�0� = 

−�

+�

��2 − a2�2 f̃���
d�

2�
� 0, �159�

z defined by Eq. �158� is indeed a positive real number.
Let us first consider the small-time behavior of P+�t�. For

an interval of length t to be small, and since v�0, the ac-
celeration is necessarily negative. From Eq. �155�, the cross-
ing time is then given by

t = −
2v
a

, �160�

which is valid only when t is small. Hence, for small t,

P+�t� = 

0

+�

dv

−�

0

da ��v���a�
�t +
2v
a
� . �161�

After integrating over v, we obtain

P+�t� =
1

2



−�

0

��at

2
���a��a�da . �162�

Using the explicit form of ��v�, and taking the limit t→0,
we obtain

P+�t� = c+�M�a2t + O�t3� , �163�

where the dimensionless constant c+�M� is given by

c+�M� =
1

4a2
2


−�

0

��a�a2da . �164�

Performing explicitly the Gaussian integral above, we finally
obtain the exact result,

c+�M� =
M2 + z2

4
G�M

z
� +

zM

4
g�M

z
� , �165�

where g�X� is the Gaussian distribution and G�X� its cumu-
lative sum, both defined in Eqs. �2� and �3�. In the limit M
→ +�, we find c+�M��M2 /4, which leads to

P+�t� �
M2a2

4
t �

�

2

t

�+
2 , �166�

in agreement with our result of Eq. �122�. Moreover, using
Eq. �16�, we obtain the small-time expansion of P��t�, up to
third order in time,

P��t� = 1 −
t

�+
+

c+a2

6�+
t3 + O�t5� . �167�

Finally, the corresponding results for c−�M�, P−�t�, and P��t�
are obtained by the substitution M↔−M, and the exchange
of the indices +↔− and �↔�. In particular, we have

0 1 2 3
M

2

4

6

8

10

12
τ 0

θ +
(M

)

FIG. 3. �Color online� �+�M� �in unit of �0
−1� for the non-

Markovian process associated with the correlator f2�t� of Eq. �88�.
Symbols correspond to results of numerical simulations. The upper
and lower dashed lines are the exact bounds of Eq. �150� �the upper
bound being exact up to order M, for small M�. The ratio of these
two bounds goes to 1 when M→ +�. The full line is a quadratic fit

for M �3 /2, to the functional form �+�M�=a0+a1M + �M2 /4 f̂�0��,
with a0�2.0 and a1�0.66. Finally, the middle dashed line is the
IIA result �along with its asymptotic slope given by Eq. �136�;
dotted line�, which underestimates the quadratic growth of �+�M�.
Some values of �+�M� are also reported in Table II.
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c−�M� =
M2 + z2

4
Ḡ�M

z
� −

zM

4
g�M

z
� . �168�

In the limit M→ +�, we find that

c−�M� �
z5

2M3g�M

z
� . �169�

Thus, we find that P��t� behaves linearly with time for
small t, a result that will be shown in Sec. IV C to be specific
to very smooth processes, for which the correlator f�t� is at
least four times differentiable at t=0.

In Fig. 4, for M =1 /2, we plot P��t� obtained from nu-
merical simulations of the process associated with the cor-
relator f2�t�, illustrating their linear behavior for small time t.
The initial slope at t=0 is in perfect numerical agreement
with the exact results of Eqs. �163�, �165�, and �168�. In
addition, we also plot the full distributions P��t�, obtained
by taking the inverse Laplace transform of Eqs. �76� and
�77�. For this moderate value of M, far from the large-M
regime where the IIA becomes exact, the good agreement
between the IIA results and numerical simulations is cer-
tainly encouraging.

B. IIA results

We now derive the small-time behavior of P��t� by using
the IIA. Expanding the explicit form of V�t� an W�t� of Eqs.
�67� and �70�, we find

W�t� =
1

2
−

M2 + z2

16
a2t2 + O�t4� , �170�

V�t� = G�M� −
1

2
− �M2 + z2

8
�G�M

z
� −

1

2
�

+
zM

8
g�M

z
��a2t2 + O�t4� . �171�

Taking the Laplace transform of these expression and insert-

ing them into the IIA expression for P̂+�s� of Eq. �76�, we
obtain, for large s,

P̂+�s� = ��M2 + z2�G�M

z
� + zMg�M

z
�� a2

4s2 + O�s−4� ,

�172�

which is exactly the Laplace transform of Eqs. �163� and
�165�. Thus, we find that the IIA reproduces the exact small-
time behavior of P��t�.

C. Marginally smooth processes

In this section, we study marginally smooth processes
characterized by a correlator f�t� having a small-time expan-
sion of the form of Eq. �154�, so that f IV�0� does not exist.
Since f IV�0� appeared explicitly in our results of the preced-
ing sections, this suggests that the small-time behavior of
P��t� should be affected by the weak singularity in f�t�.

Let us first apply the IIA in this marginal case. The small-
time expansion of V�t� and W�t� now read

W�t� �
1

2
−

�� − 1�a�

2a2
t�−2, �173�

V�t� � G�M� −
1

2
− M	�� − 1�a�

4�
t�/2. �174�

Note that, since 2���4, one has �−2�� /2. For large s,
and using Eq. �76� and the above asymptotics, we obtain

P̂��s� �
�� − 1���� − 1�a�

2a2s�−2 . �175�

In real time, this leads to the small-time behavior

P��t� �
�� − 1���� − 1�a�

2��� − 2�a2
t�−3, �176�

which is independent of M. In particular, for the quite com-
mon case �=3, which corresponds to the correlator f3�t�
introduced in Eq. �90�, we find that P��t� should be constant
at t=0, with

P��0� =
a3

a2
. �177�

For the correlator f3�t�, one has a2=3 /4 and a3=1 /4, so that
P��0�=1 /3.

Let us now derive an exact expression for P+�t� for a
marginally smooth process with �=3. For small t, the cor-
relator of the velocity is
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)
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FIG. 4. �Color online� Distribution of �=� intervals, P��t�, for
M =1 /2, as a function of t /�� �full lines�, for the process associated
with the correlator f2�t� of Eq. �88� �P−�t� is the most peaked dis-
tribution�. The straight dotted lines have the predicted slopes at t
=0, given by Eqs. �163�, �165�, and �168�. The dashed lines are the
distributions obtained from the IIA, after taking the inverse Laplace
transform of Eqs. �76� and �77�. The inset shows the same data on
a semi logarithmic scale, illustrating the good accuracy of the IIA in
predicting the persistence exponents ���M� and their associated
residue R�.
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�X��t�X��0�� = − f ��t� = a2 − 6a3�t� + O�t2� , �178�

which coincides with the small-time behavior of the cor-
relator of a Markovian process �see Eq. �7��. Hence, for short
time periods, the local equation of motion of X��t� is

X��t� = −
6a3

a2
X��t� + 2	3a3	�t� , �179�

where 	�t� is a 
-correlated Gaussian noise. From the equa-
tion of motion Eq. �179�, one indeed recovers Eq. �178�, for
short times. Now, using Eq. �179�, a short-time trajectory of
X, starting from X�0�=M and X��0�=v, takes the form

X�t� = M + vt + 2	3a3Z�t� + O�t2� , �180�

where Z�t�=O�t3/2� is the random acceleration process intro-
duced in Eq. �89�,

Z�t� = 

0

t

dt1

0

t1

dt2	�t2� . �181�

Finally, for small t, the first M crossing of the process X
corresponds to the first time for which Z�t� / t crosses the
level

Z0 = −
v

2	3a3

. �182�

Introducing the probability distribution ��t0 ,Z0� that Z�t� / t
crosses Z0 for the first time at time t= t0, one has the scaling
relation

��t0,Z0� =
1

Z0
2�� t0

Z0
2� , �183�

obtained by noticing that the scale-invariant process Z�t� has
dimension �t�3/2. For small time t,

P��t� = 

0

+�

��v���12a3t

v2 �12a3

v2 dv . �184�

After making the change of variable T=12a3t /v2 and taking
the limit t→0, while using the fact that ��v��v /a2 for small
v, we obtain the final exact result,

P��0� =
6a3

a2



0

+�

��T�
dT

T
=

6a3

a2

 1

T
� . �185�

Up to a dimensional constant 6a3 /a2 depending on f�t�,
P��0� is proportional to the mean inverse first-passage time
of the process Z�t� / t at the level Z0=1. By simulating the
process Z, we have obtained


 1

T
� � 0.193�1� , �186�

which leads to

P��0� = 1.158�6�
a3

a2
. �187�

This result has also been checked numerically for the process
associated with f3�t�. In fact, the constant appearing in Eq.

�187� was obtained exactly by Wong �5�, based on the study
of the process Z�t� of �4�. Their result leads to

P��0� =
37

32

a3

a2
= 1.156 25

a3

a2
. �188�

Hence, we find that the IIA result of Eq. �177� is not exact
for marginally smooth processes with �=3, although it pre-
dicts correctly that P��0� is a constant independent of M,
leading to a reasonably accurate estimate of this constant.
For general �, Eq. �176� is certainly correct dimensionally
speaking, and probably fairly accurate in practice.

We end this section by an approximate calculation of
�1 /T� for the process Z�t�, which does not reproduce the
exact result of �5�, obtained by a much more complex
method �2,4�. We make the approximation

Z�t� = 

0

t

dt1

0

t1

dt2	�t2� �
t

	3



0

t

dt1	�t1� , �189�

where the factor 1 /	3 ensures that both processes have the
same mean square displacement �Z2�t��= t3 /3. Then, the
original first-passage problem for Z�t� / t becomes a standard
first-passage problem for the usual Brownian motion B�t� at
the level B0=	3, for which the first-passage time probability
distribution is given by �21�

��T,B0� =
B0

	2�T3/2e−B0
2/2T, �190�

for which


 1

T
� =

1

B0
2 . �191�

Finally, within this simple approximation, we find that
�1 /T�=1 /3, overestimating the value obtained in Eq. �186�.

V. CONCLUSION

In this work, we have considered the M-crossing interval
distributions and the persistence of a smooth non-Markovian
Gaussian process. We have obtained exact results for the
persistence exponents in the limit of a large crossing level M,
including exact bounds for �+�M� and P��t�. In this limit, we
have shown that the distributions of � and � intervals be-
come universal, and are respectively given by the Wigner
and Poisson distributions. For any value of M, we have ob-
tained the exact small-time behavior of the interval distribu-
tions and the persistence. We have also derived these results
within the independent interval approximation. Quite surpris-
ingly, the IIA reproduces all these exact results, except for
the large-M asymptotics of �+�M�. In addition, the IIA fails
in reproducing the exact small-time behavior of the interval
distributions for marginally smooth processes, although it re-
mains qualitatively correct and even quite accurate in this
case. To the credit of the IIA, it is the only method to provide
precise approximate expressions of the interval distributions
and the persistence for all times, and all values of the level
M, and thus to grant access to the distribution of extrema of
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a non-Markovian Gaussian process. In addition, the IIA can
be straightforwardly applied to any smooth non-Gaussian
process, for which the autocorrelation function A��t� �or
A��t�� and the conditional number of crossings N��t� �or
N��t�� are known analytically, or extracted from experimen-
tal or numerical data. For Gaussian processes, simple forms
of the derivative of these quantities have been obtained,

which permit a simple and fast numerical implementation of
the IIA results.
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